Chapter 5B (AST405) Lifetime data analysis

Md Rasel Biswas

Lecture Outline

- 1 5. Inference Procedures for Log-location-scale Distributions
 - 5.1 Log-normal and normal distributions
 - 5.2 Log-logistic and logistic distributions
 - 5.3 Comparison of distributions

Section 1

5. Inference Procedures for Log-location-scale Distributions

Subsection 1

5.1 Log-normal and normal distributions

Log-normal distribution

- T follows a log-normal distribution with location parameter μ and scale parameter σ if $Y = \log T \sim \mathcal{N}(\mu, \sigma^2)$
- The pdf and survivor function of log-normal distribution

$$\begin{split} f(t;\mu,\sigma) &= \frac{1}{\sigma t \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\log t - \mu}{\sigma}\right)^2\right] \\ S(t;\mu,\sigma) &= 1 - \Phi\left(\frac{\log t - \mu}{\sigma}\right) \end{split}$$

- \blacktriangleright μ and σ are the parameters of both normal and log-normal distributions
- ullet $\Phi(\cdot)$ o cumulative distribution function of standard normal distribution

Log-normal distribution

 Log-normal distribution is a member of the log-location-scale family of distributions and the corresponding location-scale distribution is normal with

$$S_0(z) = 1 - \Phi(z)$$

$$f_0(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} = \phi(z)$$

- $lackbox{}\phi(\cdot)
 ightarrow \mathrm{pdf}$ of standard normal distribution
- $ightharpoonup z = (y \mu)/\sigma$

Log-normal distribution

Density function of log-lifetime

$$\begin{split} f(y;\mu,\sigma) &= \frac{1}{\sigma} f_0 \Big(\frac{y-\mu}{\sigma} \Big) \\ &= \frac{1}{\sigma \sqrt{2\pi}} \exp \Big[-\frac{1}{2} \Big(\frac{y-\mu}{\sigma} \Big)^2 \Big] \end{split}$$

Survivor function of log-lifetime

$$S(y;\mu,\sigma) = S_0 \left(\frac{y-\mu}{\sigma}\right) = 1 - \Phi\left(\frac{y-\mu}{\sigma}\right)$$

Data

$$\big\{(t_i,\delta_i),\; i=1,\dots,n\big\}$$

Log-likelihood function

$$\begin{split} \ell(\mu,\sigma) &= \log \prod_{i=1}^n \left[(1/\sigma) \, f_0(z_i) \right]^{\delta_i} \left[S_0(z_i) \right]^{1-\delta_i} \\ &= -r \log \sigma + \sum_{i=1}^n \delta_i \log f_0(z_i) + \sum_{i=1}^n (1-\delta_i) \log S_0(z_i) \\ &= -r \log \sigma - \frac{1}{2} \sum_{i=1}^n \delta_i z_i^2 + \sum_{i=1}^n (1-\delta_i) \log S_0(z_i) \end{split}$$

- $ightharpoonup z_i = (y_i \mu)/\sigma$ and $y_i = \log t_i$
- $r = \sum_{i=1}^{n} \delta_i$

 Elements of hessian matrix and score function depend on the followings

$$\begin{split} \frac{\partial \log f_0(z)}{\partial z} &= -z \\ \frac{\partial^2 \log f_0(z)}{\partial z^2} &= -1 \\ \frac{\partial \log S_0(z)}{\partial z} &= -\frac{f_0(z)}{S_0(z)} \\ \frac{\partial^2 \log S_0(z)}{\partial z^2} &= \frac{z f_0(z)}{S_0(z)} - \left[\frac{f_0(z)}{S_0(z)}\right]^2 \end{split}$$

MLEs

$$(\hat{\mu},\hat{\sigma})' = \mathrm{arg} \ \mathrm{max}_{\Theta} \ \ell(\mu,\sigma)$$

▶ Sampling distribution

$$(\hat{\mu}, \hat{\sigma})' \sim \mathcal{N}\Big((\mu, \sigma)', V\Big)$$

where

$$\hat{V} = \left[-H(\hat{\mu}, \hat{\sigma}) \right]^{-1}$$

 Confidence intervals of parameters, quantiles, and survival probabilities can be obtained using the methods described for Weibull models

Estimate of survivor function (Log-normal distribution)

$$S(t; \hat{\mu}, \hat{\sigma}) = 1 - \Phi\left(\frac{\log t - \hat{\mu}}{\hat{\sigma}}\right)$$
$$= 1 - \Phi(\hat{\psi})$$

where

$$\hat{\psi} = \Phi^{-1} \Big(1 - S(t; \hat{\mu}, \hat{\sigma}) \Big) = \frac{\log t - \hat{\mu}}{\hat{\sigma}}$$

 \blacktriangleright Standard error of $\hat{\psi}$

$$se(\hat{\psi}) = \sqrt{\mathbf{a}'\hat{V}\mathbf{a}}$$

where

$$\mathbf{a} = (-1/\hat{\sigma}, -\hat{\psi}/\hat{\sigma})'$$

Estimate of survivor function

ullet (1-lpha)100% CI of S(t)

$$\begin{split} L < \psi < U \\ L < \Phi^{-1} \big(1 - S(t; \mu, \sigma) \big) < U \\ \Phi(L) < 1 - S(t; \mu, \sigma) < \Phi(U) \\ 1 - \Phi(U) < S(t; \mu, \sigma) < 1 - \Phi(L) \end{split}$$

where

$$\begin{split} L &= \hat{\psi} - z_{1-\alpha/2} \, se(\hat{\psi}) \\ U &= \hat{\psi} + z_{1-\alpha/2} \, se(\hat{\psi}) \end{split}$$

Estimate of survivor function

 LRT statistics based method of obtaining CI for survivor function is described with

$$H_0:S(y_0)=S(\log t_0)=s_0$$

 \bullet The $100(1-\alpha)\%$ CI for S(t) can be obtained from the values of s_0 that satisfy

$$\Lambda(s_0) = 2\ell(\hat{\mu}, \hat{\sigma}) - 2\ell(\tilde{\mu}, \tilde{\sigma}) \leq \chi^2_{(1), 1-\alpha}$$

Estimate of survivor function

Unrestricted and unrestricted MLEs are obtained as

$$\begin{split} \text{unrestricted} \quad & (\hat{\mu}, \hat{\sigma})' = \text{arg } \max_{\Theta} \ell(\mu, \sigma) \\ \text{restricted} \quad & (\tilde{\mu}, \tilde{\sigma})' = \text{arg } \max_{\Theta} \ell(y_0 - \sigma \Phi^{-1}(1 - s_0), \sigma) \end{split}$$

where under H_0 , we can show

$$S(y_0) = 1 - \Phi\Big(\frac{y_0 - \mu}{\sigma}\Big) = s_0 \quad \Rightarrow \quad \mu = y_0 - \sigma\Phi^{-1}(1 - s_0)$$

Quantiles

 \bullet The expression of estimate of \boldsymbol{y}_{p}

$$\hat{y}_p = \hat{\mu} + \hat{\sigma} w_p$$

where for normal distribution

$$w_p = S_0^{-1}(1-p) = \Phi^{-1}(p)$$

 \bullet Standard error of \hat{y}_p

$$se(\hat{y}_p) = \sqrt{\mathbf{a}'\hat{V}\mathbf{a}}$$

where

$$\mathbf{a} = (1, w_p)'$$

Homework

 \bullet Obtain the expressions of Wald-type and LRT based $100(1-\alpha)\%$ confidence intervals of y_p

- Data are available on lifetimes (in thousand miles) of 96 locomotive controls, of which were failed.
- The test was terminated after 135K miles, so 59 lifetimes were censored at 135K.

dat_ex531

```
# A tibble: 96 x 2
   time status
  <dbl> <int>
   22.5
2 37.5
   46
   48.5
5 51.5
6 53
7 54.5
8 57.5
   66.5
10
   68
   86 more rows
```

```
dat_ex531 %>%
  count(status)
```

Log-normal and normal model fit

MLEs $(\hat{\mu}, \log \hat{\sigma})$ and corresponding standard errors

```
tidy(mod_LN)
```

Estimated variance of $(\hat{\mu}, \log \hat{\sigma})$

```
mod_LN$var
```

```
(Intercept) Log(scale)
(Intercept) 0.01657557 0.00983969
Log(scale) 0.00983969 0.01703353
```

• $GV(\hat{\mu}, \log \hat{\sigma}) G'$

[1,] 0.01657557 0.00858735

[2,] 0.00858735 0.01297359

$$G = \begin{bmatrix} 1 & 0 \\ 0 & \exp(\sigma) \end{bmatrix}$$

Table 1: 95% Confidence intervals for μ and σ

par	lower	upper	lower	upper
$\overline{\mu}$	4.942	5.447	5.000	5.400
σ	0.676	1.127	0.709	1.109

• Estimate of S(80)

$$S(80; \hat{\mu}, \hat{\sigma}) = 1 - \Phi\left(\frac{\log 80 - \hat{\mu}}{\hat{\sigma}}\right)$$
$$= 0.824$$

 \blacktriangleright $\hat{\mu}=5.195$ and $\hat{\sigma}=0.873$

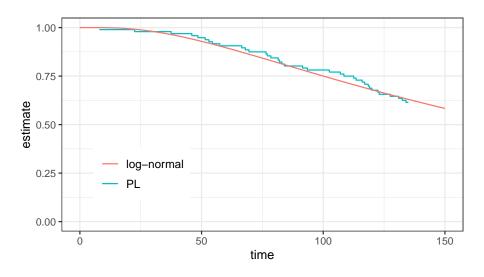


Figure 1: Comparison of the estimates of survivor function

Table 2: Estimate and confidence interval of S(80)

parameter	est	lower	upper
$\overline{S(80)}$	0.824	0.667	0.924

ullet Obtain LRT based 95% CI for S(80)

Quantiles

• General expression of pth quantile of log-lifetime ($\hat{\mu}=5.195$ and $\hat{\sigma}=0.873$)

$$\hat{y}_p = \hat{\mu} + \hat{\sigma} w_p$$

$$\blacktriangleright \ w_p = \Phi^{-1}(p)$$

Quantiles

Table 3: Estimate and confidence intervals of different quantiles of locomotive controls lifetime (normal distribution)

p	w_p	\hat{y}_p	se	lower	upper
0.25	-0.674	4.606	0.105	NA	NA
0.50	0.000	5.195	0.129	NA	NA
0.75	0.674	5.783	0.194	NA	NA

Subsection 2

5.2 Log-logistic and logistic distributions

• T follows a log-logistic distribution with parameters α (scale) and β (shape) if $Y = \log T$ follows a logistic distribution with parameters u (location) and b (scale)

The pdf, survivor, and hazard function of log-logistic distribution

$$\begin{split} f(t;\alpha,\beta) &= \frac{(\beta/\alpha)(t/\alpha)^{\beta-1}}{\left[1 + (t/\alpha)^{\beta}\right]^2} \\ S(t;\alpha,\beta) &= \left[1 + (t/\alpha)^{\beta}\right]^{-1} \\ h(t;\alpha,\beta) &= \frac{(\beta/\alpha)(t/\alpha)^{\beta-1}}{\left[1 + (t/\alpha)^{\beta}\right]} \end{split}$$

 Log-logistic distribution is a member of the log-location-scale family of distributions and the corresponding location-scale distribution is logistic with

$$S_0(z) = \frac{1}{1 + e^z}$$

$$f_0(z) = \frac{e^z}{(1 + e^z)^2}$$

$$ightharpoonup z = (y-u)/b$$

Density function of log-lifetime

$$\begin{split} f(y;u,b) &= \frac{1}{b} f_0 \Big(\frac{y-u}{b} \Big) \\ &= \frac{(1/b) \, \exp \left[(y-u)/b \right]}{\left\{ 1 + \exp \left[(y-u)/b \right] \right\}^2} \end{split}$$

• Survivor function of log-lifetime

$$\begin{split} S(y;u,b) &= S_0 \bigg(\frac{y-u}{b} \bigg) \\ &= \frac{1}{1 + \exp \left[(y-u)/b \right]} \end{split}$$

- $\bullet \ \, \mathsf{Data:} \quad \big\{(t_i,\delta_i), \ i=1,\dots,n\big\}$
- Log-likelihood function

$$\begin{split} \ell(\mu,\sigma) &= \log \prod_{i=1}^n \left[(1/b) \, f_0(z_i) \right]^{\delta_i} \left[S_0(z_i) \right]^{1-\delta_i} \\ &= -r \log b + \sum_{i=1}^n \delta_i \log f_0(z_i) + \sum_{i=1}^n (1-\delta_i) \log S_0(z_i) \\ &= -r \log b + \sum_{i=1}^n \left[\delta_i \big\{ z_i - \log(1+e^{z_i}) \big\} - \log(1+e^{z_i}) \right] \end{split}$$

- $\blacktriangleright \ z_i = (y_i u)/b \text{ and } y_i = \log t_i$
- $ightharpoonup r = \sum_{i=1}^n \delta_i$

 Elements of hessian matrix and score function depend on the followings

$$\begin{split} \frac{\partial \log f_0(z)}{\partial z} &= 1 - \frac{2e^z}{1 + e^z} \\ \frac{\partial^2 \log f_0(z)}{\partial z^2} &= -2f_0(z) \\ \frac{\partial \log S_0(z)}{\partial z} &= \frac{-e^z}{1 + e^z} \\ \frac{\partial^2 \log S_0(z)}{\partial z^2} &= \frac{-e^z}{(1 + e^z)^2} \end{split}$$

Logistic distribution

MLEs

$$(\hat{u},\hat{b})' = \text{arg max}_{\Theta} \; \ell(u,b)$$

Sampling distribution

$$(\hat{u},\hat{b})' \sim \mathcal{N}\Big((u,b)',V\Big)$$

where

$$\hat{V} = \left[-H(\hat{u}, \hat{b}) \right]^{-1}$$

 Confidence intervals of parameters, quantiles, and survival probabilities can be obtained using the methods described for Weibull models

Logistic distribution

• Estimate of survivor function (logistic distribution)

$$\begin{split} S_0\Big(\frac{y-\hat{u}}{\hat{b}}\Big) &= S(y;\hat{u},\hat{b}) = \frac{1}{1+\exp\big[(y-\hat{u})/\hat{b}\big]} \\ &\log \left[\frac{1-S(y)}{S(y)}\right] = \frac{y-\hat{u}}{\hat{b}} = \hat{\psi} = S_0^{-1}\Big(S(y)\Big) \end{split}$$

lacktriangle Standard error of $\hat{\psi}$

$$se(\hat{\psi}) = \sqrt{\mathbf{a}'\hat{V}\mathbf{a}}, \quad \text{where } \mathbf{a} = (-1/\hat{b}, -\hat{\psi}/\hat{b})'$$

Logistic distribution

$$(1-\alpha)100\%$$
 CI of $S(t)$

$$\begin{split} L < \psi < U \\ L < \log \frac{1 - S(y)}{S(y)} < U \\ \exp(L) < \frac{1 - S(y)}{S(y)} < \exp(U) \\ 1 + \exp(L) < 1 + \frac{1 - S(y)}{S(y)} < 1 + \exp(L) \\ \frac{1}{1 + \exp(U)} < S(y) < \frac{1}{1 + \exp(L)} \end{split}$$

where

$$\begin{split} L &= \hat{\psi} - z_{1-\alpha/2} \, se(\hat{\psi}) \\ U &= \hat{\psi} + z_{1-\alpha/2} \, se(\hat{\psi}) \end{split}$$

Estimate of survivor function

 LRT statistics based method of obtaining CI for survivor function is described with

$$H_0:S(y_0)=S(\log t_0)=s_0$$

 \bullet The $100(1-\alpha)\%$ CI for S(t) can be obtained from the values of s_0 that satisfy

$$\Lambda(s_0) \leq \chi^2_{(1),1-\alpha}$$

where

$$\Lambda(s_0) = 2\ell(\hat{u},\hat{b}) - 2\ell(\tilde{u},\tilde{b})$$

Estimate of survivor function

Unrestricted and unrestricted MLEs are obtained as

$$\begin{split} \text{unrestricted} \quad & (\hat{u}, \hat{b})' = \arg \, \max_{\Theta} \ell(u, b) \\ \text{restricted} \quad & (\tilde{u}, \tilde{b})' = \arg \, \max_{\Theta} \ell(y_0 - b \log \big\{ (1 - s_0) / s_0 \big\}, b \big) \end{split}$$

where under H_0 , we can show

$$S(y_0) = s_0 \implies u = y_0 - b \log \frac{1 - s_0}{s_0}$$

Quantiles

 \bullet The expression of estimate of \boldsymbol{y}_{p}

$$\hat{y}_p = \hat{u} + \hat{b}w_p$$

where for normal distribution

$$w_p = S_0^{-1}(1-p) = \log \frac{p}{1-p}$$

 \bullet Standard error of \hat{y}_p

$$se(\hat{y}_p) = \sqrt{\mathbf{a}'\hat{V}\mathbf{a}}$$

where

$$\mathbf{a}=(1,w_p)'$$

Homework

 \bullet Obtain the expressions of Wald-type and LRT based $100(1-\alpha)\%$ confidence intervals of y_p

- Data are available on lifetimes (in thousand miles) of 96 locomotive controls, of which were failed.
- The test was terminated after 135K miles, so 59 lifetimes were censored at 135K.

dat_ex531

```
# A tibble: 96 x 2
   time status
  <dbl> <int>
  22.5
2 37.5
   46
   48.5
5 51.5
6 53
7 54.5
8 57.5
   66.5
10
   68
   86 more rows
```

```
dat_ex531 %>%
  count(status)
```

Log-logistic and logistic model fit

```
MLEs (\hat{u}, \log \hat{b}) [1] 5.1206418 -0.8266704 Estimated variance of (\hat{u}, \log \hat{b}) (Intercept) Log(scale) (Intercept) 0.010490062 0.007837215 Log(scale) 0.007837215 0.022515937
```

```
MLEs of (\hat{u}, \hat{b}) [1] 5.1206418 0.4375036 Estimated variance of (\hat{u}, \hat{b}) [,1] [,2] [1,] 0.010490062 0.003428809 [2,] 0.003428809 0.004309761
```

Table 4: 95% Confidence intervals for location and scale parameters

dist	par	est	lower	upper	lower	upper
Logistic	u	5.121	4.920	5.321	5.000	5.300
NA	b	0.438	0.326	0.587	0.360	0.559
Gaussian	μ	5.195	4.942	5.447	5.000	5.400
NA	σ	0.873	0.676	1.127	0.709	1.109

• Estimate of S(80) (log-logistic distribution)

$$S(80; \hat{u}, \hat{b}) = \frac{1}{1 + \exp\left[(\log 80 - \hat{u})/\hat{b}\right]}$$

= 0.844

 $\hat{u} = 5.121 \ \ \mathrm{and} \ \ \hat{b} = 0.438$

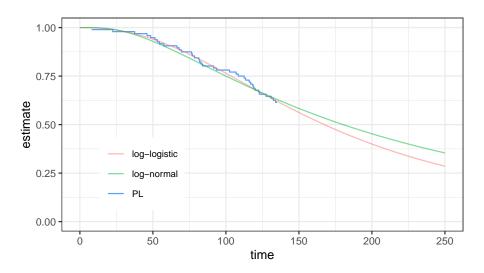


Figure 2: Comparison of the estimates of survivor function

Table 5: Estimate and corresponding Wald-type confidence interval of the survival probability ${\cal S}(80)$

dist	est	lower	upper
Log-logistic	0.844	0.566	0.957
Log-normal	0.824	0.667	0.924

 \bullet Obtain LRT based 95% CI for S(80)

Quantiles

• General expression of pth quantile of log-lifetime ($\hat{u}=5.121$ and $\hat{b}=0.438$)

$$\hat{y}_p = \hat{u} + \hat{b}w_p$$

$$\blacktriangleright \ w_p = \log \tfrac{p}{1-p}$$

Quantiles

Table 6: Estimate and confidence intervals of different quantiles

dist	p	w_p	\hat{y}_p	se	lower	upper
Logistic	0.25	-1.099	4.640	0.143	NA	NA
NA	0.50	0.000	5.121	0.102	NA	NA
NA	0.75	1.099	5.601	0.234	NA	NA
Gaussian	0.25	-0.674	4.826	0.101	NA	NA
NA	0.50	0.000	5.121	0.102	NA	NA
NA	0.75	0.674	5.416	0.177	NA	NA

Homework

 Analyze the locomotive control lifetimes using Weibull model and compare the results

Subsection 3

5.3 Comparison of distributions

5.3 Comparison of distributions

- Let T_{ji} be the lifetime of ith subject of the jth group $(i=1,\ldots,n_j,\ j=1,\ldots,m)$
- Assume T_{ji} follows a distribution of log-location-scale family with parameters α_j (scale) and β_j (shape)
- \bullet The corresponding distribution of log-lifetime $Y_{ji} = \log T_{ji}$ is of a location-scale family distribution with parameters u_j (location) and b_j (scale)

$$u_j = \log \alpha_j$$
 and $b_j = (1/\beta_j)$

Survivor functions

 \bullet The survivor function of $Y_{ji} = \log T_{ji}$

$$S_j(y) = S_0\Big(\frac{y-u_j}{b_j}\Big)$$

ullet The survivor function of T_{ji}

$$S_j(t) = S_0^\star \big[(t/\alpha_j)^{\beta_j} \big]$$

- $\blacktriangleright \ S_0^\star(x) = S_0(\log x)$
- $\mathbf{u}_j = \log \alpha_j$
- $\blacktriangleright \ b_j = (1/\beta_j)$

Survivor functions

 Comparison of several normal populations is a well-known problem in statistics, where equal population variances are assumed, and the comparisons are performed on the basis of equality of population means

Quantile

ullet General expression of the pth quantile of the jth population takes the form

$$y_{jp} = u_j + b_j w_p, \quad j = 1, \dots, m$$

$$\qquad \qquad \mathbf{w}_p = S_0^{-1}(1-p)$$

• When the scales are **not equal** (i.e. $b_1 \neq b_2$), the difference between the pth quantiles does depend on the probability p

$$y_{1p} - y_{2p} = u_1 - u_2 + w_p(b_1 - b_2)$$

• Under the assumption of equality of the scales (i.e. $b_1=b_2$), difference between pth (log-lifetime) quantile of a pair of populations (say 1 and 2) is constant, i.e. it does not depend on the probability $p\in(0,1)$

$$y_{1p} - y_{2p} = u_1 - u_2$$

• The difference between two log-lifetime quantiles can be expressed in terms of the ratio of lifetime quantiles

$$\begin{aligned} y_{1p} - y_{2p} &= u_1 - u_2 \\ \log t_{1p} - \log t_{2p} &= \log \alpha_1 - \log \alpha_2 \\ t_{1p} / t_{2p} &= \alpha_1 / \alpha_2 \end{aligned}$$

 \bullet The ratio of the $p{\rm th}$ quantiles of two lifetime distributions does not depend on the probability p when the corresponding shape parameters are equal $(\beta_1=\beta_2)$

• Equality of all quantiles of two distributions, i.e.

$$y_{1p} = y_{2p} \ \forall \ p \in (0,1),$$

corresponds to equality of two distributions, i.e.

$$S_1(y) = S_2(y)$$

 Under the assumption of common scale (shape for lifetime) parameter, the null hypothesis of equality of two distributions can be expressed as

$$H_0: u_1 - u_2 = 0 \quad \text{or} \quad H_0: (\alpha_1/\alpha_2) = 1$$

- \bullet Equality of two populations with survivor functions (say S_1 and $S_2)$ can be expressed in terms of survivor functions
- Since

$$y_{1p} = y_{2p} + u_1 - u_2 \text{ or } t_{1p} = t_{2p}(\alpha_1/\alpha_2),$$

the corresponding survivor functions can be expressed as

$$S_1(y+u_1-u_2)=S_2(y)$$

$$S_1\big(t(\alpha_1/\alpha_2)\big)=S_2(t)$$

ullet That is, the survivor functions for Y are translations of one another by an amount (u_1-u_2) along the y-axis

- \bullet Data $\ \left\{(t_{ji},\delta_{ji}), i=1,2\right\}$ and $y_{ji}=\log t_{ji}$
- Two populations can be compared in terms of pth quantile

$$H_0: y_{1p} = y_{2p}$$

Corresponding pivotal quantity

$$Z_p = \frac{(\hat{y}_{1p} - \hat{y}_{2p}) - (y_{1p} - y_{2p})}{\left[\operatorname{var}(\hat{y}_{1p}) + \operatorname{var}(y_{2p})\right]^{1/2}} \sim \mathcal{N}(0, 1) \ \text{ under } H_0$$

 \blacktriangleright The statistic Z_p can be used to obtain confidence interval for $(y_{1p}-y_{2p})$

ullet To test $H_0:b_1=b_2$, the following pivotal quantity can be considered

$$Z_b = \frac{(\log \hat{b}_1 - \log \hat{b}_2) - (\log b_1 - \log b_2)}{[\operatorname{var}(\log \hat{b}_1) + \operatorname{var}(\log \hat{b}_2)]^{1/2}} \sim \mathcal{N}(0, 1) \ \text{ under } H_0$$

 \blacktriangleright The statistic Z_b can be used to obtain confidence interval for (b_1/b_2)

- When scales are equal, two populations can be compared with respect their location parameter $H_0:u_1=u_2$
- The corresponding pivotal quantity

$$Z_u = \frac{(\hat{u}_1 - \hat{u}_2) - (u_1 - u_2)}{[\mathrm{var}(\hat{u}_1) + \mathrm{var}(\hat{u}_2)]^{1/2}} \sim \mathcal{N}(0, 1) \ \ \text{under} \ H_0$$

 $\,\blacktriangleright\,$ The statistic Z_u can be used to obtain confidence interval for (u_1-u_2)

• Wald statistic cannot be used to test

$$H_0: u_1=u_2, b_1=b_2\\$$

LRT based inference

- \bullet Data $\; \left\{ (t_{ji}, \delta_{ji}), j = 1, \ldots, m, i = 1, \ldots, n_j \right\}$ and $y_{ji} = \log t_{ji}$
- Different tests and confidence intervals of interest

 - $\textbf{ 2} \ \, \text{Confidence interval for} \ \, (b_1/b_2) \\$
 - Sequality of several location parameters when scale parameters are equal

$$\begin{split} H_0: u_1 = \cdots = u_m, b_1 = \cdots = b_m \\ H_1: \text{all } u_j\text{'s are not equal}, b_1 = \cdots = b_m \end{split}$$

- **4** Confident interval for $(u_1 u_2)$ when $b_1 = b_2$
- $\textbf{ § Confidence interval for } (y_{1p}-y_{2p}) \text{ when } b_1 \neq b_2$

Case 1

Hypothesis of interest

$$H_0: b_1=\cdots=b_m=b \ \ (\mathsf{say}) \tag{1}$$

Log-likelihood function

$$\ell(u_1,\dots,u_m,b_1,\dots,b_m) = \sum_{j=1}^m \ell_j(u_j,b_j)$$

ullet Contribution to log-likelihood function for the jth population

$$\ell_{j}(u_{j},b_{j}) = -r_{j}\log b_{j} + \sum_{i=1}^{n_{j}} \left[\delta_{i}\log f_{0}(z_{ji}) + (1-\delta_{ji})\log S_{0}(z_{ji}) \right]$$

 $ightharpoonup r_j = \sum_i \delta_{ji}$

Case 1

LRT statistic

$$\Lambda = 2\ell(\hat{u}_1, \dots, \hat{u}_m, \hat{b}_1, \dots, \hat{b}_m) - 2\ell(\tilde{u}_1, \dots, \tilde{u}_m, \tilde{b}, \dots, \tilde{b})$$

- $\blacktriangleright \ \Lambda \sim \chi^2_{(m-1)}$ under the null hypothesis defined in Equation 1
- MLEs
 - $\blacktriangleright \ (\hat{u}_j, \hat{b}_j)' = \text{arg max}_{\Theta} \ \ell_j(u_j, b_j), \ \ j = 1, \dots, m$
 - $\blacktriangleright \ (\tilde{u}_1,\ldots,\tilde{u}_m,\tilde{b},\ldots,\tilde{b})' = \arg \ \max_{\Theta} \ell(u_1,\ldots,u_m,b,\ldots,b)$

• To obtain confidence interval of (b_1/b_2) , consider

$$H_0:(b_1/b_2)=a \ \Rightarrow \ H_0:b_1=ab_2$$

• $100(1-\alpha)\%$ confidence interval of (b_1/b_2) can be obtained from the range of a values that satisfy

$$\Lambda(a) \le \chi^2_{(1), 1 - \alpha},$$

where the LRT statistic

$$\Lambda(a) = 2\ell(\hat{u}_1,\hat{u}_2,\hat{b}_1,\hat{b}_2) - 2\ell(\tilde{u}_1,\tilde{u}_2,a\tilde{b}_2,\tilde{b}_2)$$

- $\blacktriangleright \ (\hat{u}_j, \hat{b}_j)' = \text{arg max}_{\Theta} \ \ell_j(u_j, b_j), \ \ j = 1, 2$
- $\blacktriangleright \ (\tilde{u}_1,\tilde{u}_2,\tilde{b}_2)' = \mathrm{arg} \ \mathrm{max}_{\Theta} \, \ell(u_1,u_2,ab_2,b_2)$

 Test equality of several location parameters when scale parameters are equal

$$H_0: u_1 = \cdots = u_m, \ b_1 = \cdots = b_m$$

$$H_1: \text{all } u_i\text{'s are not equal}, \ b_1 = \cdots = b_m$$

- MLEs
 - $\blacktriangleright \ \, \mathrm{under} \,\, H_0, \quad (u^\star,b^\star) = \mathrm{arg} \,\, \mathrm{max}_\Theta \, \ell(u,\ldots,u,b,\ldots,b)$
 - $\blacktriangleright \ \text{under} \ H_1, \quad (\tilde{u}_1, \dots, \tilde{u}_m, \tilde{b}) = \arg \ \max_{\Theta} \ell(u_1, \dots, u_m, b, \dots, b)$
- LRT statistic

$$\Lambda = 2\ell(\tilde{u}_1, \dots, \tilde{u}_m, \tilde{b}, \dots, \tilde{b}) - 2\ell(u^\star, \dots, u^\star, b^\star, \dots, b^\star)$$

 \blacktriangleright Under the null hypothesis, Λ follows $\chi^2_{(m-1)}$ distribution

 \bullet To obtain a confidence interval of (u_1-u_2) when $b_1=b_2$, consider the null and alternative hypothesis

$$H_0: u_1-u_2=\delta, \ b_1=b_2 \quad \text{vs} \quad H_1: u_1-u_2 \neq \delta, \ b_1=b_2$$

LRT statistic

$$\Lambda(\delta) = 2\ell(\tilde{u}_1, \tilde{u}_2, \tilde{b}, \tilde{b}) - 2\ell(u_2^\star + \delta, u_2^\star, b^\star, b^\star)$$

- $\blacktriangleright \ \, \mathrm{under} \,\, H_0, \quad (u^\star,b^\star) = \mathrm{arg} \,\, \mathrm{max}_\Theta \, \ell(u,u,b,b)$
- $\blacktriangleright \ \ \mathrm{under} \ H_1, \quad (\tilde{u}_1, \tilde{u}_2, \tilde{b}) = \mathrm{arg} \ \mathrm{max}_{\Theta} \, \ell(u_1, u_2, b, b)$
- $100(1-\alpha)$ confidence interval for (u_1-u_2) can be obtained from the set of δ values that satisfy $\Lambda(\delta) \leq \chi^2_{(1),1-\alpha}$

• When $b_1 \neq b_2$, to obtain confidence interval for $(y_{1p}-y_{2p})$ consider the following hypothesis

$$H_0: y_{1p} - y_{2p} = \Delta \ \Rightarrow \ H_0: u_1 - u_2 = \Delta + (b_2 - b_1) w_p$$

- $\qquad \qquad \mathbf{w}_p = S_0^{-1}(1-p)$
- LRT statistic

$$\Lambda(\Delta) = 2\ell(\hat{u}_1,\hat{u}_2,\hat{b}_1,\hat{b}_2) - 2\ell(\tilde{u}_1,\tilde{u}_2,\tilde{b}_1,\tilde{b}_2)$$

• under H_0

$$(\tilde{u}_1,\tilde{u}_2,\tilde{b}_1,\tilde{b}_2) = \mathrm{arg} \ \mathrm{max}_{\Theta} \, \ell(u_2 + \Delta + (b_2 - b_1)w_p,u_2,b_1,b_2)$$

• under H_1

$$(\hat{u}_1,\hat{u}_2,\hat{b}_2,\hat{b}_1) = \mathrm{arg} \ \mathrm{max}_{\Theta} \, \ell(u_1,u_2,b_1,b_2)$$

• $100(1-\alpha)$ confidence interval for $(y_{1p}-y_{2p})$ can be obtained from the set of Δ values that satisfy $\Lambda(\Delta) \leq \chi^2_{(1),1-\alpha}$

Comparison of Weibull or extreme value distributions

- $\bullet \ \, \text{Assume} \,\, T_{ji} \sim \mathsf{Weibull}(\alpha_j,\beta_j) \,\, (j=1,\ldots,m, \ \, i=1,\ldots,n_j)$
 - $\blacktriangleright \ \, \mathsf{Data} \, \left\{ (t_{ji}, \delta_{ji}), j=1, \ldots, m, \ \, i=1, \ldots, n_j \right\}$
- Survivor function of Weibull distribution

$$S_j(t) = \exp\left[-(t/\alpha_j)^{\beta_j}\right]$$

Survivor function of extreme value distribution

$$S_j(y) = \exp\left[-e^{(y-u_j)/b_j}\right]$$

- $b_j = 1/\beta_j$

Example 5.4.1

 Data of the following table are on the time to breakdown of electrical insulating fluid subject to a constant voltage stress in a lifetest experiment

Table 1.1. Times to Breakdown (in minutes) at Each of Seven Voltage Levels

Voltage Level (kV)	n_i	Breakdown Times	
26	3	5.79, 1579.52, 2323.7	
28	5	68.85, 426.07, 110.29, 108.29, 1067.6	
30	11	17.05, 22.66, 21.02, 175.88, 139.07, 144.12, 20.46, 43.40, 194.90, 47.30, 7.74	
32	15	0.40, 82.85, 9.88, 89.29, 215.10, 2.75, 0.79, 15.93, 3.91, 0.27, 0.69, 100.58, 27.80, 13.95, 53.24	
34	19	0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91, 32.52, 3.16, 4.85, 2.78, 4.67, 1.31, 12.06, 36.71, 72.89	
36	15	1.97, 0.59, 2.58, 1.69, 2.71, 25.50, 0.35, 0.99, 3.99, 3.67, 2.07, 0.96, 5.35, 2.90, 13.77	
38	8	0.47, 0.73, 1.40, 0.74, 0.39, 1.13, 0.09, 2.38	

Example 5.4.1

Table 7: Estimate of voltage-specific extreme value models

voltage	$\hat{u}_j \pm se(\hat{u}_j)$	$\hat{b}_j \pm se(\hat{b}_j)$
26	6.862 ± 1.104	1.834 ± 0.885
28	5.865 ± 0.486	1.022 ± 0.474
30	4.351 ± 0.302	0.944 ± 0.303
32	3.256 ± 0.486	1.781 ± 0.254
34	2.503 ± 0.315	1.297 ± 0.211
36	1.457 ± 0.309	1.125 ± 0.221
38	0.001 ± 0.273	0.734 ± 0.367

Example 5.4.1

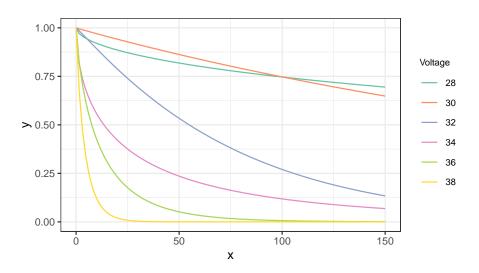


Figure 3: Comparison of estimated survivor function

LRT (Case 1)

Null hypothesis

$$H_0:b_1=\cdots=b_7$$

I RT statistic

$$\begin{split} &\Lambda = 2\ell(\hat{u}_1, \dots, \hat{u}_7, \hat{b}_1, \dots, \hat{b}_7) - 2\ell(\tilde{u}_1, \dots, \tilde{u}_7, \tilde{b}, \dots, \tilde{b}) \\ &= 2(-132.181) - 2(-136.578) \\ &= 8.794 \end{split}$$

p-value

$$Pr(\chi^2_{(6)} \ge \Lambda) = 0.185$$

It does not provide enough evidence to reject the null hypothesis of equality of the scale parameters.

Confidence interval of (b_1/b_2) (Case 2)

Wald-type

$$\begin{split} (\log \hat{b}_1 - \log \hat{b}_2) &\pm z_{1-\alpha/2} \, se(\log \hat{b}_1 - \log \hat{b}_2) \\ &\quad (\hat{b}_1/\hat{b}_2) \,\, e^{\pm z_{1-\alpha/2} \, se(\log \hat{b}_1 - \log \hat{b}_2)} \\ &\quad (1.834/1.022) \,\, e^{\pm \, (1.96)(0.624)} \\ &\quad 0.529 < (b_1/b_2) < 6.095 \end{split}$$

 \blacktriangleright Similarly confidence intervals for $(b_j/b_{j'}) \ j>j'$ can be obtained

Confidence interval of (b_1/b_2) (Case 2)

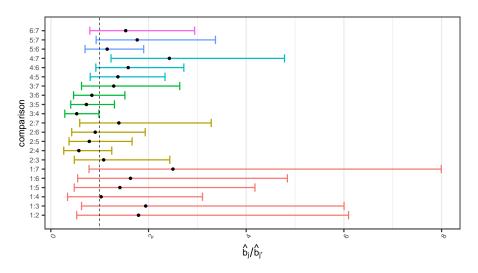


Figure 4: Estimate and 95% confidence interval of pair-wise comparisons of scale parameters (b_i/b_{i^\prime})

Equality of all location parameters when scales are equal

$$H_0: u_1=\cdots=u_m,\ b_1=\cdots=b_m$$

LRT statistic

$$\begin{split} &\Lambda = 2\ell(\tilde{u}_1, \dots, \tilde{u}_m, \tilde{b}, \dots, \tilde{b}) - 2\ell(u^\star, \dots, u^\star, b^\star, \dots, b^\star) \\ &= 2(-136.578) - 2(-176.584) \\ &= 80.013 \end{split}$$

▶ p-value $P(\chi^2_{(1)}>80.013)<.001\to {\rm There}$ is a strong evidence against the assumption of equality of m location parameters

ullet Wald-type confidence interval of (u_1-u_2)

$$\begin{split} (\hat{u}_1 - \hat{u}_2) &\pm z_{1-\alpha/2} \; se(\hat{u}_1 - \hat{u}_2) \\ (6.862 - 4.351) &\pm (1.96)(1.206) \\ -1.367 &< (u_1 - u_2) < 3.361 \end{split}$$

 \blacktriangleright There is no significant difference between u_1 and u_2

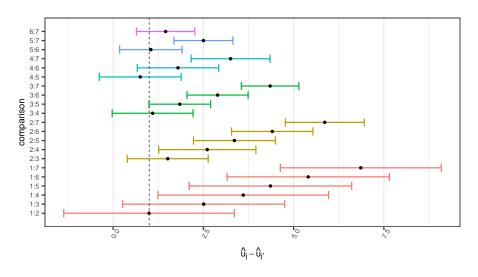


Figure 5: Estimate and 95% confidence interval of pair-wise comparisons of location parameters $(u_i-u_{i'})$

Md Rasel Biswas Chapter 5B 88/91

ullet General expression of pth quantile of the group j

$$y_{jp}=u_j+b_jw_p,\;j=1,\dots,m$$

Difference of pth quantile between groups 1 and 2

$$y_{1p} - y_{2p} = u_1 - u_2 + (b_1 - b_2)w_p$$

▶ 95% confidence interval for the difference of median between groups 1 and 2

$$\begin{split} \hat{y}_{1m} - \hat{y}_{2m} &\pm z_{1-\alpha/2} se(\hat{y}_{1m} - \hat{y}_{2m}) \\ (6.19 - 5.491) &\pm (1.96)(1.291) \\ -1.831 &< (y_{1m} - y_{2m}) < 3.231 \end{split}$$

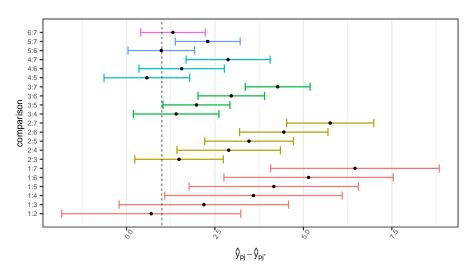


Figure 6: Estimate and 95% confidence interval of pair-wise comparisons of medians $(y_{j,.5}-y_{j',.5})$

Homework

 Analyse the breakdown time data using log-logistic and log-normal distributions and compare the results with that of Weibull distribution