Chapter 7 (AST405) Lifetime data analysis

Md Rasel Biswas

Lecture Outline

- 1 7. Semiparametric Multiplicative Hazards Regression Models
 - 7.1 Methods for continuous multiplicative hazards model
 - 7.2 Comparison of two or more lifetime distributions

Section 1

7. Semiparametric Multiplicative Hazards Regression Models

Subsection 1

7.1 Methods for continuous multiplicative hazards model

7.1 Methods for continuous multiplicative hazards model

- Models in which covariates have a multiplicative effect on the hazard function play an important role in the analysis of lifetime data
- Proportional hazard (PH) model is one of such models
- Depending on whether baseline hazard function is left arbitrary or not, PH model could be either semiparametric or parametric
- In this section, semiparametric PH models are discussed, where baseline hazard function is left arbitrary

7.1 Methods for continuous multiplicative hazards model

• The hazard function is modeled as

$$\begin{aligned} h(t \mid \mathbf{x}) &= h_0(t) \exp(\mathbf{x}'\beta) \\ &= h_0(t) \exp(\beta_1 x_1 + \beta_2 x_2 + \dots + \beta_p x_p) \end{aligned} \tag{1}$$

- $\blacktriangleright h(t|x) = {\sf hazard}$ at time t for a person with covariates x
- $h_0(t) =$ baseline hazard (unspecified)
- $\blacktriangleright \ \beta = (\beta_1, \dots, \beta_p)' \ \rightarrow$ vector of regression coefficients
- Covariate vector x could include time-varying covariate
- No intercept term is included in $\mathbf{x}' \boldsymbol{\beta}$
- Model (Equation 1) is known as "Cox's proportional hazards model" or simply "Cox model"
- No distributional assumption is required for estimating the parameters of the Model (Equation 1)

7.1 Methods for continuous multiplicative hazards model

• The cumulative baseline hazard function is defined as

$$H_0(t) = \int_0^t h_0(u) \, du \tag{2}$$

• The baseline survivor function

$$S_0(t) = \exp\left[-H_0(t)\right]$$
 (3)

• The survivor function of T given covariate vector ${\bf x}$

$$S(t \mid \mathbf{x}) = \left[S_0(t)\right]^{\exp(\mathbf{x}'\beta)} \tag{4}$$

Data

$$\Big\{(t_i,\delta_i,\mathbf{x}_i), i=1,\ldots,n\Big\}$$

 \bullet Parameters of interest are $h_0(t)$ and β

Log-likelihood function

$$\ell(h_{0}(t),\beta) = \log \prod_{i=1}^{n} \left[f(t_{i};\mathbf{x}_{i}) \right]^{\delta_{i}} \left[S(t_{i};\mathbf{x}_{i}) \right]^{1-\delta_{i}}$$

$$= \sum_{i} \left\{ \delta_{i} \log \left[h_{0}(t_{i}) \exp(\mathbf{x}_{i}'\beta) \right] + \exp(\mathbf{x}_{i}'\beta) \log S_{0}(t_{i}) \right\}$$

$$= \sum_{i} \left\{ \delta_{i} \left[\log h_{0}(t_{i}) + \mathbf{x}_{i}'\beta \right] + \exp(\mathbf{x}_{i}'\beta) \log S_{0}(t_{i}) \right\}$$
(5)

• No unique solutions of the parameters because the number of parameters to be estimated is greater than the number of observations

- Complete likelihood function is not useful for estimating parameters of Cox's proportional hazards model
- There are a number of different likelihood functions defined for estimating parameters, of which Cox's "partial likelihood function" is widely used for PH models
- Log-partial-likelihood function is defined as

$$\ell_1(\beta) = \log \prod_{i=1}^n \left(\frac{\exp(\mathbf{x}'_i \beta)}{\sum_{k=1}^n Y_k(t_i) \exp(\mathbf{x}'_k \beta)} \right)^{\delta_i}$$
(6)

 $\blacktriangleright~Y_k(t) = I(t_k \geq t) ~\rightarrow$ indicates whether the $k{\rm th}$ subject is still in the risk set at time t or not

- Partial likelihood function can be treated as a regular likelihood function for making statistical inference
- \bullet For partial likelihood function, the parameters of interest is β and the estimated parameters

$$\hat{\beta} = \arg \max_{\beta \in \Theta} \, \ell_1(\beta)$$

follow asymptotically normal distribution, similar to MLEs

• The baseline hazard functions are estimated from the full likelihood function with regression parameters are assumed to be known, i.e. $\ell(h_0(t),\hat{\beta})$

• Obtain the expression of partial likelihood function for the following censored sample

time	х
3	1
5	0
8	1
4+	1
10	0

Subsection 2

7.2 Comparison of two or more lifetime distributions

- $\bullet~{\rm Let}~S_j(t)$ be the survivor function of lifetime $T_j,~j=1,2$
- Data available

$$\{(t_i,\delta_i,x_i),\,i=1,\ldots,n\}$$

•
$$x_i = I(i$$
th subject is from group 1)

Null hypothesis

$$H_0:S_1(t)=S_2(t)$$

• Consider PH model

$$h(t \,|\, x) = h_0(t) \exp(\beta x) \ \Rightarrow \ S(t \,|\, x) = [S_0(t)]^{\exp(\beta x)}$$

• We can obtain

$$\begin{split} S_2(t) &= S(t \,|\, x=0) = S_0(t) \\ S_1(t) &= S(t \,|\, x=1) = [S_0(t)]^{\exp(\beta)} = [S_2(t)]^{\exp(\beta)} \end{split}$$

• The null hypothesis under proportional model assumption

$$H_0:S_1(t)=S_2(t) \ \Rightarrow \ H_0:\beta=0$$

 \bullet Large sample-based property of MLE $\hat{\beta}$ can be used to test the null hypothesis

• Log-likelihood function

$$\begin{split} \ell(\beta) &= \log \prod_{i=1}^n \left(\frac{e^{\beta x_i}}{\sum_{k=1}^n Y_k(t_i) \, e^{\beta x_k}} \right)^{\delta_i} \\ &= \sum_{i=1}^n \left(\delta_i \, x_i \, \beta - \delta_i \log \sum_{k=1}^n Y_k(t_i) \, e^{\beta x_k} \right) \end{split}$$

Score function

$$\begin{split} U(\beta) &= \sum_{i=1}^{n} \left(\delta_{i} \, x_{i} - \frac{\delta_{i} \sum_{k=1}^{n} Y_{k}(t_{i}) \, e^{\beta x_{k}} \, x_{k}}{\sum_{k=1}^{n} Y_{k}(t_{i}) \, e^{\beta x_{k}}} \right) \\ &= \sum_{i=1}^{n} \left(d_{1i} - \frac{d_{i} \, n_{1i} \, e^{\beta}}{n_{1i} \, e^{\beta} + n_{2i}} \right) \end{split}$$

d_i = *δ_i d_{1i}* = *δ_i x_i* = *I*(*ith* subject from group 1) *n_{1i}* = ∑_{k=1}ⁿ *Y_k*(*t_i*)*x_k* → number of group 1 subjects at risk at time *t_i n_{2i}* = ∑_{k=1}ⁿ *Y_k*(*t_i*)(1 − *x_k*) → number of group 2 subjects at risk at time *t_i*

Information matrix

$$\begin{split} I(\beta) &= -\frac{d_i \, n_{1i} \, e^\beta n_{1i} \, e^\beta - d_i (n_{1i} \, e^\beta + n_{2i}) n_{1i} \, e^\beta}{\left(n_{1i} \, e^\beta + n_{2i}\right)^2} \\ &= \frac{d_i \, n_{1i} n_{2i} e^\beta}{\left(n_{1i} \, e^\beta + n_{2i}\right)^2} \end{split}$$

 \bullet Confidence interval for β can be obtained from the following pivotal quantity

$$Z(\beta) = \frac{U(\beta)}{[I(\beta)]^{1/2}}$$

which follows an asymptotic standard normal distribution

• $100(1-\alpha)\%$ confidence interval for β can be obtained from the set of values of β that satisfy

$$Z(\beta) \leq z_{1-\alpha}$$

• Under $H_0: \beta = 0$

$$U(0) = \sum_{i=1}^{n} \left(d_{1i} - \frac{d_i n_{1i}}{n_{1i} + n_{2i}} \right)$$
$$I(0) = \sum_{i=1}^{n} \frac{d_i n_{1i} n_{2i}}{\left(n_{1i} + n_{2i}\right)^2}$$

Test statistic

$$Z = \frac{U(0)}{[I(0)]^{1/2}} \sim \mathcal{N}(0, 1)$$

▶ MLE of β does not require to test $H_0: \beta = 0$ using the statistic Z

• The expression of U(0) can be considered as the difference between observed number of deaths from group 1, (d_{1i}) , at time t_i and the corresponding expected number of deaths

$$d_i \times \frac{n_{1i}}{n_{1i} + n_{2i}}$$

• At time t_i , there are $n_i = n_{1i} + n_{2i}$ subjects are at risk and d_i is either 0 or 1 (i.e. there is no ties in the lifetime)

group	event	alive	at risk
1 2	$\begin{array}{c} d_{1i} \\ d_{2i} \\ d_i \end{array}$	$\begin{array}{c} n_{1i}-d_{1i}\\ n_{2i}-d_{2i}\\ n_i-d_i \end{array}$	$\begin{array}{c} n_{1i} \\ n_{2i} \\ n_i \end{array}$

• This score test for the Cox model to compare two groups is also known as **log-rank** test.

Data below show remission times (in weeks) for 40 leukemia patients who were randomly assigned either treatment ${\cal A}$ or ${\cal B}$

tab7_1_1

#	A	tił	b]	Le:	40	Х	: 3	
		tin	ne	sta	atu	s	group	
		<db]< td=""><td>L></td><td><0</td><td>lbl</td><td>></td><td><chr></chr></td></db]<>	L>	<0	lbl	>	<chr></chr>	
1	L		1			1	Α	
2	2		3			1	Α	
3	3		3			1	Α	
4	ł		6		1 A			
Ę	5		7			1	Α	
6	6 7		7	7 1			Α	
7	7 1		L0			1	Α	
8 1		12			1	Α		
9 1		14			1	Α		
10		1	15	1		Α		
#	i	30	mc	ore	ro	ພຣ		

Call: survdiff(formula = Surv(time, status) ~ group, data = tab7_1_1)

	Ν	Observed	Expected	(O-E)^2/E	(O-E)^2/V
group=A	20	17	21.5	0.951	2.36
group=B	20	20	15.5	1.322	2.36

Chisq= 2.4 on 1 degrees of freedom, p= 0.1

coxph(Surv(time, status) ~ group, data = tab7_1_1) %>%
tidy()

A tibble: 1 x 5
 term estimate std.error statistic p.value
 <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1 groupB 0.503 0.332 1.51 0.130

- Patients with *cystic fibrosis* are susceptible to an accumulation of mucus in lungs, which leads to pulmonary exacerbation and deterioration of lung function
- A clinical trial was conducted to investigate the efficacy of the new drug DNase-1
 - Subjects are randomly assigned to a new treatment or a placebo
- Time of interest is the time to first exacerbation after randomization and data on fev (forced expiatory volume at the time of randomization) are also measured

t (days)"	trt .	fev ^{<i>b</i>}
168*	1	28,8
169*	1	64.0
65	0	67.2
168*	I	57.6
171*	0	57.6
166*	I	25,6
168*	0	86.4
90	0	32.0
169*	1	86.4
8	0	28.8

 Table 1.4. Times to First Pulmonary Exacerbation for

 10 Subjects

"Starred values are censoring times,

^b few measure is percent of predicted normal few, based on sex, age, and height.

Creating the data from the R object rhDNase

```
tab1_4 <- as_tibble(rhDNase) %>%
filter(is.na(ivstart) | ivstart > 0) %>%
mutate(time0 = as.numeric(end.dt - entry.dt),
    status = as.numeric(!is.na(ivstart)),
    time = if_else(status == 1, ivstart, time0),
    fevm = fev - mean(fev)) %>%
group_by(id) %>%
mutate(visit = n()) %>%
ungroup()
```

Cox's PH model

$$h(t \,|\, {\rm trt, \ fevm}) = h_0(t) \exp(\beta_1 \, {\rm trt} + \beta_2 \, {\rm fevm})$$

R code for fitting the model

Estimates of regression coefficients

tidy(mod1)

A tibble: 2 x 5

term estimate std.error statistic p.value
 <chr> <dbl> <dbl>

- 2 fevm -0.0188 0.00226 -8.31 9.63e-17
 - Treatment group patients have lower hazard for time to first exacerbation
 - As FEV value increases the hazard of first exacerbation decreases
 - Effects of treatment and FEV are significant on the hazard of first exacerbation decreases

Table 3: Estimates and corresponding confidence intervals of the parameters of Cox's PH model

term	estimate	p.value	HR	2.5 %	97.5 %
trt	-0.352	0.001	0.703	0.571	0.867
fevm	-0.019	0.000	0.981	0.977	0.986

- Treatment group patients have about 30% lower hazard of first exacerbation than that of the placebo group patients provided FEV value remains constant
- For 1-unit increase of FEV value, hazard of first exacerbation decreases about 2% provided treatment group remains constant

survfit() provides estimate of survivor function and corresponding
standard errors

```
tidy(survfit(mod1)) %>%
     as_tibble()
```

A tibble: 161 x 8

	time	n.risk	n.event	n.censor	estimate	std.error	conf.high	conf.	
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dl< td=""></dl<>	
1	1	761	1	0	0.999	0.00138	1	0.9	
2	5	760	3	0	0.994	0.00277	1.00	0.9	
3	6	757	1	0	0.993	0.00311	0.999	0.9	
4	8	756	4	0	0.988	0.00420	0.996	0.9	
5	9	752	3	0	0.983	0.00489	0.993	0.	
6	11	749	2	0	0.981	0.00530	0.991	0.	
7	13	747	2	0	0.978	0.00569	0.989	0.	
8	14	745	2	0	0.975	0.00606	0.987	0.	
9	15	743	4	0	0.970	0.00675	0.983	0.	
10	16	739	2	0	0.967	0.00708	0.980	0.	
# i	# i 151 more rows								

Md Rasel Biswas