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Preliminary discussion of likelihood;

Suppose that the probability distribution of potentially observable
data in a study specified up to the parameter vector 𝜃
A likelihood function for 𝜃 is a function of 𝜃 and is proportional to the
probability of data that were observed

𝐿(𝜃) ∝ 𝑃𝑟(Data; 𝜃) (2.1.1)

▶ Data → observed data
▶ 𝑃𝑟 → probability density or mass function from which the data are

assumed to arise
▶ 𝐿(𝜃; Data) → is a more formal notation for likelihood function
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Asymptotic results and large sample methods

Assume that the data consist of a random sample 𝑦1, … , 𝑦𝑛 from a
distribution with probability density function 𝑓(𝑦; 𝜃)
𝜃 = (𝜃1, … , 𝜃𝑘)′ → a vector of unknown parameters, 𝜃 ∈ Ω
𝑦𝑖’s can be vectors, but for simplicity, they are considered scalars

The likelihood function for 𝜃

𝐿(𝜃) =
𝑛

∏
𝑖=1

𝑓(𝑦𝑖; 𝜃)

If 𝑦𝑖’s are independent but not identically distributed then 𝑓(𝑦𝑖; 𝜃) is
replaced by 𝑓𝑖(𝑦𝑖; 𝜃) in the definition of likelihood function
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Asymptotic results and large sample methods

Let ̂𝜃 be a point in Ω at which 𝐿(𝜃) is maximized
▶ ̂𝜃 → maximum likelihood estimator (m.l.e.) of 𝜃
▶ In most simple settings ̂𝜃 exists and unique

It is often convenient to work with the log-likelihood function, which
is also maximized at ̂𝜃

ℓ(𝜃) = log 𝐿(𝜃) = ∑
𝑖

log 𝑓(𝑦𝑖; 𝜃)
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Asymptotic results and large sample methods

The m.l.e. ̂𝜃 can be found by solving

𝑈𝑗(𝜃) = 0 (𝑗 = 1, … , 𝑘)

▶ 𝑈𝑗(𝜃) = 𝜕ℓ(𝜃)
𝜕𝜃𝑗

→ 𝑗𝑡ℎ score or score function

▶ U(𝜃) = [𝑈1(𝜃), … , 𝑈𝑘(𝜃)]′ → score vector of order 𝑘 × 1
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Asymptotic results and large sample methods

Score vector 𝑈(𝜃) is asymptotically (𝑘-variate) normally distributed
with mean 0 and variance-covariance matrix ℐ(𝜃) with the (𝑗, 𝑗′)𝑡ℎ
entry of ℐ(𝜃)

ℐ𝑗𝑗′(𝜃) = 𝐸(−𝜕2ℓ(𝜃)
𝜕𝜃𝑗 𝜕𝜃𝑗′

) 𝑗, 𝑗′ = 1, … , 𝑘

▶ ℐ(𝜃) → Fisher or expected information matrix

▶ 𝐼( ̂𝜃) → observed information matrix

Under mild regularity conditions
▶ ̂𝜃 is a consistent estimator of 𝜃
▶ 𝐼( ̂𝜃)/𝑛 is a consistent estimator of ℐ(𝜃)/𝑛
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Optimization methods for maximum likelihood

Maximum likelihood estimator ̂𝜃 correspond to the maximum of the
log-likelihood function ℓ(𝜃), i.e.

̂𝜃 = arg max
𝜃∈Ω

ℓ(𝜃)
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Optimization methods for maximum likelihood

There are different numerical approaches for optimizing the
multiparameter log-likelihood function ℓ(𝜃) for 𝜃 ∈ Ω
Many likelihood functions have a unique maximum at ̂𝜃, which is a
stationary point satisfying 𝜕ℓ(𝜃)/𝜕𝜃 = 0

Numerical approaches involve a starting point 𝜃0 and an iterative
procedure designed to give a sequence of points 𝜃1, 𝜃2, … converging
to ̂𝜃 (i.e. when 𝜃𝑗 ≃ 𝜃𝑗−1)
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Optimization methods for maximum likelihood

Three types of optimization methods are available in statistical
software

▶ Methods that do not use derivatives (e.g., simplex algorithm, such as
Nelder-Mead method)

▶ Methods that use only first derivates 𝑈(𝜃) = 𝜕ℓ(𝜃)/𝜕𝜃 (e.g. steepest
ascent, quasi-Newton, and conjugate gradient method)

▶ Methods that use both first derivative 𝑈(𝜃) and second derivative
𝐻(𝜃) = 𝜕2ℓ(𝜃)/𝜕𝜃 𝜕𝜃′ (e.g. Newton-Raphson method)

� 𝐻(𝜃) is known as Hessian matrix and observed information matrix
𝐼( ̂𝜃) = −𝐻( ̂𝜃)

Md Rasel Biswas Chapter 2 12 / 50



Optimization methods for maximum likelihood

Newton-Raphson method is commonly used for optimizing ℓ(𝜃), which
is based on the iteration scheme for the 𝑗𝑡ℎ step (𝑗 = 1, 2, …) as

𝜃𝑗 = 𝜃𝑗−1 − [𝐻(𝜃𝑗−1)]−1 𝑈(𝜃𝑗−1)

▶ 𝜃𝑗−1 → value of 𝜃 at the (𝑗 − 1)𝑡ℎ iteration

Using Taylor series expansion, expanding 𝑈(𝜃) at 𝜃𝑗

𝑈(𝜃) = 𝑈(𝜃𝑗) + 𝐻(𝜃𝑗)(𝜃 − 𝜃𝑗)
▶ Then

𝑈(𝜃) = 0 ⇒ 𝜃 = 𝜃𝑗 − [𝐻(𝜃𝑗)]
−1 𝑈(𝜃𝑗)
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Optimization methods for maximum likelihood

In many situations, finding the maximum likelihood estimator may be
challenging, e.g. it may be on the boundary of Ω
Likelihood function may also possess multiple stationary points, and
optimization techniques are designed to obtain local maxima, so it
may not converge to global maxima

It is important to understand the shape of ℓ(𝜃) before applying an
optimization method
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Example 2.1.1

Suppose that the lifetimes of individuals in some population follow a
distribution with density function 𝑓(𝑡) and distribution function 𝐹(𝑡),
and that the lifetimes 𝑡1, … , 𝑡𝑛 for a random sample of 𝑛 individuals
are observed.

In format of Eq. 2.1.1, Data = (𝑡1, … , 𝑡𝑛) and

𝑃𝑟(𝐷𝑎𝑡𝑎) =
𝑛

∏
𝑖=1

𝑓(𝑡𝑖) (2.1.2)
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Parametric approach

Assume that 𝑓(𝑡) has a specific parametric form 𝑓(𝑡; 𝜃)
Likelihood function

𝐿(𝜃) =
𝑛

∏
𝑖=1

𝑓(𝑡𝑖; 𝜃)

The maximum likelihood estimator ̂𝜃 can be obtained by maximizing
𝐿(𝜃) or ℓ(𝜃) and consequently an estimate of 𝐹(𝑡; ̂𝜃), the
distribution function

For example, if 𝑇 ∼ Exp(𝜃) then ̂𝜃 = ̄𝑡 and 𝐹(𝑡; ̂𝜃) = exp(−𝑡/ ̂𝜃)
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Nonparametric approach

Assume 𝐹(𝑡) is discrete with unspecified probabilities
𝑓(𝑡) = 𝐹(𝑡) − 𝐹(𝑡 − 1) at the jump points 𝑡 = 1, 2, …
The model parameters are f = (𝑓(1), 𝑓(2), …) and the likelihood
function is

𝐿 =
𝑛

∏
𝑖=1

𝑓(𝑖)

▶ Restrictions: 𝑓(𝑡) ≥ 0 ∀𝑡 and ∑𝑛
𝑠=1 𝑓(𝑠) = 1
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Nonparametric approach

The maximum likelihood estimators can be obtained by maximizing
the corresponding likelihood function

̂𝑓(𝑡) = 1
𝑛

𝑛
∑
𝑖=1

𝐼(𝑡𝑖 = 𝑡)

▶ 𝐼(𝐴) is an indicator function

𝐼(𝐴) = {1 if 𝐴 is true
0 otherwise
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Nonparametric approach

Estimate of the distribution function 𝐹(𝑡)

̂𝐹 (𝑡) = ∑
𝑡𝑖≤𝑡

̂𝑓(𝑡𝑖)

= 1
𝑛

𝑛
∑
𝑖=1

𝐼(𝑡𝑖 ≤ 𝑡)

▶ ̂𝐹 (𝑡) → empirical distribution funciton
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Likelihood for a truncated sample

Suppose that 𝑡1, … , 𝑡𝑛 are not from an unrestricted random sample
of individuals, but a random sample of those with lifetimes one year
or less

▶ No information is available for those whose lifetimes are greater than
one year

The likelihood function for this truncated sample is given by
𝑛

∏
𝑖=1

𝑃𝑟(𝑡𝑖 | 𝑇𝑖 ≤ 1) =
𝑛

∏
𝑖=1

𝑓(𝑡𝑖)
𝐹(1)

rather than (2.1.2)
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Likelihood based inferences

Score test
Score vector 𝑈(𝜃) asymptotically follows 𝑘-variate normal distribution
with mean vector 0 and variance-covariance matrix ℐ(𝜃)
Under the null hypothesis 𝐻0 ∶ 𝜃 = 𝜃0

𝑊(𝜃0) = 𝑈(𝜃0)′ ℐ(𝜃0)−1 𝑈(𝜃0)

asymptotically follows 𝜒2
(𝑘) distribution.

The statistic 𝑊(𝜃0) can also be used to obtain confidence intervals
for 𝜃
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Likelihood based inferences

Wald test
The m.l.e. ̂𝜃 follows a 𝑘-dimensional normal distribution with mean 𝜃
and variance-covariance matrix ℐ(𝜃)−1

In other words,
√𝑛( ̂𝜃 − 𝜃) follows a 𝑘-dimensional normal distribution

with mean 0 and variance-covariance matrix 𝑛 ℐ(𝜃)−1

Under 𝐻0 ∶ 𝜃 = 𝜃0

( ̂𝜃 − 𝜃0)′ℐ(𝜃0)( ̂𝜃 − 𝜃0)

asymptotically follows 𝜒2
(𝑘).

Since 𝐼( ̂𝜃)/𝑛 is a consistent estimator of ℐ(𝜃0), we can replace ℐ(𝜃0)
by I( ̂𝜃) in the test statistic.
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Likelihood based inferences

Likelihood ratio test
Under 𝐻0 ∶ 𝜃 = 𝜃0

Λ(𝜃0) = −2 log [𝐿(𝜃0)
𝐿( ̂𝜃)

]

= 2ℓ( ̂𝜃) − 2ℓ(𝜃0)

asymptotically follows 𝜒2
(𝑘)
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Subsection 2

2.2 Right censoring and maximum likelihood
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Right censoring and maximum likelihood

For right censored data, only the lower bounds on lifetime are
available for some individuals

Right censored lifetimes are observed for various reasons, such as
termination of the study, lost-to-follow-up, etc.

Contribution to the likelihood function would be different for right
censored and complete lifetimes

Construction of the likelihood function could differ for different types
of censoring, such as left censoring, interval censoring, etc.
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Right censoring and maximum likelihood

Let the random variables 𝑇1, … , 𝑇𝑛 represent the lifetimes of 𝑛
individuals

▶ Let 𝐶1, … , 𝐶𝑛 be the corresponding right censoring times

For the 𝑖𝑡ℎ individual, we observe {(𝑡𝑖, 𝛿𝑖), 𝑖 = 1, … , 𝑛}
▶ 𝑡𝑖 is a sample realization of 𝑋𝑖 = min{𝑇𝑖, 𝐶𝑖}
▶ 𝛿𝑖 = 𝐼(𝑇𝑖 ≤ 𝐶𝑖) is known as censoring or status indicator, i.e.

𝛿𝑖 = {1 if 𝑡𝑖 is observed failure time
0 if 𝑡𝑖 is observed censoring time
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Right censoring and maximum likelihood

There are three types of right censoring mechanism
▶ Type I censoring
▶ Independent random censoring
▶ Type II censoring
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Type I censoring

In Type I censoring, potential censoring time 𝐶𝑖 is assumed to be
fixed for each individual

Type I censoring often arises when a study is conducted over a
specified period of time

▶ For example, if termination of life test on electrical insulation
specimens after 180 minutes, then 𝐶𝑖 = 180 ∀ 𝑖
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Type I censoring

Likelihood function for the observed Type I censored sample
{(𝑡𝑖, 𝛿𝑖), 𝑖 = 1, … , 𝑛}

𝐿 =
𝑛

∏
𝑖=1

𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖)

𝐿 =
𝑛

∏
𝑖=1

[𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 1)]𝛿𝑖 [𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 0)]1−𝛿𝑖
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Type I censoring

Likelihood function for the observed Type I censored sample
{(𝑡𝑖, 𝛿𝑖), 𝑖 = 1, … , 𝑛}

𝐿 =
𝑛

∏
𝑖=1

𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖)

𝐿 =
𝑛

∏
𝑖=1

[𝑃 𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 1)]𝛿𝑖 [𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 0)]1−𝛿𝑖
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Type I censoring

Likelihood function for the observed Type I censored sample
{(𝑡𝑖, 𝛿𝑖), 𝑖 = 1, … , 𝑛}

𝐿 =
𝑛

∏
𝑖=1

[𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 1)]𝛿𝑖 [𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 0)]1−𝛿𝑖

We can show that

𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 1)
= 𝑃𝑟(min{𝑇𝑖, 𝐶𝑖} = 𝑡𝑖, 𝛿𝑖 = 1)
= 𝑃𝑟(𝑇𝑖 = 𝑡𝑖)
= 𝑓(𝑡𝑖)

𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 0)
= 𝑃𝑟(min{𝑇𝑖, 𝐶𝑖} = 𝑡𝑖, 𝛿𝑖 = 0)
= 𝑃𝑟(𝑇𝑖 > 𝐶𝑖, 𝐶𝑖 = 𝑡𝑖)
= 𝑃𝑟(𝑇𝑖 > 𝑡𝑖)
= 𝑆(𝑡𝑖+)
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Type I censoring

Likelihood function for the observed Type I censored sample
{(𝑡𝑖, 𝛿𝑖), 𝑖 = 1, … , 𝑛}

𝐿 =
𝑛

∏
𝑖=1

𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖)

=
𝑛

∏
𝑖=1

[𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 1)]𝛿𝑖 [𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 0)]1−𝛿𝑖

=
𝑛

∏
𝑖=1

[𝑓(𝑡𝑖)]
𝛿𝑖 [𝑆(𝑡𝑖+)]1−𝛿𝑖

▶ If 𝑆(𝑡) is continuous at 𝑡𝑖, then 𝑆(𝑡𝑖+) = 𝑆(𝑡𝑖)
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Example 2.2.1

Suppose that lifetimes 𝑇𝑖 are independent and follow an exponential
distribution with the p.d.f. 𝑓(𝑡) = 𝜆 𝑒−𝜆𝑡.

Let {(𝑡𝑖, 𝛿𝑖), 𝑖 = 1, … , 𝑛} be a random sample (right censored, Type
I) from the exponential distribution.

Obtain the expression of the likelihood function for the given sample.
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Example 2.2.1
Given

𝑓(𝑡) = 𝜆 𝑒−𝜆𝑡 ⇒ 𝑆(𝑡) = 𝑒−𝜆𝑡

The likelihood function

𝐿 =
𝑛

∏
𝑖=1

[𝑓(𝑡𝑖)]
𝛿𝑖[𝑆(𝑡𝑖)]

1−𝛿𝑖

=
𝑛

∏
𝑖=1

[𝜆𝑒−𝜆𝑡𝑖]
𝛿𝑖[𝑒−𝜆𝑡𝑖]

1−𝛿𝑖

= [𝜆∑𝑛
𝑖=1 𝛿𝑖] [𝑒−𝜆 ∑𝑛

𝑖=1 𝑡𝑖]

= [𝜆𝑟] [𝑒−𝜆 ∑𝑛
𝑖=1 𝑡𝑖]

▶ 𝑟 = ∑𝑛
𝑖=1 𝛿𝑖
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Independent Random Censoring

Censoring time 𝐶 is assumed to be continuous random variable with
survivor function 𝐺(𝑡) and density function 𝑔(𝑡)
Lifetime 𝑇 is also continuous random variable with survivor function
𝑆(𝑡) and density function 𝑓(𝑡)
Assumptions:

▶ 𝑇 and 𝐶 are independent
▶ 𝐺(𝑡) does not depend on any of the parameters of 𝑆(𝑡)
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Independent Random Censoring

Likelihood function for the observed independent random censored
sample {(𝑡𝑖, 𝛿𝑖), 𝑖 = 1, … , 𝑛}

𝐿 =
𝑛

∏
𝑖=1

𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖)

=
𝑛

∏
𝑖=1

[𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 1)]𝛿𝑖 [𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 0)]1−𝛿𝑖
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Independent Random Censoring

We can show

𝑃 𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 1) = 𝑃 𝑟(𝑇𝑖 < 𝐶𝑖, 𝑇𝑖 = 𝑡𝑖)
= 𝑃 𝑟(𝑇𝑖 < 𝐶𝑖 | 𝑇𝑖 = 𝑡𝑖) 𝑃𝑟(𝑇𝑖 = 𝑡𝑖)
= 𝑃 𝑟(𝐶𝑖 > 𝑡𝑖) 𝑃𝑟(𝑇𝑖 = 𝑡𝑖)
= 𝐺(𝑡𝑖+) 𝑓(𝑡𝑖)
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Independent Random Censoring

We can show

𝑃 𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 0) = 𝑃𝑟(𝑇𝑖 > 𝐶𝑖, 𝐶𝑖 = 𝑡𝑖)
= 𝑃𝑟(𝑇𝑖 > 𝐶𝑖 | 𝐶𝑖 = 𝑡𝑖) 𝑃𝑟(𝐶𝑖 = 𝑡𝑖)
= 𝑃 𝑟(𝑇𝑖 > 𝑡𝑖) 𝑃𝑟(𝐶𝑖 = 𝑡𝑖)
= 𝑆(𝑡𝑖+) 𝑔(𝑡𝑖)
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Independent Random Censoring
Likelihood function for the observed independent random censored
sample {(𝑡𝑖, 𝛿𝑖), 𝑖 = 1, … , 𝑛}

𝐿 =
𝑛

∏
𝑖=1

𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖)

=
𝑛

∏
𝑖=1

[𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 1)]𝛿𝑖 [𝑃𝑟(𝑋𝑖 = 𝑡𝑖, 𝛿𝑖 = 0)]1−𝛿𝑖

=
𝑛

∏
𝑖=1

[𝐺(𝑡𝑖+) 𝑓(𝑡𝑖)]
𝛿𝑖 [𝑆(𝑡𝑖+) 𝑔(𝑡𝑖)]

1−𝛿𝑖

Since 𝐺(𝑡) and 𝑔(𝑡) don’t involve any parameters of 𝑓(𝑡)

𝐿 =
𝑛

∏
𝑖=1

[𝑓(𝑡𝑖)]
𝛿𝑖 [𝑆(𝑡𝑖+)]1−𝛿𝑖
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Type II censoring

In Type II censoring, lifetest starts with 𝑛 units and it stops when 𝑟
number of failures are observed

▶ So 𝑟 smallest lifetimes 𝑡(1) ≤ ⋯ ≤ 𝑡(𝑟) in a random sample of 𝑛 are
observed

▶ 𝑟 → a specified integer that lies between 1 and 𝑛
▶ The remaining (𝑛 − 𝑟) units are considered as censored at the time 𝑡(𝑟)
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Type II censoring

For Type II censoring, the likelihood function is the probability of
observing 𝑟 smallest lifetimes 𝑡(1) ≤ ⋯ ≤ 𝑡(𝑟) out of 𝑛 lifetimes

𝐿 = (𝑛
𝑟){

𝑟
∏
𝑖=1

𝑓(𝑡(𝑖))} [𝑆(𝑡(𝑟))]
𝑛−𝑟

This expression is similar to the expression obtained for Type I and
random independent censoring with all the censoring times equal to
𝑡(𝑟)
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Example 2.2.2

Let 𝑡(𝑖), … , 𝑡(𝑟) be a Type II random sample of 𝑛 lifetimes 𝑇1, … , 𝑇𝑛,
where 𝑇𝑖 follows an exponential distribution with rate 𝜆
The likelihood function

𝐿 = (𝑛
𝑟){

𝑟
∏
𝑖=1

𝑓(𝑡(𝑖))} [𝑆(𝑡(𝑟))]
𝑛−𝑟

= (𝑛
𝑟){

𝑟
∏
𝑖=1

𝜆𝑒−𝜆𝑡(𝑖)}[𝑒−𝜆𝑡(𝑟)]
𝑛−𝑟

= (𝑛
𝑟)𝜆𝑟𝑒−𝜆𝑊

▶ 𝑊 = ∑𝑟
𝑖=1 𝑡(𝑖) + (𝑛 − 𝑟)𝑡(𝑟)
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A general formulation of right censoring

The censoring process is often not any of the types discussed so far,
and may be sufficiently complicated to make modeling it impossible.

For example, a decision to terminate a life test or clinical trial at time
𝑡, or to withdraw certain individuals, might be based on failure
information prior to time 𝑡,
Fortunately it can be shown that under rather general conditions the
observed likelihood is of the form (2.2.3) and can be used in the
normal way to make inferences about the lifetime distribution under
study.

𝐿 =
𝑛

∏
𝑖=1

[𝑓(𝑡𝑖)]
𝛿𝑖 [𝑆(𝑡𝑖+)]1−𝛿𝑖

Read Section 2.2.2 of the textbook for details.
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Subsection 3

A Hypothetical Study
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A hypothetical study

A small prospective study was run, where 10 participants were
recruited to follow

The event of interest was the development of myocardial
infarction (MI, or heart attack) over a period of 10 years (follow-up
period)

Participants are recruited into the study over a period of two years
and were then followed for up to 10 years
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A hypothetical study

Study in calender years
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A hypothetical study

{S2, S3, S5} → experienced MI

{S4, S7} → dropped out

{S10} → died from other causes

{S1, S6, S8, S9} → completed 10-year follow-up without MI
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A hypothetical study

Study in years
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A hypothetical study
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A hypothetical study

Times for the subjects who did not experience MI by the end of
10-year follow-up or dropped-out or died from causes not related to
MI are known as censored times

Time-to-MI (time to the event of interest) are known as failure time
(or survival time)

For survival data, the pair (time, status), (𝑡, 𝛿), is considered as the
response

A sample of survival data can also be expressed as following, where +

sign indicates censored observations

10+, 4, 9, 4+, 7, 10+, 2+, 10+, 10+, 3+
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Subsection 4

2.3 Other type of incomplete data
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