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Lecture Outline

© 5. Inference Procedures for Log-location-scale Distributions
@ 5.1 Log-normal and normal distributions
@ 5.2 Log-logistic and logistic distributions

@ 5.3 Comparison of distributions
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Section 1

5. Inference Procedures for Log-location-scale
Distributions
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Subsection 1

5.1 Log-normal and normal distributions
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Log-normal distribution

o T follows a log-normal distribution with location parameter p and
scale parameter o if Y =logT ~ N (u,o?)

@ The pdf and survivor function of log-normal distribution

2
1 1 logt—ﬂ)}
b, o) = ——==oxp | — 5| ———
6 0,0) = — 27Te><p[ 2( .
5(,5;%@:1_@(@_—#)
g

» 1 and o are the parameters of both normal and log-normal distributions

» &(-) — cumulative distribution function of standard normal
distribution

Md Rasel Biswas Chapter 5B 5/91



Log-normal distribution

@ Log-normal distribution is a member of the log-location-scale family
of distributions and the corresponding location-scale distribution is

normal with
So(2) =1 —®(2)
1 2
_ —2%/2 _
zZ) = e = @z
» ¢(-) — pdf of standard normal distribution
> z=(y—p)/o
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Log-normal distribution

@ Density function of log-lifetime

@ Survivor function of log-lifetime

S(y;u,cr)zs()(y_“) :1_¢<y—u

g
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Likelihood function normal distribution
@ Data
{(tz,éz) ,...,n}
@ Log-likelihood function

5.

Up,0) = loglj [(1/0.) fO(zz)] i [50(21)} 1-6;

3

= —rlogo + 251 log fo(2;) + ) _(1—46;)log Sy(2;)

i=1 =1

:—rlogo’—%;(s +Z 1— logSO )

> z; = (y; —p)/o and y; = logt,

Md Rasel Biswas Chapter 5B 8/91



Likelihood function normal distribution

@ Elements of hessian matrix and score function depend on the

followings
dlog fo(z) -,
0z
9 1og fo(2) -1
022
0log Sy(2) _ _Jolz)
0z So(2)
9log Sy(2) _ zfo(2) [fo<z>r’
022 So(2) So(2)
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Likelihood function normal distribution

o MLEs
(41,0)" = arg maxg £(p,0)

» Sampling distribution
(7,5) ~ N ((1,0),V)

where

v=[-HG@2)]

o Confidence intervals of parameters, quantiles, and survival
probabilities can be obtained using the methods described for Weibull
models
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Likelihood function normal distribution

e Estimate of survivor function (Log-normal distribution)

S(t:i,5) =1—@(@)
=1-®(¢)

where

where

a = (<1/3.~1/)
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Estimate of survivor function

o (1—)100% Cl of S(t)

L<y<U
L<® ' (1-8(tyu,0))<U
(L) <1—S(t;u,0) <®(U)
1-oU) < S(t;p,0) <1—9(L)
where R R
L=vy— Rl—a/2 se(v)
U=+ 21-a/2 se()
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Estimate of survivor function

@ LRT statistics based method of obtaining Cl for survivor function is
described with
Hy : S(yo) = S(logty) = s

@ The 100(1 — a)% Cl for S(t) can be obtained from the values of s
that satisfy

A<SO) = 2£(ﬁ’7 &) - 26(/17 &) < X%l),lfa
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Estimate of survivor function

@ Unrestricted and unrestricted MLEs are obtained as

unrestricted (f1,0)" = arg maxg £(u, o)
restricted  (fi,5)" = arg maxg £(yy —o® (1 —s¢),0)

where under H,, we can show

S(yy) = 1—@<@> =590 = p=yo—0P (1—s)
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Quantiles

@ The expression of estimate of y,
Y, = i+ ow,
where for normal distribution
w, =S (1—p) =27 (p)

e Standard error of y,

where
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Homework

@ Obtain the expressions of Wald-type and LRT based 100(1 — )%
confidence intervals of y,
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Example 5.3.1

o Data are available on lifetimes (in thousand miles) of 96 locomotive
controls, of which were failed.

@ The test was terminated after 135K miles, so 59 lifetimes were
censored at 135 K.
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Example 5.3.1

dat_exb31

# A tibble: 96 x 2
time status

<dbl> <int>

22.5
37.5
46

48.5
51.5
53
54.
b7.
66.5
68

# i 86 more rows

[é)]

© 00 N O W N -
[¢)]

e e e

-
o
-
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Example 5.3.1

dat_ex531 %>V
count (status)

# A tibble: 2 x 2

status n
<int> <int>
1 0] 59
2 1 37
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Example 5.3.1

Log-normal and normal model fit

mod_LN <- survreg(Surv(time, status) ~ 1,
dist = "lognormal",
data = dat_ex531)

mod_N <- survreg(Surv(log(time), status) ~ 1,
dist = "gaussian",
data = dat_ex531)
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Example 5.3.1

MLEs (fi,logo) and corresponding standard errors

tidy (mod_LN)

# A tibble: 2 x 5

term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 5.19 0.129 40.3 0
2 Log(scale) -0.136 0.131 -1.04 0.297
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Example 5.3.1

Estimated variance of (ji,logo)
mod_LN$var

(Intercept) Log(scale)
(Intercept) 0.01657557 0.00983969
Log(scale) 0.00983969 0.01703353
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Estimated variance V(j1, o) from V(i1,logo)

o GV(p,logo)G’
[,1] [,2]

[1,] 0.01657557 0.00858735
[2,] 0.00858735 0.01297359

“= Ll) exﬁ)(a)]
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Estimated variance V(j1, o) from V(i1,logo)

Table 1: 95% Confidence intervals for 1 and o

par lower upper lower upper

© 4.942 5447 5000 5.400
o 0676 1.127 0.709 1.109
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Estimated variance V(ji,0) from V(ji,log o)

e Estimate of S(80)

o 80—
S(80;7i,5) =1 — @(%)
g

=0.824

> [i=5.195 and & = 0.873
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Estimated variance V(ji,0) from V(ji,log o)

1.00 1
0.75 1
2
5]
£ 0.501
N
)
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0.00 1
T T T T
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time

Figure 1: Comparison of the estimates of survivor function
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Estimated variance V(j1, o) from V(i1,logo)

Table 2: Estimate and confidence interval of S(80)

parameter est lower upper

5(80) 0.824 0.667 0.924

@ Obtain LRT based 95% CI for S(80)
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Quantiles

@ General expression of pth quantile of log-lifetime (i = 5.195 and
o =0.873)
g, =i +ou,
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Quantiles

Table 3: Estimate and confidence intervals of different quantiles of locomotive
controls lifetime (normal distribution)

P w, Uy se lower upper

0.25 -0.674 4.606 0.105 NA NA
0.50 0.000 5.195 0.129 NA NA
0.75 0.674 5.783 0.194 NA NA
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Subsection 2

5.2 Log-logistic and logistic distributions
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Log-logistic distribution

o T follows a log-logistic distribution with parameters o (scale) and 3
(shape) if Y = logT follows a logistic distribution with parameters u
(location) and b (scale)
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Log-logistic distribution

@ The pdf, survivor, and hazard function of log-logistic distribution
(B8/a)(t/a)!

1+ (t/a)?]
S(tia,8) = [1+ (t/e)?]

(B/a)(t/a)?!
[1+ (t/a)”]

flt;a,B) =

h(t; o, B) =
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Logistic distribution

@ Log-logistic distribution is a member of the log-location-scale family
of distributions and the corresponding location-scale distribution is

logistic with
Solz) = 12—
1) = e
> z=(y—u)/b
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Logistic distribution

@ Density function of log-lifetime

Fn) = 3 fo(15)

(/D) exp [y — u)/b]
{1+ exp [(y—u)/b]}

@ Survivor function of log-lifetime

S(y;u,b) = So<y;“)

1
1+exp[ —u)/b]
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Logistic distribution

o Data: {(¢;,0;), i=1,...,n}

2R

o Log-likelihood function

é

[sate]

= —rlogb+ Zéi log fo(2;) + Z(l —§;)log Sy (2;)
- i—1

tu.0) =10 [ T [(1/0) ol

= —rlogb+z [5 {z; —log(1 + e*)} —log(1 + e*)
= (y; —u)/b and y; = logt;
=20,0
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Logistic distribution

@ Elements of hessian matrix and score function depend on the

followings
0log fy(2) _q_ 2¢*
0z 1+ e?
2
TL8RE _ pye)
dlog Sy(z)  —€7
0z 1 +4e?
d*log Sy(z) = —e€*
02?2 (14 e2)2
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Logistic distribution

o MLEs R
(u,b)" = arg maxg £(u,b)

@ Sampling distribution
(8,) ~ N ((u,b),V)
where
. -1
V= [— H(a, b)]

o Confidence intervals of parameters, quantiles, and survival
probabilities can be obtained using the methods described for Weibull

models
Md Rasel Biswas Chapter 5B
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Logistic distribution

e Estimate of survivor function (logistic distribution)

1
1+ exp [(y — @) /D]

o] =15 == (w)

So<y%ﬁ> = S(y;0,b) =

» Standard error of 15

se(h) = Va'Va, wherea= (—1/?), —1/7/3)’
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Logistic distribution
(1—a)100% CI of S(t)

where

L= IZ — Zl-a/2 56(1;)
U=+ 21-af2 se(1))
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Estimate of survivor function

@ LRT statistics based method of obtaining Cl for survivor function is

described with
Hy = S(yo) = S(logty) = s

@ The 100(1 — a)% Cl for S(t) can be obtained from the values of s
that satisfy
A(so) < X1 a

where
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Estimate of survivor function

@ Unrestricted and unrestricted MLEs are obtained as
unrestricted (u,b)" = arg maxg £(u, b)
restricted (%,b)" = arg maxg £(yo — blog {(1 —s9)/s0}.b)
where under H,, we can show

1_80

S(yp) =89 = u=yy—blog .
0
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Quantiles

@ The expression of estimate of y,

Y, =u+bw,
where for normal distribution

p

wp:Sal(l—p)zlogl

o Standard error of y,

where
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Homework

@ Obtain the expressions of Wald-type and LRT based 100(1 — )%
confidence intervals of y,
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Example 5.3.1

o Data are available on lifetimes (in thousand miles) of 96 locomotive
controls, of which were failed.

@ The test was terminated after 135K miles, so 59 lifetimes were
censored at 135 K.
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Example 5.3.1

dat_exb31

# A tibble: 96 x 2
time status

<dbl> <int>

22.5
37.5
46

48.5
51.5
53
54.
b7.
66.5
68

# i 86 more rows

[é)]

© 00 N O W N -
[¢)]

e e e

-
o
-
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Example 5.3.1

dat_ex531 %>V
count (status)

# A tibble: 2 x 2

status n
<int> <int>
1 0] 59
2 1 37

Md Rasel Biswas Chapter 5B



Example 5.3.1

Log-logistic and logistic model fit

mod_LL <- survreg(Surv(time, status) ~ 1,
dist = "loglogistic",
data = dat_ex531)

mod_L <- survreg(Surv(log(time), status) ~ 1,
dist = "logistic",
data = dat_ex531)
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Example 5.3.1

MLEs (4, logb)
[1] 5.1206418 -0.8266704
Estimated variance of(ﬁ,log@)

(Intercept) Log(scale)
(Intercept) 0.010490062 0.007837215
Log(scale) 0.007837215 0.022515937
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Example 5.3.1

MLEs of (@, b)
[1] 5.1206418 0.4375036
Estimated variance of (i, b)

[,1] [,2]
[1,] 0.010490062 0.003428809
[2,] 0.003428809 0.004309761
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Example 5.3.1

Table 4: 95% Confidence intervals for location and scale parameters

dist par est lower upper lower upper
Logistic u 5.121 4920 5.321 5.000 5.300
NA b 0.438 0.326 0.587 0.360 0.559
Gaussian . 5.195 4942 5447 5.000 5.400
NA o 0873 0676 1.127 0.709 1.109
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Example 5.3.1

e Estimate of S(80) (log-logistic distribution)
1

1+ exp [(log 80 — 1])/?)]
= 0.844

S(80; 4, b) =

» 4 =5.121 and b = 0.438
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Example 5.3.1

1.001
0.75 1
2
]
£ 0.501 ~
N
() —
log-logistic
0.25 log—normal
— PL
0.00 1
T T T T T T
0 50 100 150 200 250

time

Figure 2: Comparison of the estimates of survivor function
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Example 5.3.1

Table 5: Estimate and corresponding Wald-type confidence interval of the survival
probability S(80)

dist est lower upper

Log-logistic 0.844 0.566 0.957
Log-normal 0.824 0.667 0.924

@ Obtain LRT based 95% Cl for S(80)
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Quantiles

o General expression of pth quantile of log-lifetime (u = 5.121 and
b = 0.438)

~

yp:ﬁ—ki)wp
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Quantiles

Table 6: Estimate and confidence intervals of different quantiles

dist P w, Up se lower upper
Logistic  0.25 -1.099 4.640 0.143 NA NA
NA 0.50 0.000 5.121 0.102 NA NA
NA 0.75 1.099 5.601 0.234 NA NA
Gaussian 0.25 -0.674 4.826 0.101 NA NA
NA 0.50 0.000 5.121 0.102 NA NA
NA 0.75 0.674 5416 0.177 NA NA
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Homework

@ Analyze the locomotive control lifetimes using Weibull model and
compare the results
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Subsection 3

5.3 Comparison of distributions
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5.3 Comparison of distributions

o Let T}, be the lifetime of ith subject of the jth group (i=1,.. N,
j=1,...,m)

e Assume T7; follows a distribution of log-location-scale family with
parameters «; (scale) and j3; (shape)

@ The corresponding distribution of log-lifetime Y}, = logT}; is of a
location-scale family distribution with parameters u; (location) and b;
(scale)

u; =logay, and b; = (1/8;)
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Survivor functions

@ The survivor function of Y;; = logT};

$,(9) = So(—2)

J
@ The survivor function of T},
Sj(t) = Sg[(t/ ;)]

» Si(x) = Sy(logx)
> u; =loga;

> bj = (1/53)
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Survivor functions

@ Comparison of several normal populations is a well-known problem in
statistics, where equal population variances are assumed, and the
comparisons are performed on the basis of equality of population
means
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Quantile

@ General expression of the pth quantile of the jth population takes the
form
j=1...,m

Yjp = uj T bjwy,

» w, =S (1—p)
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Equality of two populations

@ When the scales are not equal (i.e. b; # b,), the difference between
the pth quantiles does depend on the probability p

Yip — Yop = Uy — Up + W, () —by)

@ Under the assumption of equality of the scales (i.e. b; = b,),
difference between pth (log-lifetime) quantile of a pair of populations
(say 1 and 2) is constant, i.e. it does not depend on the probability
p€(0,1)

Yip = Yop = U — U
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Equality of two populations

@ The difference between two log-lifetime quantiles can be expressed in
terms of the ratio of lifetime quantiles

Yip = Y2p = Uy — Uy
logt,, —logt,, = loga; —logay
tlp/tQp =0y /ay
@ The ratio of the pth quantiles of two lifetime distributions does not

depend on the probability p when the corresponding shape parameters
are equal (8, = f35)
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Equality of two populations

o Equality of all quantiles of two distributions, i.e.
ylp = y2p Vp € (07 1)7
corresponds to equality of two distributions, i.e.

S1(y) = Sy(y)

@ Under the assumption of common scale (shape for lifetime) parameter,
the null hypothesis of equality of two distributions can be expressed as

Hy:u;—uy=0 or Hy:(a;/ay) =1
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Equality of two populations

e Equality of two populations with survivor functions (say S; and S,)
can be expressed in terms of survivor functions

@ Since
Yip = Yop + Uy — Uy OF ty, =1, (g /y),

the corresponding survivor functions can be expressed as

S1(y +uy —uy) = Sy(y)
S (t(al/a2>) = Sy(t)

@ That is, the survivor functions for Y are translations of one another
by an amount (u; — uy) along the y-axis
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Wald-type statistic

o Data {(t;;,0

@ Two populations can be compared in terms of pth quantile
HO : ylp = y2p

@ Corresponding pivotal quantity

7 Wrp — U2p) — W1p —Y2p) N(0,1) under H,

" [Var(§1p> + Va‘r(y2p)] i

» The statistic Zp can be used to obtain confidence interval for

(Y1p — Y2p)

Md Rasel Biswas Chapter 5B

66 /91



Wald-type statistic

o To test Hy : by = by, the following pivotal quantity can be considered

b —looh.) — —1
Z = (logb, —logb,) — (logby —logh,) N(0,1) under H,
[var(log by ) + var(log by)]'/2

> The statistic Z, can be used to obtain confidence interval for (b, /b,)
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Wald-type statistic

@ When scales are equal, two populations can be compared with respect
their location parameter H : u; = uy

@ The corresponding pivotal quantity

(g — Ug) — (ug —uy)
7, = ~ N(0,1) under H,
v = Tar(a,) + var(ag)/z ~ 7 (0:1) under Hy

> The statistic Z,, can be used to obtain confidence interval for (u; — us5)
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Wald-type statistic

@ Wald statistic cannot be used to test

HO:U]_ ZUQ,blzbz
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LRT based inference

o Data {(¢ 050 =1, ,myi=1,... ,nj} and y;; = logt,;

Jis
o Different tests and confidence intervals of interest

@ Hyib = =1,

@ Confidence interval for (b, /b,)

© Equality of several location parameters when scale parameters are equal
Hy:up = =up,bp = =b,

H, :all u;'s are not equal, by = - =,

@ Confident interval for (u; — uy) when by = b,

@ Confidence interval for (y;, — y,) when by # b,
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Case 1

@ Hypothesis of interest

Hy:by = =b,, =b (say) (1)

@ Log-likelihood function

@ Contribution to log-likelihood function for the jth population

ny

Ci(u;,b;) = —r;logh; + Z [51' log fo(25) + (1 = 8;;) log Sp(2;;)

=1

>y =2005
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Case 1

@ LRT statistic

~

A =20(iy, ... Ty, by b)) — 20(iy, .. Ty, by .., D)

m?

» A~ X(2m—1) under the null hypothesis defined in Equation 1
@ MLEs

> (ﬂj,?)j)/ = arg maxg Ej(uj,bj% j=1,...,m

~ ~
~

> (U, .ees Uy, b, ..., b) = arg maxg (g, ..., Uy, b, ..., b)
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Case 2

@ To obtain confidence interval of (b, /b,), consider

e 100(1 — a)% confidence interval of (b;/by) can be obtained from the
range of a values that satisfy

where the LRT statistic

A(a) = 28@17 732»?71:?32) - 2€(a15 Ty, a7727772>

> (4;,b;) =arg maxg £;(u;,b;), j=1,2

> (ly, Uy, by)" = arg maxg £(uy, Uy, aby, by)
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Case 3

o Test equality of several location parameters when scale parameters are
equal

Hy:uy=-=u,, by=-=b

m? m

H, :all u;'s are not equal, by = - =10,
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Case 3

e MLEs
» under Hy, (u*,b") = arg maxg {(u,...,u,b,...,b)
> under Hy, (fy,...,4,,,b) = arg maxg £(Uy, .., Upy, b, ..., b)

) m?

@ LRT statistic

~

A =20(Gy, ..., T, b, ..., b) — 20(u*, ..., u*,b*, ..., b¥)

» Under the null hypothesis, A follows X(Z 1) distribution

m—
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Case 4

e To obtain a confidence interval of (u; — uy) when b; = b,, consider
the null and alternative hypothesis

Ho:ul_U2:5,b1:b2 VS Hlul_U27é67b1:b2

o LRT statistic

A(a) = 26(1’11,’&2,?7,?)) - 26(“’3 + 57 UE, b*a b*)

» under Hy, (u*,b") = arg maxg ¢(u,u,b,b)

~

» under Hy, (fiy,1y,b) = arg maxg £(uy, ug, b, b)

@ 100(1 — «) confidence interval for (u; — uy) can be obtained from
the set of J values that satisfy A(9) < X(21) o
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Case b

® When b; # by, to obtain confidence interval for (y;,, — ys,) consider
the following hypothesis

Hy: 41, =Yg =A = Hy:up —uy=A+ (by—byw,

> wp = 551(1 _p>
o LRT statistic

A(A) = 26(1217@2’2717?’2) - 25(617"7275172’2)
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Case b

@ under H,

(alv ﬂQazlv’BQ) = arg maX@ E(UZ + A + <b2 - bl)wp7u27 b17 b2>

@ under H;

(7117@27527271) = arg maxXg £y, ug, by, by)

@ 100(1 — «) confidence interval for (y,, — ys,,) can be obtained from

the set of A values that satisfy A(A) < x7),,
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Comparison of Weibull or extreme value distributions

o Assume T);; ~ Weibull(a;, 8;) (j=1,...,m, i=1,...,n;)

» Data {(t;;,0

ji),j: 1,....m, 1= ]_7_”7714}

Ju J

@ Survivor function of Weibull distribution

S;(t) = exp [ — (t/cr;)"]
@ Survivor function of extreme value distribution
5)(y) = exp [ — et

J

> u; =loga;

> b; = l/ﬁj
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Example 5.4.1

@ Data of the following table are on the time to breakdown of electrical
insulating fluid subject to a constant voltage stress in a lifetest
experiment

Table 1.1. Times to Breakdown (in minutes) at Each of Seven Voltage Levels

Voltage Level (kV) n Breakdown Times

26 3 5.79, 1579.52, 2323.7

28 5 68.85, 426.07, 110.29, 108.29, 1067.6

30 11 17.05, 22.66, 21.02, 175.88, 139.07, 144.12, 20.46, 43.40,
194.90, 47.30, 7.74

32 15 0.40, 82.85, 9.88, 89.29, 215.10, 2.75, 0.79, 15.93, 3.91,
0.27, 0.69, 100.58, 27.80, 13.95, 53.24

34 19 0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33.91,
32.52, 3.16, 4.85, 2.78, 4.67, 1.31, 12.06, 36.71, 72.89

36 15 1.97, 0.59, 2.58, 1.69, 2.71, 25.50, 0.35, 0.99, 3.99, 3.67,
2.07, 0.96, 5.35, 2.90, 13.77

38 8 0.47, 0.73, 1.40, 0.74, 0.39, 1.13, 0.09, 2.38
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Example 5.4.1

Table 7: Estimate of voltage-specific extreme value models

voltage u; =+ se(u;) ?)j + se(?)j)

26 6.862 4-1.104 1.834 4-0.885
28 5.865 £ 0.486 1.022 4 0.474
30 4.351 4 0.302  0.944 4-0.303
32 3.256 £ 0.486 1.781 4 0.254
34 2,503 £0.315 1.297 £ 0.211
36 1.457 £0.309 1.125 £ 0.221
38 0.001 +0.273  0.734 4 0.367
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Example 5.4.1
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Figure 3: Comparison of estimated survivor function
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LRT (Case 1)

@ Null hypothesis
Hy:b, = =by

@ LRT statistic

U
N

A =20(iy, ..., Tim,byy e b)) — 20(Tiy, ..., i, b, ..,
= 2(—132.181) — 2(—136.578)
— 8.794

> p-value
Pr(X(ZG) >A)=0.185

It does not provide enough evidence to reject the null hypothesis of
equality of the scale parameters.
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Confidence interval of (b,/b,) (Case 2)

o Wald-type

(logb, — logb,) + Z1-a/2 se(log b, — logb,)
(’61/’62) @izl—a/z se(logi)l—logaz)

(1.834/1.022) e* (1:96)(0.624)
0.529 < (by /by) < 6.095

» Similarly confidence intervals for (b;/b;/) j > j' can be obtained
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Confidence interval of (b;/b,) (Case 2)

6:7 H |

57 H |

5:6 ———

474 vl {
4:6 4 —ee——

4:5 f—————|

3:74 — |

3:6 ————

comparison
N
~
1

FARYA
bi/by

Figure 4: Estimate and 95% confidence interval of pair-wise comparisons of scale
parameters (b;/b;)



Case 3

@ Equality of all location parameters when scales are equal

Hy:u, = =u,, b =-=b

m?

o LRT statistic

~

A =20(Gy, ..., Ty, by, b) — 20(u*, ... ut, b, . bY)

= 2(—136.578) — 2(—176.584)
= 80.013

> p-value P(X(Ql) > 80.013) < .001 — There is a strong evidence
against the assumption of equality of m location parameters
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Case 4

e Wald-type confidence interval of (u; — u,)

(Uy — Us) £ 21_o 0 s€(Uy — Us)
(6.862 — 4.351) + (1.96)(1.206)
—1.367 < (u; —uy) < 3.361

» There is no significant difference between u; and u,

Md Rasel Biswas Chapter 5B 87/91



5:7 H e
5:6 9 A
4:7 4 ' e
4:6 }—:—o—{
4:5 e
374 1 ——
364 | ———ee——
S 354 — |
2 5] ——
8 2:7 ! —e——
£ 2:6 ! ——e—
3 255 ! e

|

-
i
1

PR S

[
.
541
.

Figure 5: Estimate and 95% confidence interval of pair-wise comparisons of
location parameters (u; — u;)
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Case b

@ General expression of pth quantile of the group j

. :uj+bw j:1,...,m

Yip ivp
o Difference of pth quantile between groups 1 and 2
ylp - y2p = U — Uy + (bl - b2>wp

> 95% confidence interval for the difference of median between groups 1
and 2 ~ R ~ ~
Yim — Yom £ 21-ay25€(U1m — Yom)

(6.19 — 5.491) + (1.96)(1.291)
—1.831 < (Y1m, — Yom) < 3.231
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Figure 6: Estimate and 95% confidence interval of pair-wise comparisons of
medians (y; 5 — Yy 5)
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Homework

@ Analyse the breakdown time data using log-logistic and log-normal
distributions and compare the results with that of Weibull distribution
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