
(Pre-requisite)
(AST405) Lifetime data analysis

Md Rasel Biswas

Md Rasel Biswas (Pre-requisite) 1 / 98



Lecture Outline

1 0. Parametric Regression Models

0.1 Linear Regression Model

0.2 Logistic Regression Model

Md Rasel Biswas (Pre-requisite) 2 / 98



Section 1

0. Parametric Regression Models
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Subsection 1

0.1 Linear Regression Model
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Independent two-sample t-test

Population A
▶ Response 𝑌1 ∼ 𝒩(𝜇1, 𝜎2)
▶ Random sample {𝑦11, 𝑦12, … , 𝑦1𝑛1

}
Population B

▶ Response 𝑌2 ∼ 𝒩(𝜇2, 𝜎2)
▶ Random sample {𝑦21, 𝑦22, … , 𝑦2𝑛2

}
Objective

𝐻0 ∶ 𝜇1 = 𝜇2
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Independent two-sample t-test

Test statistic

𝑡 = ̄𝑦1 − ̄𝑦2
𝑠𝑒( ̄𝑦1 − ̄𝑦2) = ̄𝑦1 − ̄𝑦2

𝑠𝑝√(1/𝑛1) + (1/𝑛2)
∼ 𝑡𝑛1+𝑛2−2

▶ 𝑠2
𝑝 = (𝑛1−1)𝑠2

1+(𝑛2−1)𝑠2
2

𝑛1+𝑛2−2
▶ ̄𝑦𝑖 = (1/𝑛𝑖) ∑𝑛𝑖

𝑗=1 𝑦𝑖𝑗
(1 − 𝛼)100% confidence interval for (𝜇1 − 𝜇2)

( ̄𝑦1 − ̄𝑦2) ± 𝑡𝑛1+𝑛2−2,1−𝛼/2 𝑠𝑒( ̄𝑦1 − ̄𝑦2)
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Melanoma mortality data

Incidence of melanoma can be related to the amount of sunshine,
equivalently to the latitude of the area

Data were collected on malignant melanoma of the skin of white
males during the period 1950–69 for each state of the US

Data on mortality rate (per 10 million), 1965 population (in a
million), latitude, longitude, and the whether the state borders on the
ocean are recorded
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Melanoma mortality data

Download mordat data
glimpse(mordat)

Rows: 49
Columns: 6
$ state <chr> "Alabama", "Arizona", "Arkansas", "California", "Colorado", ~
$ mortality <dbl> 219, 160, 170, 182, 149, 159, 200, 177, 197, 214, 116, 124, ~
$ latitude <dbl> 33.0, 34.5, 35.0, 37.5, 39.0, 41.8, 39.0, 39.0, 28.0, 33.0, ~
$ longitude <dbl> 87.0, 112.0, 92.5, 119.5, 105.5, 72.8, 75.5, 77.0, 82.0, 83.~
$ pop <dbl> 3.46, 1.61, 1.96, 18.60, 1.97, 2.83, 0.50, 0.76, 5.80, 4.36,~
$ ocean <fct> 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, ~

Md Rasel Biswas (Pre-requisite) 8 / 98

data/ch6/mordat.csv


Melanoma mortality data

For a state, does “contiguous to the ocean” (Yes or No) significantly
affect melanoma mortality rate?

contiguous to ocean = {Yes → ocean=1
No → ocean=0
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Melanoma mortality data
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Figure 1: Distribution of mortality rate by contiguous to ocean
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Independent two-sample t-test

test1 <- t.test(mortality ~ ocean, var.equal = T,
data = mordat)

broom::tidy(test1) |>
select(1:8) |> kable(digits = 3)

estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high

-31.487 138.741 170.227 -3.684 0.001 47 -48.68 -14.293

“Contiguity to the ocean” has a significant effect on average mortality rate
(𝑝 < .001)
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Simple linear regression model
Objective is to compare average mortality rate (𝑌 ) between two
group of states (ocean=0 or ocean=1)

𝐸(𝑌 | ocean = 0) = 𝜇0 (1)

𝐸(𝑌 | ocean = 1) = 𝜇1 (2)

Expressing Equation 1 and Equation 2 in one equation

𝐸(𝑌 | 𝑥1) = 𝜇0 + (𝜇1 − 𝜇0)𝑥1 (3)

where

𝑥1 = {1 if ocean=1
0 if ocean=0
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Simple linear regression model

Consider a model for mortality (𝑌 ) on ocean (𝑥1)

𝐸(𝑌 | 𝑥1) = 𝜇0 + (𝜇1 − 𝜇0)𝑥1

= 𝛽0 + 𝛽1𝑥1

where

𝛽0 = 𝜇0 and 𝛽1 = (𝜇1 − 𝜇0)

Comparison between two groups of states

𝐻0 ∶ 𝛽1 = 0 ⇒ 𝐻0 ∶ 𝜇1 = 𝜇2
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Simple linear regression model

Another way of defining simple linear model, let 𝑌 (𝑥) be response
corresponding to a subject with predictor 𝑥 and assume

(𝑌 | 𝑥) = 𝑌 (𝑥) ∼ 𝒩(𝜇(𝑥), 𝜎2) (4)

Parametric regression model

𝜇(𝑥) = 𝐸(𝑌 | 𝑥) = 𝛽0 + 𝛽1𝑥 (5)
𝑉 (𝑌 | 𝑥) = 𝜎2 (6)
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Simple linear regression model
Data

{(𝑦𝑖, 𝑥𝑖), 𝑖 = 1, … , 𝑛}

Assume 𝑦’s are independent and

𝑌𝑖 ∼ 𝒩(𝜇(𝑥𝑖), 𝜎2)

Simple linear regression model

𝜇(𝑥) = 𝐸(𝑌 | 𝑥) = 𝛽0 + 𝛽1𝑥 (7)
𝑉 (𝑌 | 𝑥) = 𝜎2 (8)

Both maximum likelihood and ordinary least square methods can be
used to estimate the parameters of linear regression models
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Estimation of parameters

Log-likelihood function

ℓ(𝛽0, 𝛽1) = log
𝑛

∏
𝑖=1

(1/𝜎) 𝜙(𝑦𝑖 − 𝜇(𝑥𝑖)
𝜎 ) (9)

= −𝑛 log 𝜎 +
𝑛

∑
𝑖=1

log 𝜙(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖
𝜎 ) (10)

MLEs

( ̂𝛽0, ̂𝛽1)′ = arg maxΘℓ(𝛽0, 𝛽1) (11)
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Estimation of parameters

Estimating the effect of “contiguous to ocean” (𝑥1) on mortality rate
(𝑌 ) using simple linear regression model

𝐸(𝑌 | 𝑥1) = 𝛽0 + 𝛽1𝑥1
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Estimation of parameters

Fitting a linear model for mortality with “contiguous to ocean” as the
only predictor

mod_oc <- lm(mortality ~ ocean, data = mordat)
tbl_regression(mod_oc, intercept = T)

Characteristic Beta 95% CI1 p-value
(Intercept) 139 127, 150 <0.001
ocean
    0 — —
    1 31 14, 49 <0.001
1CI = Confidence Interval

“Contiguity to the ocean” has a significant effect on average
mortality rate (𝑝 < .001)
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Estimation of parameters

Fitted model

𝐸(𝑌 | 𝑥1) = 138.741 + 31.487𝑥1 = {138.741 if 𝑥1 = 0
170.227 if 𝑥1 = 1

Inland states (ocean=0) are expected to have about 31 fewer
melanoma deaths (per 10 million population) compared to other
states
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t-test and simple linear regression model

For binary predictors, inference based on independent two-sample
t-test and simple linear regression mode are similar

The method of simple linear regression model for binary predictor can
also be used for continuous predictor
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Simple linear regression model with a continuous predictor

Model I: a model for mortality (𝑌 ) on latitude (𝑥2)

𝐸(𝑌 | 𝑥2) = 𝛽0 + 𝛽2𝑥2 (12)
𝑉 (𝑌 | 𝑥2) = 𝜎2 (13)
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Simple linear regression model with a continuous predictor
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Figure 2: Scatter plot of mortality vs latitude
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Simple linear regression model with a continuous predictor

mod_l1 <- lm(mortality ~ latitude, data = mordat)
tbl_regression(mod_l1, intercept = T)

Characteristic Beta 95% CI1 p-value
(Intercept) 389 341, 437 <0.001
latitude -6.0 -7.2, -4.8 <0.001
1CI = Confidence Interval

Latitude has a significant effect on the melanoma mortality rate

For one-degree increase in latitude (i.e., moving toward the north),
melanoma mortality rate decrease by 6 deaths per 10 million
population

Md Rasel Biswas (Pre-requisite) 23 / 98



Simple linear regression model with a continuous predictor

ANOVA table for Model I
tidy(aov(mod_l1)) |> kable(digits = 3)

term df sumsq meansq statistic p.value
latitude 1 36464.20 36464.200 99.797 0
Residuals 47 17173.06 365.384 NA NA
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Simple linear regression model with a continuous predictor
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Figure 3: Fit of Model I
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Another fit of the model “Mortality on latitude”

Model I: A model for mortality on latitude (𝑥2)

𝐸(𝑌 | 𝑥2) = 𝛽0 + 𝛽2𝑥2 (14)

Model II: A model for mortality on latitude (𝑥)

𝐸(𝑌 | 𝑥) = 𝛽0 + 𝛽𝑥𝑥 (15)
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Another fit of the model “Mortality on latitude”
mod_l2 <- lm(mortality ~ latitudef,

data = mordat %>%
mutate(latitudef = factor(latitude)))

tbl_regression(mod_l2, intercept = T)

Characteristic Beta 95% CI1 p-value
(Intercept) 197 163, 231 <0.001
latitudef
    28 — —
    31.2 -7.0 -55, 41 0.8
    31.5 32 -16, 80 0.2
    32.8 10 -38, 58 0.7
    33 20 -22, 61 0.3
    33.8 -19 -67, 29 0.4
    34.5 -37 -85, 11 0.12
    35 -42 -83, -0.35 0.048
    35.5 -6.5 -48, 35 0.7
    36 -11 -59, 37 0.6
    37.5 -23 -64, 18 0.3
    37.8 -50 -98, -2.5 0.040
    38.5 -49 -90, -7.4 0.024
    38.8 -61 -109, -13 0.015
    39 -21 -58, 16 0.2
    39.5 -55 -103, -7.5 0.026
    40 -73 -121, -25 0.005
    40.2 -58 -96, -19 0.006
    40.8 -65 -113, -17 0.010
    41.5 -75 -123, -27 0.004
    41.8 -49 -90, -7.9 0.022
    42.2 -62 -103, -20 0.006
    43 -54 -95, -13 0.013
    43.5 -80 -128, -32 0.002
    43.8 -68 -116, -20 0.008
    44 -53 -94, -11 0.015
    44.5 -84 -125, -43 <0.001
    44.8 -111 -159, -63 <0.001
    45.2 -80 -128, -32 0.002
    46 -81 -129, -33 0.002
    47 -88 -136, -40 0.001
    47.5 -81 -122, -40 <0.001
1CI = Confidence Interval
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Another fit of the model “Mortality on latitude”

ANOVA table for Model II
tidy(aov(mod_l2)) |> kable(digits = 4)

term df sumsq meansq statistic p.value
latitudef 31 49326.799 1591.1871 6.2755 1e-04
Residuals 17 4310.467 253.5569 NA NA
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Another fit of the model “Mortality on latitude”

Comparison between Model I and Model II (LRT)
tidy(anova(mod_l1, mod_l2)) |> kable(digits = 3)

term df.residual rss df sumsq statistic p.value

mortality ~ latitude 47 17173.065 NA NA NA NA
mortality ~ latitudef 17 4310.467 30 12862.6 1.691 0.128
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Another fit of the model “Mortality on latitude”
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Figure 4: Fit of Model II
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Another fit of the model “Mortality on latitude”
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Figure 5: Comparison between the fits of Models I and II
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Another fit of the model “Mortality on latitude”
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Figure 6: Residuals of Models I and II
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Another fit of the model “Mortality on latitude”

Which model (I or II) do you prefer for analyzing the data?
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Another fit of the model “Mortality on latitude”
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Figure 7: Estimate and corresponding confidence intervals obtained using Models
I and II
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Multiple linear regression model

A model for mortality rate (𝑌 ) on ocean (𝑥1) and latitude (𝑥2)

𝐸(𝑌 | 𝑥1, 𝑥2) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 (16)
𝑉 (𝑌 | 𝑥1, 𝑥2) = 𝜎2 (17)
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Multiple linear regression model

mod_2 <- lm(mortality ~ ocean + latitude,
data = mordat)

tbl_regression(mod_2, intercept = T)

Characteristic Beta 95% CI1 p-value
(Intercept) 361 317, 404 <0.001
ocean
    0 — —
    1 20 11, 30 <0.001
latitude -5.5 -6.5, -4.4 <0.001
1CI = Confidence Interval

Both contiguity to ocean and latitude have significant effects on the
mortality rate
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Multiple linear regression model

On average, inland states have about 20 fewer melanoma deaths
compared to other states provided latitude is fixed

For one-degree increase of latitude, the average mortality rate
decrease by 5 deaths per 10 million population provided contiguity to
the ocean is fixed
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Multiple linear regression model
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Figure 8: Comparison of the fits of the simple (blue line) and multiple linear
regression models for mortality
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Subsection 2

0.2 Logistic Regression Model
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Contingency table

Data obtained from different types of study designs (e.g., prospective,
retrospective, and cross-sectional) can be expressed in such
contingency table to examine the exposure-disease relationship

Disease
Exposure Yes No Total
Yes a b n_1
No c d n_2
Total m_1 m_2 n
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Prospective study design

Let 𝑌1 and 𝑌2 be the number of exposed and non-exposed diseased
subjects, which follow two independent binomial distributions

𝑌1 ∼ 𝐵(𝑛1, 𝑝1) and 𝑌2 ∼ 𝐵(𝑛2, 𝑝2)

▶ 𝑝1 = 𝑃𝑟(𝐷 = 1 | 𝐸 = 1)
▶ 𝑝2 = 𝑃𝑟(𝐷 = 1 | 𝐸 = 0)

Estimate of model parameters

̂𝑝1 = (𝑎/𝑛1) 𝑎𝑛𝑑 ̂𝑝2 = (𝑐/𝑛2)
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Prospective study design

Risk difference

𝑅𝐷 = 𝑝1 − 𝑝2

𝑅𝐷 = ̂𝑝1 − ̂𝑝2

𝑠𝑒(𝑅𝐷) = [( ̂𝑝1 ̂𝑞1/𝑛1) + ( ̂𝑝2 ̂𝑞2/𝑛2)]
1/2
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Prospective study design

Risk ratio

𝑅𝑅 = (𝑝1/𝑝2)
𝑅𝑅 = ( ̂𝑝1/ ̂𝑝2)

𝑠𝑒(log 𝑅𝑅) = [ ̂𝑞1
𝑛1 ̂𝑝1

+ ̂𝑞2
𝑛2 ̂𝑝2

]
1/2
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Prospective study design

Odds ⇔ probability

𝑜(𝑥) = 𝑝(𝑥)
1 − 𝑝(𝑥) ⇒ 𝑝(𝑥) = 𝑜(𝑥)

1 + 𝑜(𝑥)

Odds ratio

𝑂𝑅 = 𝑝1/𝑞1
𝑝2/𝑞2

𝑂𝑅 = ̂𝑝1/ ̂𝑞1
̂𝑝2/ ̂𝑞2

= 𝑎𝑑
𝑏𝑐

𝑠𝑒(log 𝑂𝑅) = [1
𝑎 + 1

𝑏 + 1
𝑐 + 1

𝑑]
1/2
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Case-control study design

Let 𝑌1 and 𝑌2 be the number of exposed subjects in case and control
groups, respectively, following two independent binomial distributions

𝑌1 ∼ 𝐵(𝑚1, 𝑝1) and 𝑌2 ∼ 𝐵(𝑚2, 𝑝2)
▶ 𝑝1 = 𝑃𝑟(𝐸 = 1 | 𝐷 = 1)
▶ 𝑝2 = 𝑃𝑟(𝐸 = 1 | 𝐷 = 0)

Estimate of parameters

̂𝑝1 = (𝑎/𝑚1) and ̂𝑝2 = (𝑏/𝑚2)
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Case-control study design

Odds ratio

𝑂𝑅 = 𝑝1/𝑞1
𝑝2/𝑞2

𝑂𝑅 = ̂𝑝1/ ̂𝑞1
̂𝑝2/ ̂𝑞2

= 𝑎𝑑
𝑏𝑐

▶ Disease-odds-ratio = Exposure-odds-ratio
▶ For case-control study, the RR can be approximated by OR if the

disease is rare
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Cross-sectional study

Data of dichotomous disease-exposure study can be considered as an
outcome of 𝑛 tosses of a four-faced dye with the faces

{𝐸𝐷}, {𝐸𝐷̄}, { ̄𝐸𝐷}, { ̄𝐸𝐷̄}

▶ Estimators of odds ratio
𝑂𝑅 = 𝑎𝑑

𝑏𝑐
▶ Multinomial distribution is associated with the outcome of a

cross-sectional study
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Western Collaborative Group Study (WCGS)

A large epidemiological study designed to investigate the association
between the Type-A behavior pattern and coronary heart disease
(CHD)

Type-A behavior is composed of competitiveness, excessive drive, and
an enhanced sense of time urgency

Download wcgs data

Md Rasel Biswas (Pre-requisite) 48 / 98

data/ch6/wcgs.xls


Western Collaborative Group Study (WCGS)

head(wcgs) |> select(1:10) |> kable()

age arcus behpat bmi chd69 chol dbp dibpat height id
50 1 A1 31.32101 0 249 90 Type A 67 2343
51 0 A1 25.32858 0 194 74 Type A 73 3656
59 1 A1 28.69388 0 258 94 Type A 70 3526
51 1 A1 22.14871 0 173 80 Type A 69 22057
44 0 A1 22.31303 0 214 80 Type A 71 12927
47 0 A1 27.11768 0 206 76 Type A 64 16029

Outcome: chd69
Exposure: dibpat
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Western Collaborative Group Study (WCGS)

CHD
dibpat 1 0 total $\hat{p}$ $\hat{o}$
Type A 177 1411 1588 0.111 0.125
Type B 78 1486 1564 0.050 0.053

𝑅𝐷 = 0.111 − 0.05 = 0.061
Subjects with Type-A behavior have about 6.1 % higher risk of
developing CHD compared with others
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Western Collaborative Group Study (WCGS)

CHD
dibpat 1 0 total $\hat{p}$ $\hat{o}$
Type A 177 1411 1588 0.111 0.125
Type B 78 1486 1564 0.050 0.053

𝑅𝑅 = (0.111/0.05) = 2.22
The risk of developing CHD for Type-A subjects is about 2.2 times
the risk for Type-B subjects

In other words, the risk of developing CHD is about 122% higher for
Type-A subjects compared to Type-B subjects
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Western Collaborative Group Study (WCGS)

CHD
dibpat 1 0 total $\hat{p}$ $\hat{o}$
Type A 177 1411 1588 0.111 0.125
Type B 78 1486 1564 0.050 0.053

𝑂𝑅 = (0.125/0.053) = 2.358
The odds of developing CHD for Type-A subjects is about 2.4 times
that the risk for Type-B subjects

In other words, the odds of developing CHD is about 136% higher for
Type-A subjects compared to Type-B subjects
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Western Collaborative Group Study (WCGS)

𝑅𝐷 ± 𝑠𝑒(𝑅𝐷) = 0.061 ± 0.01
log 𝑅𝑅 ± 𝑠𝑒(log 𝑅𝑅) = 0.798 ± 0.131
log 𝑂𝑅 ± 𝑠𝑒(log 𝑂𝑅) = 0.858 ± 0.141

Obtain confidence intervals for RD, RR, and OR
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Regression model for binary response

Let 𝑌 (𝑥) be binary response obtained from a subject with predictor
value 𝑥 and assume

𝑌 (𝑥) ∼ 𝐵(1, 𝑝(𝑥))
where

𝑝(𝑥) = 𝑃𝑟(𝑌 (𝑥) = 1) = 𝑃 𝑟(𝑌 = 1 | 𝑥) = 𝐸(𝑌 | 𝑥)
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Regression models for 𝑝(𝑥)

Assume 𝑌 (𝑥) ∼ 𝐵(1, 𝑝(𝑥))

𝑝(𝑥) = 𝛽0 + 𝛽1𝑥 (Model I)

▶ −∞ < 𝑝(𝑥) < ∞
▶ Linear probability model
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Regression models for 𝑝(𝑥)

Assume 𝑌 (𝑥) ∼ 𝐵(1, 𝑝(𝑥))

log 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥 ⇒ 𝑝(𝑥) = exp(𝛽0 + 𝛽1𝑥) (Model II)

▶ 0 < 𝑝(𝑥) < ∞
▶ Log-binomial model
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Regression models for 𝑝(𝑥)

Assume 𝑌 (𝑥) ∼ 𝐵(1, 𝑝(𝑥))

logit 𝑝(𝑥) = log 𝑝(𝑥)
1 − 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥

𝑝(𝑥) = exp(𝛽0 + 𝛽1𝑥)
1 + exp(𝛽0 + 𝛽1𝑥) (Model III)

▶ 0 < 𝑝(𝑥) < 1
▶ Logistic regression model (related to the distribution function of

logistic distribution)
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Regression models for 𝑝(𝑥)

Assume 𝑌 (𝑥) ∼ 𝐵(1, 𝑝(𝑥))

Φ−1(𝑝(𝑥)) = 𝛽0 + 𝛽1𝑥
𝑝(𝑥) = Φ(𝛽0 + 𝛽1𝑥) (Model IV)

▶ 0 < 𝑝(𝑥) < 1
▶ Probit regression model
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Regression models for 𝑝(𝑥)

Assume 𝑌 (𝑥) ∼ 𝐵(1, 𝑝(𝑥))

log[− log(1 − 𝑝(𝑥))] = 𝛽0 + 𝛽1𝑥
𝑝(𝑥) = 1 − exp [ − 𝑒𝛽0+𝛽1𝑥] (Model V)

▶ 0 < 𝑝(𝑥) < 1
▶ Regression model with complementary log-log link (related to the

distribution function of extreme-value distribution)
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Regression models for 𝑝(𝑥)

Model V

Model III (logistic) Model IV (probit)

Model I Model II
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Model I: 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥

Probability of developing CHD among subjects with Type-A (𝑥 = 1)
and Type-B behavior (𝑥 = 0)

𝑝(1) = 𝑃(𝑌 = 1 | 𝑥 = 1) = 𝛽0 + 𝛽1

𝑝(0) = 𝑃(𝑌 = 1 | 𝑥 = 0) = 𝛽0

▶ Effect of behavior type on CHD

𝑅𝐷 = 𝑝(1) − 𝑝(0) = 𝛽1
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Model I: 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥

Data
{(𝑦𝑖, 𝑥𝑖), 𝑖 = 1, … , 𝑛}

𝑦’s are independent and assume

𝑌𝑖 ∼ 𝐵(1, 𝑝(𝑥𝑖))

Linear probability model

𝑝(𝑥𝑖) = 𝛽0 + 𝛽1𝑥𝑖

Md Rasel Biswas (Pre-requisite) 62 / 98



Model I: 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥

Log-likelihood function

ℓ(𝛽0, 𝛽1) = log
𝑛

∏
𝑖=1

𝑦𝑝(𝑥𝑖)
𝑖 (1 − 𝑦𝑖)1−𝑝(𝑥𝑖)

=
𝑛

∑
𝑖=1

{(𝛽0 + 𝛽1𝑥𝑖) log 𝑦𝑖 + (1 − 𝛽0 − 𝛽1𝑥𝑖) log(1 − 𝑦𝑖)}

MLEs

( ̂𝛽0, ̂𝛽1)′ = arg maxΘℓ(𝛽0, 𝛽1) (18)

Md Rasel Biswas (Pre-requisite) 63 / 98



glm() funciton

R function glm() is used to fit a generalized linear model
glm(formula, data, family)

family specifies the distribution of response and link function, which can be
either a string or a function, and commonly used family and link function
in glm()

▶ binomial("logit") → binomial distribution and logit link function
▶ binomial("log") → binomial distribution and log link function
▶ gaussian("identity") → Gaussian distribution and identity link

function
▶ poisson("log") → Poisson distribution and log link function
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Model I: 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥
bmod_1 <- glm(chd69 ~ dibpat, family = binomial("identity"),

data = wcgs)
tbl_regression(bmod_1, intercept = T)

Characteristic Beta 95% CI1 p-value
(Intercept) 0.05 0.04, 0.06 <0.001
dibpat
    Type B — —
    Type A 0.06 0.04, 0.08 <0.001
1CI = Confidence Interval

Since response chd69 is a binary variable and regression function is assumed to be
identically linked with the parameter of the response distribution, a
binomial("identity") is used as family
Effect of behavior type on CHD

𝑅𝐷 = ̂𝛽1 = 0.062
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Model II: log 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥

Probability of developing CHD among subjects with Type-A (𝑥 = 1)
and Type-B (𝑥 = 0) behavior

𝑝(1) = 𝑃(𝑌 = 1 | 𝑥 = 1) = exp(𝛽0 + 𝛽1) (19)
𝑝(0) = 𝑃(𝑌 = 1 | 𝑥 = 0) = exp(𝛽0) (20)

Effect of Type-A behavior

𝑅𝑅 = 𝑝(1)
𝑝(0) = exp(𝛽1) ⇒ log 𝑅𝑅 = 𝛽1
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Model II: log 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥

Log-likelihood function

ℓ(𝛽0, 𝛽1) = log
𝑛

∏
𝑖=1

𝑦𝑝(𝑥𝑖)
𝑖 (1 − 𝑦𝑖)1−𝑝(𝑥𝑖)

=
𝑛

∑
𝑖=1

{ exp(𝛽0 + 𝛽1𝑥𝑖) log 𝑦𝑖 + [1 − exp(𝛽0 + 𝛽1𝑥𝑖)] log(1 − 𝑦𝑖)}

MLEs

( ̂𝛽0, ̂𝛽1)′ = arg maxΘℓ(𝛽0, 𝛽1) (21)
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Model II: log 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥
bmod_2 <- glm(chd69 ~ dibpat, family = binomial("log"),

data = wcgs)
tbl_regression(bmod_2, intercept = T)

Characteristic log(RR)1 95% CI1 p-value
(Intercept) -3.0 -3.2, -2.8 <0.001
dibpat
    Type B — —
    Type A 0.80 0.55, 1.1 <0.001
1RR = Relative Risk, CI = Confidence Interval

Since response chd69 is a binary variable and regression function is assumed to be
linked with the log-transformed parameter of the response distribution, a
binomial("log") is used as family
Effect of behavior type on CHD

log 𝑅𝑅 = ̂𝛽1 = 0.804 ⇒ 𝑅𝑅 = exp( ̂𝛽1) = 2.235

Md Rasel Biswas (Pre-requisite) 68 / 98



Model III: logit 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥

Probability of developing CHD among subjects with Type-A (𝑥 = 1)
and Type-B (𝑥 = 0) behavior

𝑝(1) = 𝑃(𝑌 = 1 | 𝑥 = 1) = exp(𝛽0 + 𝛽1)
1 + exp(𝛽0 + 𝛽1) (22)

𝑝(0) = 𝑃(𝑌 = 1 | 𝑥 = 0) = exp(𝛽0)
1 + exp(𝛽0) (23)
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Model III: logit 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥

Effect of behavior type

𝑂𝑅 = 𝑝(1)/[1 − 𝑝(1)]
𝑝(0)/[1 − 𝑝(0)] = exp(𝛽0 + 𝛽1)

exp(𝛽0) = exp(𝛽1)

⇒ log 𝑂𝑅 = 𝛽1
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Model III: logit 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥

Log-likelihood function

ℓ(𝛽0, 𝛽1) = log
𝑛

∏
𝑖=1

𝑦𝑝(𝑥𝑖)
𝑖 (1 − 𝑦𝑖)1−𝑝(𝑥𝑖)

=
𝑛

∑
𝑖=1

{ exp(𝛽0 + 𝛽1𝑥𝑖)
1 + exp(𝛽0 + 𝛽1𝑥𝑖)

log 𝑦𝑖 + log(1 − 𝑦𝑖)
1 + exp(𝛽0 + 𝛽1𝑥𝑖)

}

MLEs

( ̂𝛽0, ̂𝛽1)′ = arg maxΘℓ(𝛽0, 𝛽1) (24)
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Model III: logit 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥
bmod_3 <- glm(chd69 ~ dibpat, family = binomial("logit"),

data = wcgs)
tbl_regression(bmod_3, intercept = T)

Characteristic log(OR)1 95% CI1 p-value
(Intercept) -2.9 -3.2, -2.7 <0.001
dibpat
    Type B — —
    Type A 0.87 0.60, 1.2 <0.001
1OR = Odds Ratio, CI = Confidence Interval

Since response chd69 is a binary variable and the regression function
is assumed to be linked with a logit-transformed parameter of the
response distribution, a binomial("logit") is used as family

Effect of behavior type on CHD
log 𝑂𝑅 = ̂𝛽1 = 0.871 ⇒ 𝑂𝑅 = exp( ̂𝛽1) = 2.39
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Binary response and continuous predictor

Effect of age (𝑥2) on CHD (Model I)

𝑝(𝑥) = 𝛽0 + 𝛽1𝑥2
mod_1a <- glm(chd69 ~ age, family = binomial("identity"),

data = wcgs)
tbl_regression(mod_1a, intercept = T)

Characteristic Beta 95% CI1 p-value
(Intercept) -0.17 -0.25, -0.10 <0.001
age 0.01 0.00, 0.01 <0.001
1CI = Confidence Interval

Age has a significant effect on CHD, and for an increase of 10 years, risk of
developing CHD increase by 0.055
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Binary response and continuous predictor

What is the risk of developing CHD for a subject of age 45?
predict.glm(mod_1a, newdata = list(age = 45),

type = "response")

1
0.07393095
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Binary response and continuous predictor

Predicting linear predictor for a subject of age 45
predict.glm(mod_1a, newdata = list(age = 45),

type = "link")

1
0.07393095
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Binary response and continuous predictor

Effect of age (𝑥2) on CHD (Model II)

log 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥2
mod_2a <- glm(chd69 ~ age, family = binomial("log"),

data = wcgs)
tbl_regression(mod_2a, intercept = T)

Characteristic log(RR)1 95% CI1 p-value
(Intercept) -5.7 -6.7, -4.8 <0.001
age 0.07 0.05, 0.09 <0.001
1RR = Relative Risk, CI = Confidence Interval

Age has a significant effect on CHD, and the risk of developing CHD for a subject
John is 1.07 (= 𝑒0.068) times that of a subject who is one year younger than John
For one year increase of age, the risk of developing CHD is increased by 7%
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Binary response and continuous predictor

What is the risk of developing CHD for a subject of age 45?
predict.glm(mod_2a, newdata = list(age = 45),

type = "response")

1
0.06891375

Predicting linear predictor for a subject of age 45
predict.glm(mod_2a, newdata = list(age = 45),

type = "link")

1
-2.6749
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Binary response and continuous predictor
Effect of age (𝑥2) on CHD (Model III)

logit 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥2

mod_3a <- glm(chd69 ~ age, family = binomial("logit"),
data = wcgs)

tbl_regression(mod_3a, intercept = T)

Characteristic log(OR)1 95% CI1 p-value
(Intercept) -6.0 -7.1, -4.9 <0.001
age 0.07 0.05, 0.10 <0.001
1OR = Odds Ratio, CI = Confidence Interval

Age has a significant effect on CHD, and the odds of developing CHD for a subject
John is 1.078 (= 𝑒0.075) times that of a subject who is one year younger than John
For one year increase of age, the odds of developing CHD is increased by 7.8%
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Binary response and continuous predictor

What is the risk of developing CHD for a subject of age 45?
predict.glm(mod_3a, newdata = list(age = 45),

type = "response")

1
0.06913919

Predicting linear predictor for a subject of age 45
predict.glm(mod_3a, newdata = list(age = 45),

type = "link")

1
-2.599988
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Binary response and continuous predictor
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Figure 9: Comparisons among the fits of the regression models I, II, and III with
age as the predictor
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Multiple logistic regression models
Model for binary response CHD (𝑌 ) with predictors behavior type
(𝑥1) and (𝑥2)

𝑝(𝑥) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2
mod_1b <- glm(chd69 ~ dibpat + age, family = binomial("identity"),

data = wcgs)
tbl_regression(mod_1b, intercept = T)

Characteristic Beta 95% CI1 p-value
(Intercept) -0.15 -0.22, -0.08 <0.001
dibpat
    Type B — —
    Type A 0.05 0.03, 0.07 <0.001
age 0.00 0.00, 0.01 <0.001
1CI = Confidence Interval

The effect of behavior type on CHD is constant over age, and the effect of age is
constant over two levels of behavior types
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Multiple logistic regression models

Estimated risks for the subjects John (age 40, Type-A), Allan (age 40,
Type-A), Tom (age 50, Type-B), and Steve (age 40, Type-B)

# A tibble: 4 x 3
subject age dibpat

* <chr> <dbl> <chr>
1 John 40 Type A
2 Allan 40 Type B
3 Tom 50 Type A
4 Steve 50 Type B
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Multiple logistic regression models

predict.glm(mod_1b, newdata = ndat1b,
type = "response")

John Allan Tom Steve
0.07782783 0.02795346 0.12257767 0.07270330

Estimate of the effect of behavior type in terms of RD, RR, and OR
from the pairs John-Allan and Tom-Steve
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Multiple logistic regression models
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Figure 10: Estimate of RD, OR, and RR for assessing the effects of behavior type
on CHD at different values of age using linear probability model
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Multiple logistic regression models
Model for binary response CHD (𝑌 ) with predictors behavior type
(𝑥1) and (𝑥2)

log 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2
mod_2b <- glm(chd69 ~ dibpat + age, family = binomial("log"),

data = wcgs)
tbl_regression(mod_2b, intercept = T)

Characteristic log(RR)1 95% CI1 p-value
(Intercept) -5.9 -6.8, -4.9 <0.001
dibpat
    Type B — —
    Type A 0.74 0.48, 1.0 <0.001
age 0.06 0.04, 0.08 <0.001
1RR = Relative Risk, CI = Confidence Interval

The Effect of behavior type on CHD is constant over age, and the effect of age is
constant over two levels of behavior types
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Multiple logistic regression models
ndat1b

# A tibble: 4 x 3
subject age dibpat

* <chr> <dbl> <chr>
1 John 40 Type A
2 Allan 40 Type B
3 Tom 50 Type A
4 Steve 50 Type B
predict.glm(mod_2b, newdata = ndat1b,

type = "response")

John Allan Tom Steve
0.06893735 0.03298930 0.12762092 0.06107175

Estimate of the effect of behavior type in terms of RD, RR, and OR
from the pairs John-Allan and Tom-Steve
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Multiple logistic regression models
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Figure 11: Estimate of RD, OR, and RR for assessing the effects of behavior type
on CHD at different values of age using log-binomial model
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Multiple logistic regression models
Model for binary response CHD (𝑌 ) with predictors behavior type
(𝑥1) and (𝑥2)

logit 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2
mod_3b <- glm(chd69 ~ dibpat + age, family = binomial("logit"),

data = wcgs)
tbl_regression(mod_3b, intercept = T)

Characteristic log(OR)1 95% CI1 p-value
(Intercept) -6.2 -7.3, -5.1 <0.001
dibpat
    Type B — —
    Type A 0.81 0.53, 1.1 <0.001
age 0.07 0.05, 0.09 <0.001
1OR = Odds Ratio, CI = Confidence Interval

The effect of behavior type on CHD is constant over age, and the effect of age is
constant over two levels of behavior types
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Multiple logistic regression models
ndat1b

# A tibble: 4 x 3
subject age dibpat

* <chr> <dbl> <chr>
1 John 40 Type A
2 Allan 40 Type B
3 Tom 50 Type A
4 Steve 50 Type B
predict.glm(mod_3b, newdata = ndat1b,

type = "response")

John Allan Tom Steve
0.06885560 0.03198807 0.12857668 0.06185677

Estimate of the effect of behavior type in terms of RD, RR, and OR
from the pairs John-Allan and Tom-Steve
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Multiple logistic regression models
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Figure 12: Estimate of RD, OR, and RR for assessing the effects of behavior type
on CHD at different values of age using logistic regression model
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Interaction

Consider a model for binary response CHD with three predictors
“behavior type” (𝑥1), “age” (𝑥2), and “arcus senilis” (𝑥3)

▶ age (𝑥2) is a continuous predictor
▶ behavior type (𝑥1) and arcus senilis (𝑥2) are binary predictor

𝑥1 = {1 ‘Type-A‘
0 ‘Type-B‘

𝑥3 = {1 arcus senilis = Yes
0 arcus senilis = No
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Interaction

Logistic regression model without the interaction term

logit 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 (25)

▶ 𝑂𝑅 = exp(𝛽2) → Effect of behavior type on the odds of CHD after
adjusting for age and arcus senilis
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Interaction
mod_3c <- glm(chd69 ~ dibpat + age + arcus,

data = wcgs, family = binomial("logit"))
tbl_regression(mod_3c, intercept = T)

Characteristic log(OR)1 95% CI1 p-value
(Intercept) -6.0 -7.1, -5.0 <0.001
dibpat
    Type B — —
    Type A 0.80 0.52, 1.1 <0.001
age 0.06 0.04, 0.09 <0.001
arcus
    0 — —
    1 0.32 0.04, 0.59 0.023
1OR = Odds Ratio, CI = Confidence Interval

𝑂𝑅 = 2.225 = exp(0.8)
Odds of developing CHD for a subject with Type-A behavior is 2.2 times than that
of a subject with Type-B behavior provided age and arcus senilis is constant
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Interaction

−2.8

−2.4

−2.0

Type B Type A
dibpat

lo
g−

od
ds arcus

0

1

Md Rasel Biswas (Pre-requisite) 94 / 98



Interaction

Logistic regression model with an interaction term between “behavior
type” and “arcus senilis”

logit 𝑝(𝑥) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝜃𝑥1𝑥3 (26)

= {(𝛽0 + 𝛽3) + (𝛽1 + 𝜃)𝑥1 + 𝛽2𝑥2 for 𝑥3 = 1
𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 for 𝑥3 = 0

▶ If 𝜃 ≠ 0 → Association between behavior type and CHD is different in
different groups of arcus senilis

𝑂𝑅 = {exp(𝛽1 + 𝜃) for 𝑥3 = 1
exp(𝛽1) for 𝑥3 = 0
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Interaction
mod_3d <- glm(chd69 ~ dibpat + age + arcus + arcus:dibpat,

data = wcgs, family = binomial("logit"))
tbl_regression(mod_3d, intercept = T)

Characteristic log(OR)1 95% CI1 p-value
(Intercept) -6.2 -7.3, -5.1 <0.001
dibpat
    Type B — —
    Type A 0.99 0.63, 1.4 <0.001
age 0.06 0.04, 0.09 <0.001
arcus
    0 — —
    1 0.64 0.17, 1.1 0.007
dibpat * arcus
    Type A * 1 -0.48 -1.0, 0.09 0.10
1OR = Odds Ratio, CI = Confidence Interval

The interaction of arcus senilis and behavior type is significant, so the effect of behavior
type on CHD is different between subjects with and without arcus senilis
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Interaction

Association between behavior type and CHD among subjects with and
without arcus senilis

𝑂𝑅 = {1.664 for 𝑥3 = 1
2.693 for 𝑥3 = 0
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