Chapter 5A (AST405) Lifetime data analysis

Md Rasel Biswas

Lecture Outline

- 1 5. Inference Procedures for Log-location-scale Distributions
 - 5.1 Inference for location-scale distributions
 - 5.2 Weibull and extreme-value distributions

Section 1

5. Inference Procedures for Log-location-scale Distributions

Subsection 1

5.1 Inference for location-scale distributions

5.1 Inference for location-scale distributions

Location-scale distributions have survivor function of the form

$$S(y; u, b) = S_0 \left(\frac{y - u}{b}\right) - \infty < y < \infty$$
(1)
$$-\infty < u < \infty \text{ and } b > 0$$

• Log-lifetime $Y = \log T$ has a location-scale distribution with survivor function of the form Equation 1

5.1 Inference for location-scale distributions

 $\bullet\,$ Lifetime variable T has a log-location-scale distribution with the survivor function

$$\begin{split} S_T(t;\alpha,\beta) &= S_0 \bigg(\frac{\log t - u}{b} \bigg) \\ &= S_0^\star \Big[(t/\alpha)^\beta \Big] \end{split}$$

•
$$S_0^\star(w) = S_0(\log w)$$
 for $w > 0$

•
$$u = \log \alpha$$

$$\blacktriangleright \ b = (1/\beta)$$

(2)

5.1 Inference for location-scale distributions

- Lifetime and log-lifetime distributions
 - exponential, Weibull, log-logistic, log-normal, etc.
 - extreme-value, logistic, normal, etc.

Likelihood based methods

- \bullet Goal is to estimate the parameters (u,b) or (α,β)
- Some advantages of estimating (u, b)
 - \blacktriangleright Log-likelihood function for (u,b) is more closer to quadratic than that for (α,β)
 - ▶ Large sample normal approximations for (\hat{u}, \hat{b}) tend to be more accurate that those for $(\hat{\alpha}, \hat{\beta})$
- A better choice of parameters for obtaining MLEs and implementing normal approximations is $(u, \log b)$, which is used by most statistical software

Likelihood function

• For a censored sample

$$\{(t_i,\delta_i),\;i=1,\ldots,n\},$$

the likelihood function

$$L(u,b) = \prod_{i=1}^{n} \left[\frac{1}{b} f_0\left(\frac{y_i - u}{b}\right) \right]^{\delta_i} \left[S_0\left(\frac{y_i - u}{b}\right) \right]^{1 - \delta_i}$$
(3)

Likelihood function

• The standardized variable

$$z_i = \frac{y_i - u}{b}$$

• The likelihood function

$$L(u,b) = \prod_{i=1}^{n} \left[\frac{1}{b} f_0(z_i) \right]^{\delta_i} \left[S_0(z_i) \right]^{1-\delta_i}$$

(4)

Likelihood function

• The corresponding log-likelihood function

$$\begin{split} \ell(u,b) &= -r \log b + \sum_{i=1}^{n} \left[\delta_i \log f_0(z_i) + (1 - \delta_i) \log S_0(z_i) \right] \\ &= -r \log b + \sum_{i=1}^{n} \ell_i(z_i, \delta_i) \end{split} \tag{5}$$

$$\blacktriangleright \ r = \sum_{i=1}^n \delta_i$$

Score functions

$$\begin{split} \ell(u,b) &= -r\log b + \sum_{i=1}^n \ell_i(z_i,\delta_i) \\ &= -r\log b + \sum_{i=1}^n \left[\delta_i \log f_0(z_i) + (1-\delta_i)\log S_0(z_i) \right] \end{split}$$

$$\begin{split} \frac{\partial \ell(u,b)}{\partial u} &= \sum_{i=1}^{n} \frac{\partial \ell_i(z_i,\delta_i)}{\partial z_i} \times \frac{\partial z_i}{\partial u} \\ &= \sum_{i=1}^{n} \frac{\partial \ell_i(z_i,\delta_i)}{\partial z_i} \times \left(\frac{-1}{b}\right) \\ &= -\frac{1}{b} \sum_{i=1}^{n} \left[\delta_i \frac{\partial \log f_0(z_i)}{\partial z_i} + (1-\delta_i) \frac{\partial \log S_0(z_i)}{\partial z_i} \right] \end{split}$$

Score functions

$$\ell(u,b) = -r\log b + \sum_{i=1}^n \left[\delta_i \log f_0(z_i) + (1-\delta_i)\log S_0(z_i) \right]$$

$$\begin{split} \frac{\partial \ell(u,b)}{\partial b} &= -\frac{r}{b} + \sum_{i=1}^{n} \frac{\partial \ell_{i}(z_{i},\delta_{i})}{\partial z_{i}} \times \frac{\partial z_{i}}{\partial b} \\ &= -\frac{r}{b} + \sum_{i=1}^{n} \frac{\partial \ell_{i}(z_{i},\delta_{i})}{\partial z_{i}} \times \left(\frac{-z_{i}}{b}\right) \\ &= -\frac{r}{b} - \frac{1}{b} \sum_{i=1}^{n} z_{i} \bigg[\delta_{i} \frac{\partial \log f_{0}(z_{i})}{\partial z_{i}} + (1-\delta_{i}) \frac{\partial \log S_{0}(z_{i})}{\partial z_{i}} \bigg] \end{split}$$

Hessian matrix

$$\frac{\partial \ell(u,b)}{\partial u} = -\frac{1}{b} \sum_{i=1}^{n} \left[\delta_i \, \frac{\partial \log f_0(z_i)}{\partial z_i} + (1-\delta_i) \, \frac{\partial \log S_0(z_i)}{\partial z_i} \right]$$

$$\begin{split} \frac{\partial^2 \ell(u,b)}{\partial u^2} &= \frac{\partial}{\partial u} \bigg[\frac{\partial \ell(u,b)}{\partial u} \bigg] \\ &= \frac{1}{b^2} \sum_{i=1}^n \bigg[\delta_i \, \frac{\partial^2 \log f_0(z_i)}{\partial z_i^2} + (1-\delta_i) \, \frac{\partial^2 \log S_0(z_i)}{\partial z_i^2} \bigg] \end{split}$$

Hessian matrix

$$\frac{\partial \ell(u,b)}{\partial b} = -\frac{r}{b} - \frac{1}{b} \sum_{i=1}^{n} z_i \bigg[\delta_i \, \frac{\partial \log f_0(z_i)}{\partial z_i} + (1-\delta_i) \, \frac{\partial \log S_0(z_i)}{\partial z_i} \bigg]$$

$$\begin{split} \frac{\partial^2 \ell(u,b)}{\partial b^2} &= \frac{r}{b^2} + \frac{2}{b^2} \sum_{i=1}^n z_i \bigg[\delta_i \, \frac{\partial \log f_0(z_i)}{\partial z_i} + (1-\delta_i) \, \frac{\partial \log S_0(z_i)}{\partial z_i} \bigg] \\ &+ \frac{1}{b^2} \sum_{i=1}^n z_i^2 \bigg[\delta_i \, \frac{\partial^2 \log f_0(z_i)}{\partial z_i^2} + (1-\delta_i) \, \frac{\partial^2 \log S_0(z_i)}{\partial z_i^2} \bigg] \end{split}$$

Hessian matrix

$$\begin{split} \frac{\partial \ell(u,b)}{\partial u} &= -\frac{1}{b} \sum_{i=1}^{n} \left[\delta_i \, \frac{\partial \log f_0(z_i)}{\partial z_i} + (1-\delta_i) \, \frac{\partial \log S_0(z_i)}{\partial z_i} \right] \\ \frac{\partial^2 \ell(u,b)}{\partial u \, \partial b} &= \frac{1}{b^2} \sum_{i=1}^{n} \left[\delta_i \, \frac{\partial \log f_0(z_i)}{\partial z_i} + (1-\delta_i) \, \frac{\partial \log S_0(z_i)}{\partial z_i} \right] \\ &\quad + \frac{1}{b^2} \sum_{i=1}^{n} z_i \left[\delta_i \, \frac{\partial^2 \log f_0(z_i)}{\partial z_i^2} + (1-\delta_i) \, \frac{\partial^2 \log S_0(z_i)}{\partial z_i^2} \right] \end{split}$$

Score function and information matrix

$$U(u,b) = egin{bmatrix} rac{\partial \ell(u,b)}{\partial u} \ rac{\partial \ell(u,b)}{\partial b} \end{bmatrix}$$

$$I(u,b) = -H(u,b) = -\begin{bmatrix} \frac{\partial^2 \ell(u,b)}{\partial u^2} & \frac{\partial^2 \ell(u,b)}{\partial u \partial b} \\ \frac{\partial^2 \ell(u,b)}{\partial b \partial u} & \frac{\partial^2 \ell(u,b)}{\partial b^2} \end{bmatrix}$$

Statistical inference

MLE

$$(\hat{u},\hat{b})' = \arg \max_{(u,b)' \in \Theta} \ell(u,b)$$

• Variance-covariance matrix

$$\mathrm{var}(\hat{u},\hat{b}) = \left[I(\hat{u},\hat{b})\right]^{-1} = \hat{V}$$

• Sampling distribution

$$\begin{pmatrix} \hat{u} \\ \hat{b} \end{pmatrix} \sim \mathcal{N}_2 \left(\begin{bmatrix} u \\ b \end{bmatrix}, \left[I(\hat{u}, \hat{b}) \right]^{-1} \right)$$

Wald type CIs

- \bullet For a large $n,~(\hat{u},\hat{b})'$ follows a bivariate normal distribution with mean (u,b)' and variance matrix \hat{V}
- \bullet Standard error of \hat{u} and \hat{b} can be obtained from the diagonal elements of \hat{V}

$$se(\hat{u})=\hat{V}_{11}^{1/2}$$
 and $se(\hat{b})=\hat{V}_{22}^{1/2}$

Wald type CIs

• Following pivotal quantities follow standard normal distributions

$$Z_1 = \frac{\hat{u} - u}{se(\hat{u})}, \qquad Z_2 = \frac{\hat{b} - b}{se(\hat{b})}, \qquad Z_2' = \frac{\log \hat{b} - \log b}{se(\log \hat{b})}$$

•
$$se(\log \hat{b}) = se(\hat{b})/\hat{b}$$

• (1-p)100% confidence intervals

$$\begin{split} & \hat{u} \pm z_{1-p/2} \, se(\hat{u}) \\ & \hat{b} \pm z_{1-p/2} \, se(\hat{b}) \\ & \hat{b} \exp\{\pm z_{1-p/2} \, se(\log \hat{b})\} \end{split}$$

Quantiles

• pth quantile of log lifetime Y

$$\begin{split} P(Y \leq y_p) &= p \ \Rightarrow \ S_0 \Big(\frac{y_p - u}{b} \Big) = 1 - p \\ & \frac{y_p - u}{b} = S_0^{-1} (1 - p) \\ & y_p = u + b w_p \end{split}$$

 $\blacktriangleright \ w_p = S_0^{-1}(1-p) = F_0^{-1}(p) \to p {\rm th}$ quantile of $S_0(z),$ the standardize distribution

Quantiles

• Estimate of pth quantile and the corresponding standard error

$$\begin{split} \hat{y}_p &= \hat{u} + \hat{b} w_p \\ se(\hat{y}_p) &= \sqrt{\hat{V}_{11} + w_p^2 \hat{V}_{22} + 2 w_p \hat{V}_{12}} \end{split}$$

• Pivotal quantity

$$Z_p = \frac{\hat{y}_p - y_p}{se(\hat{y}_p)} \sim \mathcal{N}(0, 1)$$

• (1-q)100% confidence interval for y_p

$$\hat{y}_p \pm z_{1-q/2} \, se(\hat{y}_p)$$

- Normal approximation based confidence intervals could be inaccurate for small samples
- An alternative to normal approximation, bootstrap simulations can be used to estimate the distributions of pivots
- All these methods can perform poorly in small samples with heavy censoring
- Implementation of likelihood ratio based confidence intervals is relatively complicated, but LRT based CI often performs better in small and medium-size samples

 \bullet To test the hypothesis $H_0: u=u_0,$ the following likelihood ratio test statistic can be used

$$\Lambda_1(u_0)=2\ell(\hat{u},\hat{b})-2\ell(u_0,\tilde{b}(u_0))$$

MLEs

$$\begin{split} &(\hat{u},\hat{b})' = \arg \max_{(u,b)'\in\Theta}\ell(u,b) \;\; \text{unrestricted} \\ &\tilde{b}(u_0) = \arg \max_{b\in\Theta_1}\ell(u_0,b) \;\; \text{under} \; H_0 \end{split}$$

- Under $H_0: u = u_0$, asymptotically $\Lambda_1(u_0) \sim \chi^2_{(1)}$
 - \blacktriangleright Approximate two-sided (1-p)100% confidence interval for u can be obtained as the set of values of u_0 for which

$$\Lambda_1(u_0) \leq \chi^2_{(1),1-p}$$

Homework - 1

 $\bullet\,$ Obtain the expression of likelihood ratio test statistic based confidence interval for the scale parameter b

 $\bullet\,$ The $p{\rm th}$ quantile of location-scale distribution can be expressed as

$$y_p = u + w_p b$$
, where $w_p = S_0^{-1}(1-p)$

• To obtain confidence intervals for a quantile, consider the null hypothesis

$$H_0: y_p = y_{p_0}$$

• The corresponding likelihood ratio test statistic

$$\Lambda(y_{p_0}) = 2\ell(\hat{u}, \hat{b}) - 2\ell(\tilde{u}, \tilde{b}) \tag{6}$$

Steps

• The estimates \hat{u} and \hat{b} are MLEs under H_1

$$(\hat{u},\hat{b})' = \arg \max_{(u,b)' \in \Theta} \ell(u,b)$$

• Steps to obtain MLEs \tilde{u} and \tilde{b} , under $H_0: y_p = y_{p_0}$ • Under $H_0, y_{p_0} = u + w_p b \Rightarrow u = y_{p_0} - b w_p$ • $\tilde{b} = \arg \max_{b \in \Theta} \ell(y_{p_0} - w_p b, b)$ • $\tilde{u} = y_{p_0} - w_p \tilde{b}$ • (1 - q)100% Confidence interval for y_p can be obtained from the set of y_{p_0} values such that

$$\Lambda(y_{p_0}) \leq \chi^2_{(1),1-q}$$

• To obtain confidence interval for $S(y_0)$, consider the null hypothesis

$$H_0: S(y_0) = s_0$$

• The same likelihood ratio statistic Equation 6 can be used to test the hypothesis

$$\Lambda(s_0) = 2\ell(\hat{u},\hat{b}) - 2\ell(\tilde{u},\tilde{b})$$

Steps

• Steps for obtaining MLEs \tilde{u} and \tilde{b} under H_0 1 Under $H_0:S(y_0)=s_0$

$$S(y_0) = S_0 \Big(\frac{y_0 - u}{b} \Big) = s_0 \ \, \Rightarrow \ \, u = y_0 - S_0^{-1}(s_0) b$$

$$\Lambda(s_0) \le \chi^2_{(1),1-p} \tag{7}$$

- The likelihood ratio procedure can provide quite accurate confidence intervals when the number of failures is about 20 or more
- Two-sided intervals perform better than one-sided intervals as the former giving more closer to nominal coverage than the other

Subsection 2

5.2 Weibull and extreme-value distributions

5.2 Weibull and extreme-value distributions

• The pdf of Weibull distribution

$$f(t;\alpha,\beta) = \frac{\beta}{\alpha} \left(\frac{t}{\alpha}\right)^{\beta-1} \exp\left[-\left(t/\alpha\right)^{\beta}\right]$$
(8)

 $\blacktriangleright \ \alpha > 0$ and $\beta > 0$ are scale and shape parameters, respectively

5.2 Weibull and extreme-value distributions

• The pdf of extreme-value distribution

$$f(y;u,b) = \frac{1}{b} \exp\left[(y-u)/b\right] \exp\left[-e^{(y-u)/b}\right]$$
(9)
$$= \frac{1}{b} f_0\left(\frac{y-u}{b}\right)$$
(10)

• $u = \log \alpha$

$$\blacktriangleright \ b = (1/\beta)$$

 Extreme-value distribution is used to make inferences about Weibull distribution

Likelihood based inference procedures

• Censored sample

$$\left\{(t_i,\delta_i),\ i=1,\ldots,n\right\}$$

• Define

$$y_i = \log t_i \ \text{ and } \ z_i = (y_i - u)/b$$

Likelihood based inference procedures

• General expression of likelihood function

$$\ell(u,b) = -r\log b + \sum_{i=1}^n \left[\delta_i \log f_0(z_i) + (1-\delta_i)\log S_0(z_i) \right]$$

• For extreme-value distribution

$$\begin{split} S_0(z) &= \exp(-e^z) \\ f_0(z) &= -\frac{d}{dz} S_0(z) = \exp(z-e^z) \end{split}$$
Likelihood based inference procedures

$$\ell(u,b) = -r\log b + \sum_{i=1}^n \left[\delta_i \log f_0(z_i) + (1-\delta_i)\log S_0(z_i) \right]$$

Log-likelihood function for EV distribution

$$\ell(u,b) = -r\log b + \sum_{i=1}^{n} \left(\delta_{i} z_{i} - e^{z_{i}}\right)$$
(11)

$$\blacktriangleright \ r = \sum_i \delta_i$$

• This log-likelihood function $\ell(u,b)$ is easily maximized to give \hat{u},\hat{b} (using software)

Score functions

- The general expression for location-scale family can also help us find the expressions for the first (and also second) derivatives of $\ell(u, b)$.
- General expressions

$$\begin{split} \frac{\partial \ell(u,b)}{\partial u} &= -\frac{1}{b} \sum_{i=1}^{n} \left[\delta_i \, \frac{\partial \log f_0(z_i)}{\partial z_i} + (1-\delta_i) \, \frac{\partial \log S_0(z_i)}{\partial z_i} \right] \\ \frac{\partial \ell(u,b)}{\partial b} &= -\frac{r}{b} - \frac{1}{b} \sum_{i=1}^{n} z_i \bigg[\delta_i \, \frac{\partial \log f_0(z_i)}{\partial z_i} + (1-\delta_i) \, \frac{\partial \log S_0(z_i)}{\partial z_i} \bigg] \end{split}$$

Score functions

• For extreme-value distribution

$$\begin{split} &\frac{\partial \log f_0(z)}{\partial z} = \frac{\partial}{\partial z} \log \left\{ \exp(z - e^z) \right\} = 1 - e^z \\ &\frac{\partial \log S_0(z)}{\partial z} = \frac{\partial}{\partial z} \log \left\{ \exp(-e^z) \right\} = -e^z \end{split}$$

• These gives straightforward expressions for the first and second derivatives of $\ell(u,b)$, which can be used to find MLEs, \hat{u},\hat{b}

Hessian matrix Hessian matrix

 $\bullet\,$ Hessian matrix at MLEs \hat{u} and \hat{b}

$$H(\hat{u},\hat{b}) = -\frac{1}{\hat{b}^2} \begin{bmatrix} r & \sum_{i=1}^{n} \hat{z}_i e^{\hat{z}_i} \\ \sum_{i=1}^{n} \hat{z}_i e^{\hat{z}_i} & r + \sum_{i=1}^{n} \hat{z}_i^2 e^{\hat{z}_i} \end{bmatrix}$$

Proof

• For extreme-value distribution

$$\frac{\partial^2 \ell(u,b)}{\partial u^2} = \frac{1}{b^2} \sum_{i=1}^n \left[\delta_i \, \frac{\partial^2 \log f_0(z_i)}{\partial z_i^2} + (1-\delta_i) \, \frac{\partial^2 \log S_0(z_i)}{\partial z_i^2} \right] = -\frac{1}{b^2} \sum_{i=1}^n \epsilon_i \left[\delta_i \, \frac{\partial^2 \log f_0(z_i)}{\partial z_i^2} + (1-\delta_i) \, \frac{\partial^2 \log S_0(z_i)}{\partial z_i^2} \right] = -\frac{1}{b^2} \sum_{i=1}^n \epsilon_i \left[\delta_i \, \frac{\partial^2 \log f_0(z_i)}{\partial z_i^2} + (1-\delta_i) \, \frac{\partial^2 \log S_0(z_i)}{\partial z_i^2} \right] = -\frac{1}{b^2} \sum_{i=1}^n \epsilon_i \left[\delta_i \, \frac{\partial^2 \log f_0(z_i)}{\partial z_i^2} + (1-\delta_i) \, \frac{\partial^2 \log S_0(z_i)}{\partial z_i^2} \right] = -\frac{1}{b^2} \sum_{i=1}^n \epsilon_i \left[\delta_i \, \frac{\partial^2 \log f_0(z_i)}{\partial z_i^2} + (1-\delta_i) \, \frac{\partial^2 \log S_0(z_i)}{\partial z_i^2} \right] = -\frac{1}{b^2} \sum_{i=1}^n \epsilon_i \left[\delta_i \, \frac{\partial^2 \log f_0(z_i)}{\partial z_i^2} + (1-\delta_i) \, \frac{\partial^2 \log S_0(z_i)}{\partial z_i^2} \right] = -\frac{1}{b^2} \sum_{i=1}^n \epsilon_i \left[\delta_i \, \frac{\partial^2 \log f_0(z_i)}{\partial z_i^2} + (1-\delta_i) \, \frac{\partial^2 \log S_0(z_i)}{\partial z_i^2} \right] = -\frac{1}{b^2} \sum_{i=1}^n \epsilon_i \left[\delta_i \, \frac{\partial^2 \log f_0(z_i)}{\partial z_i^2} + (1-\delta_i) \, \frac{\partial^2 \log S_0(z_i)}{\partial z_i^2} \right] = -\frac{1}{b^2} \sum_{i=1}^n \epsilon_i \left[\delta_i \, \frac{\partial^2 \log f_0(z_i)}{\partial z_i^2} + (1-\delta_i) \, \frac{\partial^2 \log S_0(z_i)}{\partial z_i^2} \right]$$

where

$$\frac{\partial^2 \log f_0(z)}{\partial z^2} = \frac{\partial}{\partial z} \{1 - e^z\} = -e^z = \frac{\partial^2 \log S_0(z)}{\partial z^2}$$

Covariance matrix

 \bullet Observed information matrix at MLEs \hat{u} and \hat{b}

$$\begin{split} I(\hat{u},\hat{b}) &= -H(\hat{u},\hat{b}) \\ &= \frac{1}{\hat{b}^2} \begin{bmatrix} r & \sum_{i=1}^n \hat{z}_i e^{\hat{z}_i} \\ \sum_{i=1}^n \hat{z}_i e^{\hat{z}_i} & r + \sum_{i=1}^n \hat{z}_i^2 e^{\hat{z}_i} \end{bmatrix} \end{split}$$

 \bullet Covariance matrix of $(\hat{u},\hat{b})'$

$$\hat{V} = \left[I(\hat{u}, \hat{b})\right]^{-1} \tag{15}$$

Covariance matrix

• MLEs of α and β (Weibull model parameters)

$$\hat{lpha}=e^{\hat{u}}$$
 and $\hat{eta}=1/\hat{b}$

 \bullet Covariance matrix of $(\hat{\alpha},\hat{\beta})'$ (using multivariate delta method)

 $\operatorname{var}(\hat{\alpha},\hat{\beta})=G\,\hat{V}\,G'$

where

$$G = \begin{bmatrix} \frac{\partial g_1(u,b)}{du} & \frac{\partial g_1(u,b)}{\partial b} \\ \frac{\partial g_2(u,b)}{\partial u} & \frac{\partial g_2(u,b)}{\partial b} \end{bmatrix} = \begin{bmatrix} e^{\hat{u}} & 0 \\ 0 & -\frac{1}{\hat{b}^2} \end{bmatrix}$$

$$\label{eq:alpha} \begin{tabular}{lll} \bullet & \alpha = g_1(u,b) = e^u \\ \bullet & \beta = g_2(u,b) = (1/b) \\ \end{tabular}$$

 \bullet Wald-type statistics based 100(1-p)% Cl for u and b

$$\begin{split} &\hat{u} \pm z_{1-p/2} \; se(\hat{u}) \\ &\hat{b} \pm z_{1-p/2} \; se(\hat{b}) \\ &\hat{b} \exp\left[\; \pm \; z_{1-p/2} \; se(\log \hat{b}) \right] \end{split}$$

CI for (u, b) (LRT based)

• Log-likelihood function corresponding to $H_0: b = b_0$ is (from Equation 11)

$$\ell(u,b_0) = -r\log b_0 + \sum_{i=1}^n \left[\delta_i\left(\frac{y_i-u}{b_0}\right) - e^{(y_i-u)/b_0}\right]$$

 $\bullet \ \operatorname{MLE} \ \mathrm{of} \ u \ \mathrm{under} \ H_0: b = b_0$

$$\begin{split} \frac{\partial \ell(u, b_0)}{\partial u} \bigg|_{u = \tilde{u}} &= 0 \quad \Rightarrow \quad -\frac{1}{b_0} \Big[r - \sum_{i=1}^n e^{(y_i - \tilde{u})/b_0} \Big] = 0 \\ &\Rightarrow \quad \tilde{u}(b_0) = b_0 \log \left[\frac{1}{r} \sum_{i=1}^n e^{y_i/b_0} \right] \end{split}$$

CI for (u, b) (LRT based)

LRT statistics

$$\Lambda(b_0)=2\ell(\hat{u},\hat{b})-2\ell(\tilde{u}(b_0),b_0)$$

• 100(1-p)% Cl for b is defined by the set of b_0 values such that

$$\Lambda_1(b_0) \leq \chi^2_{(1),1-p}$$

• Similarly, confidence interval for *u* can be obtained using the corresponding LRT statistics (Homework)

CI for quantiles

• The $p{\rm th}$ quantile of $Y\sim EV(u,b)$

$$S(y_p) = S_0 \left(\frac{y_0 - u}{b} \right) = (1 - p)$$
(16)

$$\exp\left[-\exp\left(\frac{y_p - u}{b}\right)\right] = (1 - p) \tag{17}$$

$$\frac{y_p - u}{b} = \log\left[-\log(1 - p)\right] = S_0^{-1}(1 - p) = w_p$$
(18)

$$y_p = u + w_p \, b \tag{19}$$

CI for quantiles

CI for quantiles (Wald)

• The estimate of *p*th quantile

$$\hat{y}_p = \hat{u} + w_p \hat{b}$$

• Standard error of \hat{y}_p (using the multivariate delta method)

$$\operatorname{var}(\hat{y}_p) = \begin{bmatrix} 1 & w_p \end{bmatrix} \hat{V} \begin{bmatrix} 1 \\ w_p \end{bmatrix} = \hat{V}_{11} + \hat{V}_{22}w_p^2 + 2\hat{V}_{12}w_p$$

 \bullet Large sample based 100(1-q)% confidence interval for y_p

$$\hat{y}_p \pm z_{1-q/2} \; se(\hat{y}_p)$$

• Find the 100(1-q)% confidence interval for t_p

CI for quantiles

CI for quantiles (LRT)

 $\bullet\,$ To obtain LRT statistic based confidence interval for the quantile $y_p,$ consider the following null hypothesis

$$H_0: y_p = y_{p_0}$$

• The corresponding LRT statistic

$$\Lambda(y_{p_0}) = 2\ell(\hat{u},\hat{b}) - 2\ell(\tilde{u},\tilde{b})$$

- The procedure of obtaining parameter estimates \tilde{u} and \tilde{b} (under H_0) is explained in Section 28)
- LRT statistic based (1-q)100% confidence interval for y_p can be obtained from the set of y_{p_0} values such that

$$\Lambda(y_{p_0}) \leq \chi^2_{(1),1-q}$$

CI for $S(\cdot)$ (Wald)

• To obtain confidence interval for survival probability

$$S(y_0) = S_0 \Big(\frac{y_0 - u}{b} \Big) = \exp \Big[- \exp \Big(\frac{y_0 - u}{b} \Big) \Big]$$

• We can defined

$$\psi = S_0^{-1} \Big(S(y_0) \Big) = \log \big[-\log \big(S(y_0) \big) \big] = \frac{y_0 - u}{b}$$

MLE and SE

$$\begin{split} \hat{\psi} &= \frac{y_0 - \hat{u}}{\hat{b}} \\ \mathrm{var}(\hat{\psi}) &= a' \hat{V} a = \begin{bmatrix} -1/\hat{b} & -\hat{\psi}/b \end{bmatrix} \begin{bmatrix} \hat{V}_{11} & \hat{V}_{12} \\ \hat{V}_{21} & \hat{V}_{22} \end{bmatrix} \begin{bmatrix} -1/\hat{b} \\ -\hat{\psi}/b \end{bmatrix} \end{split}$$

CI for $S(\cdot)$ (Wald)

•
$$(1-p)100\%$$
 Cl for ψ
 $\hat{\psi} - se(\hat{\psi}) z_{1-p2} < \psi \le \hat{\psi} + se(\hat{\psi}) z_{1-p/2}$
 $L < \psi \le U$

 \bullet Confidence interval for ${\cal S}(y_0)$

$$\begin{split} L < \log \left[- \log \left(S(y_0) \right) \right] \leq U \\ \exp \left[- \exp(U) \right] < S(y_0) \leq \exp \left[- \exp(L) \right] \end{split}$$

CI for $S(\cdot)$ (LRT)

 \bullet Consider the null hypothesis $H_0: S(y_0) = s_0,$ where

$$S(y_0) = \exp\left[-\exp\left(\frac{y_0-u}{b}\right)\right]$$

• The (1-p)100% confidence interval for $S(y_0)$ can be defined as the set of s_0 values such that $\Lambda(s_0) \leq \chi^2_{(1),1-p}$, where

$$\Lambda(s_0) = 2\ell(\hat{u},\hat{b}) - 2\ell(\tilde{u},\tilde{b})$$

▶ The procedure of obtaining parameter estimates \tilde{u} and \tilde{b} (under H_0) is explained in Section 30)

- Leukemia remission time data were given in Example 1.1.7 and used as an example for the non-parametric methods (e.g. Kaplan-Meier method) described in Chapter 3
- Two groups of patients (6MP and placebo), each group has 21 patients, were followed up to observed either remission or censoring times (in weeks)

Remission time data

glimpse(gehan65)

Rows: 42

Columns: 3

```
$ time <dbl> 6, 6, 6, 6, 7, 9, 10, 10, 11, 13, 16, 17, 19, 20, 22
$ status <dbl> 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0
$ drug <chr> "6-MP", "6-MP"
```

drug	status	n
6-MP	0	12
6-MP	1	9
placebo	1	21

• Each group has 21 subjects, and all subjects of the placebo group were failed (end of remission) and drug group (6MP) has 12 censored times

- Two separate Weibull distributions are assumed for the failure times of two treatment groups, e.g.
 - ▶ 6MP group:

$$T \sim \mathsf{Weibull}(\alpha_1,\beta_1), \ Y = \log T \sim EV(u_1,b_1)$$

Placebo group:

$$T \sim \mathsf{Weibull}(\alpha_2,\beta_2), \ Y = \log T \sim EV(u_2,b_2)$$

• Objectives: Drawing inference about the parameters

Observed data

$$\left\{(t_i,\delta_i), i=1,\ldots,n\right\}$$

Log-likelihood function

$$\ell(\alpha,\beta) = \sum_{i=1}^n \left[\delta_i \log f(t_i;\alpha,\beta) + (1-\delta_i) \log S(t_i;\alpha,\beta) \right]$$

MLEs

$$(\hat{\alpha},\hat{\beta})' = \arg \max_{(\alpha,\beta)' \in \Theta} \ell(\alpha,\beta)$$

Analysis of remission time data (Extreme-value distribution)

• Define $y = \log t$ and corresponding probability density and survivor function

$$f(y; u, b) = \frac{1}{b} \exp\left[(y-u)/b - e^{(y-u)/b}\right]$$
(20)
$$S(y; u, b) = \exp\left[-e^{(y-u)/b}\right]$$
(21)

Log-likelihood function

$$\ell_{ev}(u,b) = \log \prod_{i=1}^{n} \left[f(y_i; u, b) \right]^{\delta_i} \left[S(y_i; u, b) \right]^{1-\delta_i}$$
(22)

MLEs

$$(\hat{u},\hat{b})' = \arg \max_{(u,b)' \in \Theta} \ell_{ev}(u,b)$$

 R function survreg() can also be used to fit distributions of log-location-scale family, its syntax is similar to the syntax of survfit()

survreg(formula, data, dist)

• In formula, response is a Surv object, e.g. to model the variables time and status

```
formula = Surv(time, status) \sim 1
```

• Lifetime or log-lifetime distributions can be passed to survreg by the argument dist

- Available lifetime or log-lifetime distributions include "weibull", "exponential", "gaussian", "logistic", "lognormal", "loglogistic", "extreme"
- The time argument of Surv function is either a lifetime or a log-lifetime depending on whether the mentioned dist is a lifetime (e.g. "weibull") or a log-lifetime (e.g. "extreme")

weibull \rightarrow formula = Surv(time, status) ~ 1 extreme \rightarrow formula = Surv(log(time), status) ~ 1

```
Data for the treatment (6MP) group
d6mp <- gehan65 |>
  filter(drug == "6-MP")
glimpse(d6mp)
Rows: 21
Columns: 3
$ time <dbl> 6, 6, 6, 6, 7, 9, 10, 10, 11, 13, 16, 17, 19, 20, 22
$ status <dbl> 1, 1, 1, 0, 1, 0, 10, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0
$ drug <chr> "6-MP", "6-MP",
```


Extreme-value distribution

- Estimates of model parameters u and $\log b$
- broom::tidy(ev_sreg_6mp)
- # A tibble: 2 x 5

	term	estimate	${\tt std.error}$	statistic	p.value
	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	(Intercept)	3.52	0.273	12.9	6.28e-38
2	Log(scale)	-0.303	0.278	-1.09	2.77e- 1

• Variance-covariance matrix of $(\hat{u}, \log \hat{b})$

vcov(ev_sreg_6mp)

(Intercept) Log(scale) (Intercept) 0.07473057 0.03305811 Log(scale) 0.03305811 0.07750538

Analysis of remission time data using survreg function

- The survreg() function returns estimates of $(u, \log b)'$ and corresponding variance matrix
- For making inference about Weibull distribution, followings are required
 - **(**) estimate of (u,b)' and the corresponding variance matrix
 - 2 estimate of $(\alpha,\beta)'$ and the corresponding variance matrix
- It is important to understand the methods to obtain estimates and the corresponding variance of (u,b)' and $(\alpha,\beta)'$ from the estimates and the corresponding variance of $(u,\log b)'$

Homework

\bullet Obtain the variance-covarince matrix of $(\hat{\alpha},\hat{\beta})'$ and $(\hat{u},\hat{b})'$

Cls of (α, β) (6MP group)

• 95% CI using the sampling distribution of $(\hat{\alpha},\hat{\beta})$

$$\begin{split} \hat{\alpha} \pm z_{.975} \, se(\hat{\alpha}) &= 33.765 \pm (1.96)(9.23) \\ &= 15.674 \text{ to } 51.856 \\ \hat{\beta} \pm z_{.975} \, se(\hat{\beta}) &= 1.354 \pm (1.96)(0.377) \\ &= 0.615 \text{ to } 2.092 \end{split}$$

Cls of (α, β) (6MP group)

• 95% CI using the sampling distribution of $(\hat{u}, \log \hat{b})$

$$\begin{split} \hat{u} &\pm z_{.975} \, se(\hat{u}) = 2.984 \text{ to } 4.055 \\ \hat{\alpha} &\pm z_{.975} \, se(\hat{\alpha}) = \exp(2.984) \text{ to } \exp(4.055) \\ &= 19.76 \text{ to } 57.698 \end{split}$$

Similarly

$$\begin{split} &\log \hat{b} \pm z_{.975} \, se(\log \hat{b}) = -0.849 \text{ to } 0.243 \\ &\hat{\beta} \pm z_{.975} \, se(\hat{\beta}) = 1/\exp(0.243) \text{ to } 1/\exp(-0.849) \\ &= 0.784 \text{ to } 2.336 \end{split}$$

Cls of (α,β) (6MP group)

(Obtain the variance matrix of (\hat{u},\hat{b}) using the sampling distribution of $(\hat{u},\log\hat{b})')$

• 95% CI using the sampling distribution of (\hat{u},\hat{b})

$$\begin{split} \hat{u} \pm z_{.975} \, se(\hat{u}) &= 2.984 \text{ to } 4.055 \\ \hat{\alpha} \pm z_{.975} \, se(\hat{\alpha}) &= \exp(2.984) \text{ to } \exp(4.055) \\ &= 19.76 \text{ to } 57.698 \end{split}$$

Similarly

$$\begin{split} \hat{b} &\pm z_{.975} \, se(\hat{b}) = 0.336 \text{ to } 1.142 \\ \hat{\beta} &\pm z_{.975} \, se(\hat{\beta}) = 1/1.142 \text{ to } 1/0.336 \\ &= 0.876 \text{ to } 2.979 \end{split}$$

Cls of (α,β) (6MP group)

 \bullet Using the method described in Section 44, we obtain the LRT-based CIs for u and b

Cls of (α,β) (6MP group)

Figure 2: Plot of LRT statistic against different null values b_0 and 95% confidence interval for $\log b$ and β

Cls of (α, β) (6MP group)

parameter	method	6-MP
$\overline{\alpha}$	Wald $(\hat{\alpha})$	(15.674, 51.856
NA	Wald (\hat{u})	(19.76, 57.698)
NA	LRT	(21.933, 76.708
β	Wald (\hat{eta})	(0.615, 2.092)
NA	$Wald\;(\log\widehat{b})$	(0.784, 2.336)
NA	Wald (\widehat{b})	(0.876, 2.979)
NA	LRT	(0.726, 2.203)

Table 2: 95% confidence intervals for α and β by different methods

Analyses for Placebo group

```
dplacebo <- gehan65 %>%
filter(drug == "placebo")
```

Analyses for Placebo group

Estimates of model parameters

broom::tidy(w_sreg_p)

A tibble: 2 x 5
 term estimate std.error statistic p.value
 <chr> <dbl> <dbl>
Analyses for Placebo group

parameter	method	6-MP	Placebo
α NA	Wald $(\hat{\alpha})$	(15.674, 51.856)	(6.363, 12.601)
	Wald (\hat{u})	(19.76, 57.698)	(6.824, 13.175)
β	LRT	(21.933, 76.708)	(6.659, 13.25)
	Wald (\hat{eta})	(0.615, 2.092)	(0.904, 1.837)
NA	Wald $(\log \hat{b})$	(0.784, 2.336)	(0.975, 1.926)
NA	$Wald\ (b)$ LRT	(0.876, 2.979)	(1.023, 2.077)
NA		(0.726, 2.203)	(0.951, 1.868)

Table 3: 95% confidence intervals for α and β by different methods

• Estimate of *p*th quantile

$$\hat{y}_p = \hat{u} + \hat{b} w_p$$

• Wald-type CI (see Section 47 for detail)

$$\hat{y}_p \pm se(\hat{y}_p) z_{1-q/2}$$

• Note the estimate of \hat{y}_p depends on the estimate of \hat{u} and \hat{b} , and the corresponding variance matrix

• survreg() returns estimate and variance matrix for \hat{u} and $\log \hat{b}$

Table 4: 95% confidence intervals for different quantiles of treatment group (6-MP)

p	w_p	\hat{y}_p	$se(\hat{y}_p)$	lower	upper
0.25	-1.246	2.599	0.655	3.726	48.559
0.50	-0.367	3.249	0.264	15.357	43.225
0.75	0.327	3.761	0.395	19.822	93.241

Figure 3: Plot of LRT statistic against different null values y_{p_0} and 95% confidence interval for $y_{.25}$ and $t_{.25}$ (6-MP group)

Figure 4: Plot of LRT statistic against different null values y_{p_0} and 95% confidence interval for $y_{.5}$ and $t_{.5}$ (6-MP group)

Table 5: 95% confidence intervals of different quantiles using Wald and LRT method (6-MP group)

p	lower	upper	lower	upper
0.25	3.726	48.559	6.586	23.058
0.50	15.357	43.225	16.289	51.342
0.75	19.822	93.241	27.522	112.730

Table 6: 95% confidence intervals for different quantiles using Wald and LRT method (placebo group)

p	lower	upper	lower	upper
0.25	1.362	10.707	2.031	5.927
0.50	4.499	11.708	5.755	9.488
0.75	8.592	16.863	8.873	16.996

• For Weibull distribution, the expression of survivor function

$$S(t;\alpha,\beta) = \exp\left(-(t/\alpha)^{\beta}\right)$$

• Estimated survivor function

$$S(t;\hat{\alpha},\hat{\beta}) = \exp\left(-(t/\hat{\alpha})^{\hat{\beta}}\right)$$

par	6-MP	placebo
α	33.765	9.482
β	1.354	1.370

Figure 5: Comparison survival probabilities of between two treatment groups

Figure 6: Comparison of parametric (Weibull) and non-parametric (step-function) estimates of survivor function using remission time data

Homework

 $\bullet\,$ Obtain Wald and LRT statistics based confidence interval for the survival probability S(10)