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Section 1

6. Parametric Regression Models
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Subsection 1

6.1 Log-location-scale (Accelerated Failure Time) Regression
Models
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Linear regression model

Distributional assumption for the response

(𝑌 | 𝑥) = 𝑌 (𝑥) ∼ 𝒩(𝜇(𝑥), 𝜎2)

Regression model for the parameters

𝜇(𝑥) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 = x′𝛽
var(𝑌 | 𝑥) = 𝜎2
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Linear regression model

Instead of the parameters, linear regression model can be defined in
terms of other functions, such as survivor function

𝑆𝑌 (𝑦) = 𝑃𝑟(𝑌 > 𝑦)

= 1 − Φ(𝑦 − 𝜇(𝑥)
𝜎 )
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Regression models for lifetimes

Similar to continuous and binary responses, regression analysis of
lifetimes involves specifications for the distribution of a lifetime (𝑇 )
given a vector of 𝑝-dimensional (say) covariate x

(𝑇 | x) = 𝑇 (x)
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Regression models for lifetimes

For parametric regression models for lifetimes 𝑇 , parameters
(e.g. scale and shape parameters) need to be defined as a function of
measured covariates (linear predictors)

It requires selecting a link function (e.g. identity, log, logit, etc.) for
relating model parameters with linear predictors

Similar to linear and logistic regression models, maximum likelihood
method of estimation is used to estimate parameters of the model
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Log-location-scale AFT model

For a lifetime that follows a distribution of the log-location-scale
family of distributions, the survivor function of lifetime 𝑇 for a given
covariate vector x is defined as

𝑆(𝑡 | x) = 𝑆⋆
0([𝑡/𝛼(x)]𝛿) (1)

▶ Scale parameter 𝛼(x) is defined as a function of covariate vector x
▶ Shape parameter 𝛿 does not depend on x
▶ Survivor function of the corresponding standardized distribution

𝑆⋆
0(𝑥) = 𝑆0(log 𝑥) is defined earlier
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Log-location-scale AFT model

For a log-lifetime that follows a distribution of the location-scale
family of distribution, the survivor function of log-lifetime 𝑌 for a
given covariate vector x is defined as

𝑆(𝑦 | x) = 𝑆0(𝑦 − 𝑢(x)
𝑏 ) (2)

▶ Location parameter 𝑢(x) is defined as a function covariate vector x
▶ Scale parameter 𝑏 does not depend on x

The model (Equation 2) for log-lifetime is similar to the linear
regression model (Equation 1) with

𝜇(x) = 𝑢(x), 𝜎 = 𝑏, and Φ(𝑥) = 1 − 𝑆0(𝑥)
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Log-location-scale AFT model
The model for lifetime (Equation 1) or log-lifetime (Equation 2) is
known as accelerated failure time (AFT) model

𝑆(𝑡 | x) = 𝑆⋆
0([𝑡/𝛼(x)]𝛿)

𝑆(𝑦 | x) = 𝑆0(𝑦 − 𝑢(x)
𝑏 )

Models for the parameters 𝛼(x) and 𝑢(x) are defined so that
associated parametric restrictions are satisfied, 𝛼(x) > 0 and
−∞ < 𝑢(x) < ∞, e.g.

𝑢(x) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 = x′𝛽
𝛼(x) = exp (x′𝛽)
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Log-location-scale AFT model

AFT model can also be expressed as

𝑌 − 𝑢(x)
𝑏 = 𝑍 ⇒ 𝑌 = 𝑢(x) + 𝑏𝑍 (3)

▶ 𝑍 ∼ 𝑆0(𝑧), i.e. 𝑍 follows a standardized log-location-scale distribution,
e.g. standard normal or extreme-value distributions with location 0 and
scale 1, etc.

Linear regression model (Equation 1) can also be expressed as
Equation 3:

𝑌 = 𝜇(x) + 𝜎𝑍, 𝑍 ∼ 𝒩(0, 1)
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Log-location-scale AFT model

In AFT model defined in terms of the distribution of lifetime 𝑇 ,
covariates alter the time scale

▶ If 𝛼(x) = exp (x′𝛽) > 1, the effect of covariate vector is to increase
time (decelerate time)

▶ If 𝛼(x) = exp (x′𝛽) < 1, the effect of covariate vector is to shorten
time (accelerate time)
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Log-location-scale AFT model

The accelerated failure time model is a general model for survival
data, in which explanatory variables measured on an individual are
assumed to act multiplicatively on the time-scale

Log-location-scale AFT models are a special case of AFT models
where the log of survival time follows a location-scale distribution.

AFT models assume that covariates accelerate or decelerate the time
to event.
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Log-location-scale AFT model

The following example is described in Collett (2015)

Suppose patients are randomized to receive one of the two treatments
𝐴 (standard) and 𝐵 (new)

Under an accelerated failure time model, the survival time of an
individual on the new treatment is taken to be a multiple of the
survival time for an individual on the standard treatment.

Thus, the effect of the new treatment is to “speed up” or “slow
down” the passage of time
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Log-location-scale AFT model

For a specific time 𝑡

𝑆(𝑡 |trt = 𝐵) = 𝑆(𝑡𝛼 |trt = 𝐴)

One interpretation of this model is that the lifetime of an individual
on the new treatment (𝐵) is 𝛼 times the lifetime that the individual
would have experienced under the standard treatment (𝐴)
When the end-point of concern is the death of a patient

▶ 𝛼 > 1 new treatment is promoting longevity
▶ 𝛼 < 1 new treatment is worse (accelerating death)

The quantity 𝛼 is therefore termed the acceleration factor

Md Rasel Biswas Chapter 6 16 / 110



Log-location-scale AFT model

The acceleration factor can also be interpreted in terms of the
median survival times of patients on the new and standard
treatments, 𝑡𝐴(50) and 𝑡𝐵(50)

𝑆𝐵{𝑡𝐵(50)} = 𝑆𝐴{𝑡𝐴(50)} = 0.50

Under AFT model

𝑆𝐵{𝑡𝐵(50)} = 𝑆𝐴{𝑡𝐵(50)/𝛼} ⇒ 𝑡𝐵(50) = 𝛼𝑡𝐴(50)

Under the AFT model, the median survival time of a patient on the
new treatment is 𝛼 times that of a patient on the standard treatment
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Log-location-scale AFT model

Under AFT model, the survivor functions with covariate vectors x1
and x2 can be compared as

𝑆(𝑡 | x1) = 𝑆(𝑐 𝑡 | x2)
▶ If 𝑐 > 1, subjects with covariate x2 survives longer compared to

subjects with covariate vector x1
▶ If 𝑐 < 1 subjects with covariate x2 survives shorter compared to

subjects with covariate vector x1
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Log-location-scale AFT model

Under AFT model, 𝑆1(𝑡) = 𝑆2(𝑐𝑡) for 𝑐 > 0, we can express the
mean survival time 𝜇2 of Population 2 can be expressed in terms of
𝜇1, mean survival time of Population 1 as

𝜇2 = ∫
∞

0
𝑆2(𝑡) 𝑑𝑡

= 𝑐 ∫
∞

0
𝑆2(𝑐𝑢) 𝑑𝑢

= 𝑐 ∫
∞

0
𝑆1(𝑢) 𝑑𝑢

= 𝑐𝜇1
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Log-location-scale AFT model

In general, let 𝜑 is a population quantity such that 𝑆(𝜑) = 𝜃 for
some 𝜃 ∈ (0, 1) and

𝑆2(𝜑2) = 𝜃 = 𝑆1(𝜑1) = 𝑆2(𝑐𝜑1)

Then 𝜑2 = 𝑐𝜑1, i.e., under the AFT model, the expected survival
time, median survival time of population 2 all are 𝑐 times as much as
those of population 1

Md Rasel Biswas Chapter 6 20 / 110



Log-location-scale AFT model
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Figure 1: Comparison between two log-location density functions with covariate
vectors 𝑥1 and 𝑥2, where 𝑢(𝑥2) > 𝑢(𝑥1)
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Log-location-scale AFT model
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Figure 2: Comparison between two log-location survival functions with covariate
vectors 𝑥1 and 𝑥2, where 𝑢(𝑥2) > 𝑢(𝑥1)
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Log-location-scale AFT model

0.00

0.25

0.50

0.75

1.00

−4 −2 0 2 4
y

S
(y

) u=0, b=1

u=2, b=1

Figure 3: Comparison between two log-location survival functions with the same
scale parameters, but different location parameters
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Log-location-scale AFT model
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Figure 4: Comparison between two log-location survival functions with the same
location parameters, but different scale parameters
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Proportional hazards model

There are two approaches to regression modeling for lifetimes
1 AFT model, where the effects of covariates are assessed by comparing

corresponsing time scales
2 Hazards model, where effects of covariates on the hazard function are

studied
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Proportional hazards model

The most common hazards model is the proportional hazards model
(Cox 1972), where hazard function for lifetime 𝑇 given x is defined as

ℎ(𝑡 | x) = ℎ0(𝑡) 𝑟(x)

▶ 𝑟(x) → a positive-valued function of linear predictor,
e.g. 𝑟(x) = exp(x′𝛽), which does not include the intercept term

▶ ℎ0(𝑡) → a positive-valued function, which is known as baseline
hazards function, i.e. ℎ(𝑡 | x = 0) = ℎ0(𝑡)

▶ ℎ0(𝑡) could be either fully parametric or unspecified
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Proportional hazards model

If you take two individuals with covariates 𝑥1 and 𝑥2:

ℎ(𝑡|𝑥1)
ℎ(𝑡|𝑥2) = ℎ0(𝑡)𝑒𝛽𝑥1

ℎ0(𝑡)𝑒𝛽𝑥2
= 𝑒𝛽(𝑥1−𝑥2)

This ratio does not depend on time (t), this is exactly the proportional
hazards property.
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Proportional hazards model

ℎ(𝑡 | 𝑥) = ℎ0(𝑡) 𝑒𝑥𝛽

For a binary predictor 𝑥 (1=male, 0=female), the hazard ratio can be
defined as

ℎ(𝑡 | 𝑥 = 1)
ℎ(𝑡 | 𝑥 = 0) = ℎ0(𝑡)𝑒𝛽

ℎ0(𝑡) = 𝑒𝛽

ℎ(𝑡 | 𝑥 = 1) = ℎ(𝑡 | 𝑥 = 0)𝑒𝛽

𝛽 > 0 ⇒ Hazard of the event is higher for male compared to female
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Proportional hazards model

Under proportional hazards model, the cumulative hazard function is
defined as

𝐻(𝑡 | x) = ∫
𝑡

0
ℎ(𝑢 | x)𝑑𝑢

= 𝑟(x) ∫
𝑡

0
ℎ0(𝑢)𝑑𝑢

= 𝑟(x)𝐻0(𝑡)

Md Rasel Biswas Chapter 6 29 / 110



Proportional hazards model

Under proportional hazards model, the survivor function is defined as

𝑆(𝑡 | x) = 𝑒−𝐻(𝑡 | x) = 𝑒−𝑟(x)𝐻0(𝑡) = [𝑆0(𝑡)]
𝑟(x)

▶ 𝑆0(𝑡) → baseline survivor function and 𝑟(x) > 0
▶ Interpret the survival probabilities for the following cases

(𝑎) 𝑟(x) > 1 and (𝑏) 𝑟(x) < 1
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Proportional hazards model
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Figure 5: Under proporitonal hazards model, comparison between baseline
survivor function 𝑆0(𝑡) and 𝑆1(𝑡 | 𝑥) = [𝑆0(𝑡)]0.5
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Proportional hazards model
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Figure 6: Under proporitonal hazards model, comparison between baseline
survivor function 𝑆0(𝑡) and 𝑆1(𝑡 | 𝑥) = [𝑆0(𝑡)]1.5
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Proportional hazards model
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Figure 7: Under proporitonal hazards model, comparison between hazard
functions 𝐻(𝑡 | 𝑥1) and 𝐻(𝑡 | 𝑥2) = 1.5𝐻(𝑡 | 𝑥1)
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Parametric proportional hazards model

Depending on whether the baseline hazard function ℎ0(𝑡) is fully
parametric or not, a PH model ℎ(𝑡 | x) = ℎ0(𝑡)𝑟(x) could be either
parametric or semi-parametric

▶ PH model is parametric if ℎ0(𝑡) = ℎ1(𝛼, 𝑡) for some parameter vector
𝛼

▶ PH model is semi-parametric if ℎ0(𝑡) is unspecified
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Parametric proportional hazards model

Weibull model can be defined as both AFT and PH model

Md Rasel Biswas Chapter 6 35 / 110



Weibull regression model

Weibull as an AFT model

𝑆(𝑡 | x) = exp ( − [𝑡/𝛼(x)]𝛿)

where
𝛼(x) = exp (x′𝛽AFT) (4)
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Weibull regression model

Weibull as a PH model

ℎ(𝑡 | x) = 𝛿
𝛼(x)[ 𝑡

𝛼(x)]
𝛿−1

= (𝛿𝑡𝛿−1)[𝛼(x)]−𝛿

= ℎ1(𝛿, 𝑡) 𝑟(x)

▶ Assume
𝑟(x) = exp (x′𝛽PH) = [𝛼(x)]−𝛿

⇒ exp ( − x′𝛽PH/𝛿) = 𝛼(x) (5)
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Weibull regression model

Equating the expression of 𝛼(x) from the AFT (Equation 4) and PH
(Equation 5) Weibull model, we can show

exp ( − x′𝛽PH/𝛿) = 𝛼(x) = exp (x′𝛽AFT)

⇒ 𝛽PH = −𝛿𝛽AFT = −1
𝑏 𝛽AFT
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AFT and PH model

Survivor function for some constants 𝑐 > 0 and 𝑟(x) > 0

𝑆(𝑡 | x2) = 𝑆(𝑐 𝑡 | x1)
𝑆(𝑡 | x2) = [𝑆(𝑡 | x1)]𝑟(x1)/𝑟(x2)

𝐻(𝑡 | x2) = [𝑟(x2)/𝑟(x1)] 𝐻(𝑡 | x1)
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Subsection 2

6.2 Inference for Log-location-scale AFT Models
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Likelihood methods

Data
{(𝑦𝑖, 𝛿𝑖, x𝑖), 𝑖 = 1, … , 𝑛}

▶ Log-lifetime or log-censoring 𝑦𝑖 = log 𝑡𝑖

▶ Censoring indicator 𝛿𝑖 = 𝐼(ith observation is a failure)
▶ x𝑖 = (1, 𝑥𝑖1, … , 𝑥𝑖𝑝)′ is a vecor of covariates
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Likelihood methods

Assume 𝑌𝑖 follows a location-scale distribution with location
parameter 𝑢(x𝑖; 𝛽) and scale parameter 𝑏
Regression model

𝑢(x𝑖; 𝛽) = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 = x′
𝑖𝛽

▶ Vector of regression parameters

𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝)′

▶ Covariate vector x𝑖 contains both categorical and quantitative variables,
and for accurate computation, quantitative variables are centered
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Likelihood methods

The log-likelihood function

ℓ(𝛽, 𝑏) = −𝑟 log 𝑏
𝑛

∑
𝑖=1

[𝛿𝑖 log 𝑓0(𝑧𝑖) + (1 − 𝛿𝑖) log 𝑆0(𝑧𝑖)] (6)

𝑟 = ∑𝑛
𝑖=1 𝛿𝑖

𝑧𝑖 = 𝑦𝑖−𝑢(x𝑖;𝛽)
𝑏

𝑢(x𝑖; 𝛽) = x′
𝑖𝛽
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Likelihood methods

Score functions
Elements of (𝑝 + 2)-dimensional vector of score function

𝑈𝑗(𝛽, 𝑏) = 𝜕ℓ(𝛽, 𝑏)
𝜕𝛽𝑗

, 𝑗 = 0, 1, … , 𝑝

𝑈𝑏(𝛽, 𝑏) = 𝜕ℓ(𝛽, 𝑏)
𝜕𝑏

Homework: Obtain the expressions of score function (Eq. 6.3.3 and
6.3.4 of textbook)
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Likelihood methods

Information matrix
Elements of observed information matrix

𝐼(𝛽, 𝑏) = − [
𝜕2ℓ

𝜕𝛽𝜕𝛽′
𝜕2ℓ

𝜕𝛽𝜕𝑏
𝜕2ℓ

𝜕𝑏𝜕𝛽′
𝜕2ℓ
𝜕𝑏2

]

Homework: Obtain the expressions of information matrix (Eq. 6.3.5,
6.3.6 and 6.3.7 of textbook)
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Likelihood methods

MLEs

(�̂�
′
, �̂�)′ = arg max(𝛽′,𝑏)′∈ Θ ℓ(𝛽, 𝑏)

Iterative procedures (e.g. Newton-Raphson method) is used obtain
MLE for 𝛽 and 𝑏
MLEs (�̂�

′
, �̂�)′ follow a (𝑝 + 2)-variate normal distribution with mean

(𝛽′, 𝑏)′ and variance matrix

̂𝑉 = [𝐼(�̂�, �̂�)]−1

Large sample based tests and confidence intervals can be obtained
using the sampling distribution of (�̂�

′
, �̂�)′
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Test of hypothesis

Let 𝛽′ = (𝛽′
1, 𝛽′

2), where 𝛽1 is a 𝑘-dimensional vector of regression
parameters, where 𝑘 < 𝑝

𝐻0 ∶ 𝛽1 = 𝛽0
1

Likelihood ratio test statistic

Λ1 = 2ℓ(�̂�1, �̂�2, �̂�) − 2ℓ(𝛽0
1, ̃𝛽2, �̃�)

▶ (�̃�
′
, ̃𝑏)′ = arg max(𝛽′

2,𝑏)′∈ Θ ℓ(𝛽0
1, 𝛽2, 𝑏)

▶ Under 𝐻0, Λ1 ∼ 𝜒2
(𝑘)
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Test of hypothesis

Let 𝛽′ = (𝛽′
1, 𝛽′

2), where 𝛽1 is a 𝑘-dimensional vector of regression
parameters, where 𝑘 < 𝑝

𝐻0 ∶ 𝛽1 = 𝛽0
1

Wald statistic
Λ2 = (𝛽1 − 𝛽0

1)′𝑉 −1
11 (𝛽1 − 𝛽0

1)

▶ 𝑉11 = 𝑣𝑎𝑟(�̂�1) is a 𝑘 × 𝑘 matrix and

̂𝑉 = [𝐼(�̂�, ̂𝑏)]−1 = [𝑉11 𝑉12
𝑉 ′

12 𝑉22
]

� Under 𝐻0, Λ1 ∼ 𝜒2
(𝑘)
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Test of hypothesis

Null hypothesis
𝐻0 ∶ 𝛽𝑗 = 0

Test statistic

𝑍𝑗 =
̂𝛽𝑗

𝑠𝑒( ̂𝛽𝑗)

100(1 − 𝛼)% confidence interval for 𝛽𝑗

̂𝛽𝑗 ± 𝑧1−𝛼/2 𝑠𝑒( ̂𝛽𝑗)

For a small sample, LRT statistic can be used to test the hypothesis
and to obtain confidence interval
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Quantiles

The 𝑝𝑡ℎ quantile of 𝑌 given x

𝑦𝑝(x) = x′𝛽 + 𝑏𝑤𝑝

Estimate and corresponding SEs of 𝑝𝑡ℎ quantile

̂𝑦𝑝(x) = x′�̂� + �̂�𝑤𝑝

and using delta method, 𝑠𝑒( ̂𝑦𝑝(x)) = a′𝑉 a

▶ a = (x′, 𝑤𝑝) and 𝑤𝑝 = 𝑆−1
0 (1 − 𝑝)

100(1 − 𝛼)% confidence interval for 𝑦𝑝

̂𝑦𝑝 ± 𝑧1−𝛼/2 𝑠𝑒( ̂𝑦𝑝(x))
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Survival probability

We are interest to obtain confidence interval for 𝑆(𝑦0), which can be
expressed in terms of the parameters of location-scale distribution as

𝑆(𝑦0) = 𝑆0(𝑦0 − x′𝛽
𝑏 )

𝑆−1
0 (𝑆(𝑦0)) = 𝑦0 − x′𝛽

𝑏 = 𝜓(x)
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Survival probability

Estimate and the corresponding SE of 𝜓(x)

̂𝜓(x) = 𝑦0 − x′�̂�
�̂�

and using delta method, 𝑠𝑒( ̂𝜓(x)) = [a′𝑉 a]1/2

▶ a′ = (−1/ ̂𝑏)(x′, ̂𝜓(x))
(1 − 𝛼)100% confidence interval for 𝜓(x)

̂𝜓(x) ± 𝑧1−𝛼/2 𝑠𝑒( ̂𝜓(x))
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Survival probability

Wald-type (1 − 𝛼)100% confidence interval for 𝑆(𝑦0)

̂𝜓(x) − 𝑧1−𝛼/2 𝑠𝑒( ̂𝜓(x)) < 𝜓(x) < ̂𝜓(x) + 𝑧1−𝛼/2 𝑠𝑒( ̂𝜓(x))
𝐿 < 𝜓(x) < 𝑈
𝐿 < 𝑆−1

0 (𝑆(𝑦0)) < 𝑈
𝑆0(𝐿) < 𝑆(𝑦0) < 𝑆0(𝑈)
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Subsection 3

6.3 Weibull AFT

Md Rasel Biswas Chapter 6 54 / 110



6.3 Weibull AFT

Distributional assumption

𝑇 (x) = (𝑇 | x) ∼ Weib(𝛼(x), 𝛿)
𝑌 (x) = (𝑌 | x) = (log 𝑇 | x) ∼ EV(𝑢(x), 𝑏)

Regression model for the parameters

𝑢(x) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 = x′𝛽
𝛼(x) = exp (x′𝛽)

▶ x = (1, 𝑥1, … , 𝑥𝑝)′

▶ 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝)′
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6.3 Weibull AFT

Regression model for the response

𝑌 (x) = x′𝛽 + 𝑏𝑍

▶ 𝑍 ∼ EV(0, 1)
▶ 𝑓0(𝑧) = exp(𝑧 − 𝑒𝑧)
▶ 𝑆0(𝑧) = exp(−𝑒𝑧)

Md Rasel Biswas Chapter 6 56 / 110



6.3 Weibull AFT

Log-likelihood function

ℓ(𝛽, 𝑏) = −𝑟 log 𝑏 +
𝑛

∑
𝑖=1

[𝛿𝑖 log 𝑓0(𝑧𝑖) + (1 − 𝛿𝑖) log 𝑆0(𝑧𝑖)]

= −𝑟 log 𝑏 +
𝑛

∑
𝑖=1

(𝛿𝑖𝑧𝑖 − 𝑒𝑧𝑖)

▶ 𝑧𝑖 = (𝑦𝑖 − x′
𝑖𝛽)/𝑏

We can now obtain score functions, information matrix, and MLE’s
for 𝛽 and 𝑏 (according to Section ??.)
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6.3 Weibull AFT

We’ve already seen that the Weibull model implies a proportional
hazard model

It is the only parametric model that is both an AFT model and a
Proportional Hazards (PH) model at the same time
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Leukemia survival times

Data on survival times for 33 leukemia patients are available, where
survival times are in weeks from diagnosis

Data on two covariates are also available
▶ White blood cell count (WBC) at diagnosis
▶ Binary variable AG indicates a positive (AG=1) or negative (AG=0)

test related to white blood cell characteristics
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Leukemia survival times
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Leukemia survival times

tab6_1

# A tibble: 33 x 5
time wbc AG status lwbc

<dbl> <dbl> <int> <dbl> <dbl>
1 65 2.3 1 1 0.833
2 140 0.75 1 0 -0.288
3 100 4.3 1 1 1.46
4 134 2.6 1 1 0.956
5 16 6 1 1 1.79
6 106 10.5 1 0 2.35
7 121 10 1 1 2.30
8 4 17 1 1 2.83
9 39 5.4 1 1 1.69

10 121 7 1 0 1.95
# i 23 more rows
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Leukemia survival times

Consider Weibull AFT model with covariates 𝑥1 = 𝐴𝐺 and
𝑥2 = log(𝑤𝑏𝑐)

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝑏𝑍 (7)

▶ 𝑍 ∼ EV(0, 1)
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Leukemia survival times

Fit Weibull regression model Equation 7 using R
mod62 <- survreg(Surv(time, status) ~ AG + lwbc,

data = tab6_1, dist = "weibull")

mod62E <- survreg(Surv(log(time), status) ~ AG + lwbc,
data = tab6_1, dist = "extreme")
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Leukemia survival times

MLEs of model parameters
tidy(mod62, conf.int = T) |>

mutate(p.value = scales::pvalue(p.value))

# A tibble: 4 x 7
term estimate std.error statistic p.value conf.low conf.high
<chr> <dbl> <dbl> <dbl> <chr> <dbl> <dbl>

1 (Intercept) 3.84 0.534 7.19 <0.001 2.79 4.89
2 AG 1.18 0.427 2.76 0.006 0.340 2.01
3 lwbc -0.366 0.150 -2.45 0.014 -0.660 -0.0731
4 Log(scale) 0.112 0.147 0.765 0.444 NA NA
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Leukemia survival times

Fitted model with 𝑥1 = 𝐴𝐺 and 𝑥2 = log(𝑤𝑏𝑐)

̂𝑌 = 3.841 + 1.177𝑥1 − 0.366𝑥2 + exp (1.119)𝑍
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Leukemia survival times

Variance matrix of the estimated parameters
vcov(mod62) %>% round(3)

(Intercept) AG lwbc Log(scale)
(Intercept) 0.286 -0.130 -0.067 0.003
AG -0.130 0.182 0.016 0.005
lwbc -0.067 0.016 0.022 -0.005
Log(scale) 0.003 0.005 -0.005 0.021
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Leukemia survival times

Table 1: Summary of Weibull AFT model fit

term estimate std.error statistic p.value conf.low conf.high
𝛽0 3.841 0.534 7.188 <0.001 2.794 4.889
𝛽1 1.177 0.427 2.757 0.006 0.340 2.014
𝛽2 -0.366 0.150 -2.449 0.014 -0.660 -0.073
log 𝑏 0.112 0.147 0.765 0.444 NA NA

AG and WBC have significant effects on leukemia survival times.
Positive AG and low WBC count are associated with more prolonged
survival

Since log 𝑏 is not significant, i.e. there is not enough evidence to
reject 𝐻0 ∶ log 𝑏 = 1, exponential AFT model would be appropriate
for analyzing this data
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Leukemia survival times

Interpretations

exp( ̂𝛽1) = exp(1.177) = 3.246

A specific quantile (say median) lifetime of a patient with a positive
AG value (i.e. 𝑥1 = 1) is 3.2 times that of a patient with a negative
AG (i.e. 𝑥1 = 0) value provided WBC value remains constant
Note this interpretation is true for any quantile (Why?)
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Leukemia survival times

exp( ̂𝛽2) = exp(−0.366) = 0.693

A specific quantile (say median) lifetime of a patient decreases 30.7
percent with one unit increase of log(WBC) [or 2718 unit increase of
true WBC count] provided AG value remains constant
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Leukemia survival times

Fitted values

augment(mod62, type.predict = "response") |>
select(1:4) |>
slice(1:3)

# A tibble: 3 x 4
`Surv(time, status)` AG lwbc .fitted

<Surv> <int> <dbl> <dbl>
1 65 1 0.833 111.
2 140+ 1 -0.288 168.
3 100 1 1.46 88.6
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Leukemia survival times
augment(mod62, type.predict = "link") |>

mutate(.fittedE = exp(.fitted)) |>
select(2:4, .fittedE) |>
slice(1:3)

# A tibble: 3 x 4
AG lwbc .fitted .fittedE

<int> <dbl> <dbl> <dbl>
1 1 0.833 4.71 111.
2 1 -0.288 5.12 168.
3 1 1.46 4.48 88.6

Estimate for a subject with 𝐴𝐺 = 1 and log(𝑤𝑏𝑐) = .833

�̂� = ̂𝛽0 + ̂𝛽1(1) + ̂𝛽2(.833) = (3.841) + (1.177)(1) + (−0.366)(.833) = 4.713
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Leukemia survival times
#predict(object = mod62, newdata = tibble(AG = 1, lwbc = .833),
# predict = "response")
augment(x = mod62, newdata = tibble(AG = 1, lwbc = .833),

type.predict = "response")

# A tibble: 1 x 4
AG lwbc .fitted .se.fit

<dbl> <dbl> <dbl> <dbl>
1 1 0.833 111. 41.3

Estimate for a subject with 𝐴𝐺 = 1 and log(𝑤𝑏𝑐) = .833

̂𝛼 = exp ( ̂𝛽0 + ̂𝛽1(1) + ̂𝛽2(.833)) = exp ((3.841) + (1.177)(1) + (−0.366)(.833))
= exp (4.713) = 111.399

Md Rasel Biswas Chapter 6 72 / 110



Leukemia survival times

LRT
Likelihood ratio tests for 𝐻0 ∶ 𝛽1 = 0

Λ1(0) = 2ℓ( ̂𝛽0, ̂𝛽1, ̂𝛽2, log �̂�) − 2ℓ( ̃𝛽0, 0, ̃𝛽2, log �̃�)

▶ Λ1(0) ∼ 𝜒2
(1)

The corresponding 𝑍 statistic

𝑍 = sign( ̂𝛽1)Λ1/2
1 ∼ 𝒩(0, 1)
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Leukemia survival times

Estimate of model parameters under 𝐻0 ∶ 𝛽1 = 0
# mod62a <- update(mod62, formula = . ~ . - AG)
mod62a <- survreg(Surv(time, status) ~ lwbc,

data = tab6_1, dist = "weibull")
tidy(mod62a)

# A tibble: 3 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 4.85 0.500 9.71 2.67e-22
2 lwbc -0.500 0.165 -3.03 2.41e- 3
3 Log(scale) 0.222 0.146 1.52 1.28e- 1
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Leukemia survival times

LRTa <- anova(mod62a, mod62)

Terms Resid. Df -2*LL Df Deviance Pr(>Chi)
lwbc 30 271.931 NA NA NA
AG + lwbc 29 265.013 1 6.918 0.009

Λ1(0) = 6.918 ⇒ 𝑍 = 2.63
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Leukemia survival times

Table 3: Comparison between Wald- and LRT-type Z statistics

term estimate Wald LRT
𝛽0 3.841 7.188 NA
𝛽1 1.177 2.757 2.63
𝛽2 -0.366 -2.449 -2.46
log 𝑏 0.112 0.765 NA
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Leukemia survival times

Quantiles

̂𝑦𝑝 = x′�̂� + log(− log(1 − 𝑝)) �̂�
Consider a subject with covariate values 𝑥1 = 1 and 𝑥2 = log(10),
the linear predictor x′�̂�

�̂� = 𝑥𝑥𝑥′�̂� = ̂𝛽0 + ̂𝛽1 + log(10) ̂𝛽2 = 4.175
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Leukemia survival times

Median survival time of the patient with covariate values 𝑥1 = 1 and
𝑥2 = log(10)

̂𝑦.50 = 4.175 + (−0.367)(1.119) = 3.765
̂𝑡.50 = exp(3.765) = 43.163 weeks

Homework: Obtain a 95% confidence interval of the median survival
time of a patient with covariate values 𝑥1 = 1 and 𝑥2 = log(10)
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Leukemia survival times

Survival probability

𝑆(𝑦0) = exp { − exp [(𝑦0 − x′�̂�)/�̂�]}
For a patient with covariate values 𝑥1 = 1 and 𝑥2 = log(10), obtain
𝑆(log 10)

𝑆(log 10) = exp { − exp [( log 10 − 4.175)/1.119]} = 0.816

Homework: Obtain the 95% CI for 𝑆(log 10)
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Subsection 4

6.4 Log-normal AFT
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6.4 Log-normal AFT

Distributional assumption

𝑇 (x) = (𝑇 | x) ∼ log-Norm(𝜇(x), 𝜎2)
𝑌 (x) = (𝑌 | x) = (log 𝑇 | x) ∼ 𝒩(𝜇(x), 𝜎2)
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6.4 Log-normal AFT

Regression model for the parameters

𝜇(x) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 = x′𝛽

Regression model for the response

𝑌 (x) = x′𝛽 + 𝜎𝑍

▶ 𝑍 ∼ 𝒩(0, 1)
▶ 𝑓0(𝑧) = 𝜙(𝑧)
▶ 𝑆0(𝑧) = 1 − Φ(𝑧)
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Times to pulmonary exacerbation

Patients with cystic fibrosis are susceptible to an accumulation of
mucus in the lungs, which leads to pulmonary exacerbation and
deterioration of lung function

A clinical trial was conducted to investigate the efficacy of the new
drug DNase-1

▶ Subjects are randomly assigned to a new treatment or a placebo

Time of interest is the time to first exacerbation after randomization,
and data on fev (forced expiratory volume at the time of
randomization) are also measured
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Times to pulmonary exacerbation
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Times to pulmonary exacerbation

# A tibble: 761 x 13
id trt time fev inst entry.dt end.dt ivstart ivstop time0

<int> <int> <dbl> <dbl> <int> <date> <date> <dbl> <dbl> <dbl>
1 1 1 168 28.8 1 1992-03-20 1992-09-04 NA NA 168
2 2 1 169 64 1 1992-03-24 1992-09-09 NA NA 169
3 3 0 65 67.2 1 1992-03-24 1992-09-08 65 75 168
4 4 1 168 57.6 1 1992-03-26 1992-09-10 NA NA 168
5 5 0 171 57.6 1 1992-03-24 1992-09-11 NA NA 171
6 6 1 166 25.6 1 1992-03-27 1992-09-09 NA NA 166
7 7 0 168 86.4 1 1992-03-27 1992-09-11 NA NA 168
8 8 0 90 32 1 1992-03-28 1992-09-10 90 104 166
9 9 1 169 86.4 2 1992-02-27 1992-08-14 NA NA 169

10 10 0 8 28.8 2 1992-03-06 1992-08-22 8 22 169
# i 751 more rows
# i 3 more variables: status <dbl>, fevm <dbl>, visit <int>
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Times to pulmonary exacerbation

Assume survival time 𝑇 (x) follows a log-normal distribution with
scale parameter 𝛼(x) and shape parameter 𝛿
Consider following AFT model for log survival time

𝑌 (x) = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝜎𝑍

▶ 𝑍 ∼ 𝒩(0, 1)
▶ 𝑥1 = 𝐼(trt = 1)
▶ 𝑥2 = fev − mean(fev)
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Times to pulmonary exacerbation

R codes for fitting the AFT model
mod63a <- survreg(Surv(log(time), status) ~ trt + fevm,

dist = "gaussian",
data = tab1_4)
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Times to pulmonary exacerbation

tidy(mod63a)

# A tibble: 4 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 5.09 0.0684 74.4 0
2 trt 0.336 0.0951 3.53 4.19e- 4
3 fevm 0.0159 0.00197 8.09 5.91e-16
4 Log(scale) 0.137 0.0408 3.36 7.84e- 4
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Times to pulmonary exacerbation

AFT model

𝑌 = x′𝛽 + 𝑏𝑍 ⇒ 𝑇 = exp(x′𝛽) exp(𝑏𝑍)

▶ x′𝛽 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝

For a binary predictor 𝑥𝑗

𝑇 = exp(x′𝛽) exp(𝑏𝑍) = {exp(𝑏𝑍) for control
exp(𝛽𝑗) exp(𝑏𝑍) for treatment

It can be shown that

𝑇𝑡𝑟𝑡 = exp(𝛽) 𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙
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Times to pulmonary exacerbation

𝛽𝑡𝑟𝑡 = 0.336 ⇒ exp(𝛽𝑡𝑟𝑡) = 1.399
▶ Treatment increases the time to first pulmonary exacerbation by about

40% compared to the control when fev is fixed

𝛽𝑓𝑒𝑣 = 0.016 ⇒ exp(𝛽𝑓𝑒𝑣) = 1.016
▶ One-unit increase in fev results about 2% increase in lifetime provided

treatment is constant
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Times to pulmonary exacerbation

0.6

0.8

1.0

10 50 100 150

time

su
rv

iv
al

 p
ro

b.

control treatment

Comparison of survival probability of two treatment groups  when fev is fixed 
	 at zero

Md Rasel Biswas Chapter 6 91 / 110



Subsection 5

6.5 Log-logistic AFT
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6.5 Log-logistic AFT

Distributional assumptions

𝑇 (x) = (𝑇 | x) ∼ log-logistic(𝛼(x), 𝛽)
𝑌 (x) = (𝑌 | x) = (log 𝑇 | x) ∼ logistic(𝑢(x), 𝑏)
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6.5 Log-logistic AFT

Regression model for the parameters

𝑢(x) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 = x′𝛽
𝛼(x) = 𝑒𝑢(x)

Regression model for the response

𝑌 (x) = x′𝛽 + 𝑏𝑍

▶ 𝑍 ∼ Logistic(0, 1)
▶ 𝑓0(𝑧) = 𝑒𝑧[1 + 𝑒𝑧]−2

▶ 𝑆0(𝑧) = [1 + 𝑒𝑧]−1
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6.5 Log-logistic AFT

Lifetime distribution

𝑇 (𝑥𝑥𝑥) ∼ Log-Logistic(𝛼(𝑥𝑥𝑥), 𝛿)

The survivor function

𝑆(𝑡 |𝑥𝑥𝑥) = 1
1 + (𝑡/𝛼(𝑥𝑥𝑥))𝛿 ⇒ 1 − 𝑆(𝑡 |𝑥𝑥𝑥)

𝑆(𝑡 |𝑥𝑥𝑥) = (𝑡/𝛼(𝑥𝑥𝑥))𝛿

▶ (𝑡/𝛼(𝑥𝑥𝑥))𝛿 → the odds of failure at time 𝑡 for a subject with covariate
vector 𝑥𝑥𝑥
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6.5 Log-logistic AFT

For two subjects with covariate vectors 𝑥𝑥𝑥1 and 𝑥𝑥𝑥2

[1 − 𝑆(𝑡 |𝑥𝑥𝑥2)]/𝑆(𝑡 |𝑥𝑥𝑥2)
[1 − 𝑆(𝑡 |𝑥𝑥𝑥1)]/𝑆(𝑡 |𝑥𝑥𝑥1) = [𝛼(𝑥𝑥𝑥1)

𝛼(𝑥𝑥𝑥2)]
𝛿
, independent of 𝑡

A model of the form

1 − 𝑆(𝑡 |𝑥𝑥𝑥)
𝑆(𝑡 |𝑥𝑥𝑥) = (𝑡/𝛼(𝑥𝑥𝑥))𝛿 ⇒ log 1 − 𝑆(𝑡 |𝑥𝑥𝑥)

𝑆(𝑡 |𝑥𝑥𝑥) = 𝛿 log(𝑡) − 𝛿 log 𝛼(𝑥𝑥𝑥)

is known as the proportional odds model
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6.5 Log-logistic AFT

Consider a model log 𝛼(𝑥) = 𝛽0 + 𝛽1𝑥

[1 − 𝑆(𝑡 | 𝑥 = 1)]/𝑆(𝑡 | 𝑥 = 1)
[1 − 𝑆(𝑡 | 𝑥 = 0)]/𝑆(𝑡 | 𝑥 = 0) = 𝑒−𝛿𝛽1 = 𝑒−𝛽⋆

1

▶ The odds of failure at time 𝑡 for a subject with 𝑥 = 1 is exp(−𝛽⋆)
times that of the odds of failure for a subject with 𝑥 = 0
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Times to pulmonary exacerbation

R codes for fitting AFT model
mod63b <- survreg(Surv(log(time), status) ~ trt + fevm,

dist = "logistic",
data = tab1_4)
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Times to pulmonary exacerbation

tidy(mod63b)

# A tibble: 4 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 5.08 0.0600 84.6 0
2 trt 0.293 0.0861 3.41 6.55e- 4
3 fevm 0.0145 0.00181 8.00 1.20e-15
4 Log(scale) -0.489 0.0466 -10.5 8.08e-26
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Times to pulmonary exacerbation

𝛽𝑡𝑟𝑡 = 0.293 ⇒ exp(𝛽𝑡𝑟𝑡) = 1.341
▶ Treatment increases the time to first pulmonary exacerbation by about

34% compared to the control when fev is fixed

𝛽𝑓𝑒𝑣 = 0.014 ⇒ exp(𝛽𝑓𝑒𝑣) = 1.015
▶ One-unit increase in fev results in a 1.5% increase in lifetime provided

treatment is constant
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Times to pulmonary exacerbation

Interpret the treatment effect in terms of odds of failure

[1 − 𝑆(𝑡 | 𝑡𝑟𝑡 = 1, 𝑓𝑒𝑣 = 𝑥)]/𝑆(𝑡 | 𝑡𝑟𝑡 = 1, 𝑓𝑒𝑣 = 𝑥)
[1 − 𝑆(𝑡 | 𝑡𝑟𝑡 = 0, 𝑓𝑒𝑣 = 𝑥)]/𝑆(𝑡 | 𝑡𝑟𝑡 = 0, 𝑓𝑒𝑣 = 𝑥) = exp(− ̂𝛿 ̂𝛽1) = 0.62

▶ ̂𝛿 = exp(− log ̂𝑏) = exp(0.489) = 1.631
▶ The odds of failure is 38% lower in the treatment group compared to

the control group provided fev value is fixed
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Times to pulmonary exacerbation
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Times to pulmonary exacerbation

Table 4: Comparison between normal and logistic regression models in analysing
time to pulmonary exacerbation data

term est se est se
(Intercept) 5.093 0.068 5.078 0.060
trt 0.336 0.095 0.293 0.086
fevm 0.016 0.002 0.014 0.002
Log(scale) 0.137 0.041 -0.489 0.047
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Other regression models

Additive hazards model

ℎ(𝑡 |𝑥𝑥𝑥) = ℎ0(𝑡; 𝛼) + 𝑟(𝑥𝑥𝑥;𝛽𝛽𝛽)
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Subsection 6

6.6 Graphical methods and model assessment
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6.6 Graphical methods and model assessment

Graphical methods are helpful in summarizing information and
suggesting possible models

These methods also provide ways to check assumptions concerning
the form of a lifetime distribution and its relationship to covariates

Exploratory analysis of a lifetime distribution given covariates would
helpful to select the appropiate Model for the analysis
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6.6 Graphical methods and model assessment

For a single quantitative covariate, a plot of lifetime or log-lifetime
against the covariate or a function of it could indicate the nature of
the relationship between lifetime and the covariate

If the proportion of censoring is small, such a plot would be helpful,
different symbols can be used in those plots for censored and failure
times

When more than one quantitative covariate and light censoring, one
can consider grouping individuals so that within a group, individuals
will have similar values of important covariates

Let there are 𝐽 such groups and ̂𝑆𝑗 is the Kaplan-Meier estimate for
the group 𝑗 = 1, … , 𝐽
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6.6 Graphical methods and model assessment

AFT model
𝑆(𝑡 | x) = 𝑆0[ log 𝑡 − 𝑢(x)

𝑏 ]

If 𝑢(x) is approximately constant for individuals within each group
𝑗 = 1, … , 𝐽 , and if an AFT model is appropriate, the plots of

log[− log 𝑆(𝑡 | x)] vs log 𝑡

should be roughly parallel in horizontal direction (log 𝑡)
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6.6 Graphical methods and model assessment

Proportional hazards model

𝑆(𝑡 | x) = [𝑆0(𝑡)]𝑟(x)

If 𝑟(x) is approximately constant for individuals within each group
𝑗 = 1, … , 𝐽 , and if a proportional hazards model is appropriate, the
plots of

log[− log 𝑆(𝑡 | x)] vs log 𝑡
should be roughly parallel in vertical direction
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6.6 Graphical methods and model assessment

If the plots of log[− log 𝑆(𝑡 | x)] vs log 𝑡 is roughly linear then Weibull
models are suggested

In addition to linear, if the plots are parallel, then Weibull models
with a constant shape parameter are suggested, in that case, both
AFT and PH models can be considered

Statistical analysis of data is an iterative process involving exploration,
model fitting, and model assessment

Collett, David. 2015. Modelling Survival Data in Medical Research.
Chapman; Hall/CRC. https://doi.org/10.1201/b18041.

Cox, David R. 1972. “Regression Models and Life-Tables.” Journal of the
Royal Statistical Society: Series B (Methodological) 34 (2): 187–202.
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