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Introduction

Lifetime data have important use in many research areas, including
health sciences, engineering, social sciences, etc.

Applications of lifetime distribution methodology range from
investigation of the durability of manufactured items to studies of
human disease and their treatment

Lifetime data are also referred as “survival time” or “failure time data”
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Regression models and lifetables

Some methods dealing with lifetime data are quite old, but the field
expanded rapidly after 1970, specially after publishing of Sir David
Cox’s famous paper (Cox 1972)

Number of citations: 62649 (Google Scholar, September 25, 2024)

Software packages for lifetime data analysis are widely available since
1980
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Regression models and lifetables

Figure 1: Sir David Cox (1924 – 2022)
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Example 1.1.1

Manufactured items with mechanical or electronic components are
often subjected to life tests in order to obtain information on their
durability.

This involves putting items in operation, often in a laboratory setting,
and observing them until they fail.

It is common here to refer to the lifetimes as “failure times,” since
when an item ceases operating satisfactorily, it is said to have “failed.”
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Example 1.1.2

Demographers and social scientists are interested in the duration of
certain life “states” for humans.

Consider, for example, marriage and, in particular, the marriages
formed during the year 1980 in a particular country.

Then the lifetime of a marriage would be its duration; a marriage may
end due to annulment, divorce, or death.
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Example 1.1.3

In medical studies dealing with potentially fatal diseases one is
interested in the survival time of individuals with the disease,
measured from the date of diagnosis or some other starting point.

For example, it is common to compare treatments for a disease in
terms of the survival time distributions for patients receiving the
different treatments.
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Example 1.1.4

A standard experiment in the investigation of carcinogenic substances
is one in which laboratory animals are subjected to doses of the
substance and then observed to see if they develop tumors.

A main variable of interest is the time to appearance of a tumor,
measured from when the dose is administered.

Md Rasel Biswas Chapter 1 11 / 119



Time scale and time origin

The definition of lifetime includes a “time scale” and “time origin”,
and also the specification of the event (e.g. failure or death) that
determines the lifetime

Time scale is not always real or chronological time, e.g.

▶ miles driven can be used as a time scale with motor vehicles
▶ number of pages for a computer printer or a photocopier, etc.
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Censoring

The chronological time needed to observe the lifetimes of all
individuals in a study may be large enough that practical constraints
prevent full observations

If an individual’s lifetime is only known to be exceed a certain value,
then it is known as “censored” observation and the process is known
as censoring

For example, if a life test is terminated after 28 days and one item
had not failed by then, then we would only know that its lifetime is
greater than 28 days and it is referred as “censoring time”

There are different types of censoring, e.g. right, left and interval
censoring, which will be discussed in detail in the next chapter
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Censoring

Figure 2: Lifetime of eight subjects in a survival study
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Example 1.1.5

Nelson (1972) described the results of a life test experiment in which
specimens of a type of electrical insulating fluid were subjected to a
constant voltage stress.

The length of time until each specimen failed, or “broke down,” was
observed.

The table in the next slide gives results for seven groups of specimens,
tested at voltages ranging from 26 to 38 kilo-volts (kV).
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Example 1.1.5
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Example 1.1.5

The main purpose of the experiment was to investigate the
distribution of “time to breakdown” for the insulating fluid and to
relate this to the voltage level

▶ breakdown times tend to decrease as the voltage increases.

The experiment was run long enough to observe the failure of all the
insulation specimens tested.

If a decision had been made in the preceding experiment to terminate
testing after 180 minutes had elapsed, then two of the observations in
the 26- and 28-kV sample and one each in the 30- and 32-kV samples
would have been censored.

▶ In each case, we would not know the exact failure time of the item, but
only that it exceeded 180 minutes.
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Example 1.1.7

Gehan (1965) have discussed the results of a clinical trial, in which
the drug 6-mercaptopurine (6-MP) was compared to a placebo with
respect to the ability to maintain remission in acute leukemia patients.

Remission times for two groups of 21 patients each, one group given
the placebo and the other the drug 6-MP are available.
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Subsection 2

1.2 Lifetime Distributions
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Distribution function

Let 𝑇 be a nonnegative random variable representing lifetimes of
individuals in some population

Let 𝑓(𝑡) be the probability density function (pdf) of 𝑇 and the
cumulative density function (cdf) of 𝑇 can be defined as

𝐹(𝑡) = Pr(𝑇 ≤ 𝑡) = ∫
𝑡

0
𝑓(𝑥) 𝑑𝑥 (1)
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Survivor function

The probability that an individual survives to time 𝑡 is given by the
survivor function

𝑆(𝑡) = Pr(𝑇 ≥ 𝑡) = ∫
∞

𝑡
𝑓(𝑥) 𝑑𝑥 (2)

In some context involving lifetimes of manufactured items, 𝑆(𝑡) is
referred to as the reliability function

The survivor function 𝑆(𝑡) is a monotone decreasing function with

𝑆(0) = 1 and 𝑆(∞) = lim
𝑡→∞

𝑆(𝑡) = 0.
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Survivor function

A useful relationship

𝐸(𝑇 ) = ∫
∞

0
𝑆(𝑥) 𝑑𝑥 (3)

▶ The mean survival time is the area under the survivor curve
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Quantiles

The 𝑝th quantile of the distribution of 𝑇 is the value 𝑡𝑝 such that

Pr(𝑇 ≤ 𝑡𝑝) = 𝐹(𝑡𝑝) = 𝑝 ⇒ 𝑡𝑝 = 𝐹 −1(𝑝) = 𝑆−1(1 − 𝑝)

▶ The 𝑝th quantile 𝑡𝑝 is also known as 100𝑝th percentile.
▶ The 0.5 quantile 𝑡.5 is called the median of the distribution.
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Mortality rate

In life table, the mortality rate at time 𝑡 is the proportion of
population who die between times 𝑡 and (𝑡 + 1) among individuals
alive at time 𝑡

𝑞t = Pr(𝑡 ≤ 𝑇 < 𝑡 + 1 | 𝑇 ≥ 𝑡) (4)

▶ Mortality rate is probability and it lies between 0 and 1

Calculating the mortality rate for ever smaller intervals of time results
in the hazard function (also called hazard rate), ℎ(𝑡).
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Hazard function

Hazard function ℎ(𝑡) is an important concept for lifetime distributions
and it can be defined as the limit of the mortality rate

ℎ(𝑡) = lim
Δ𝑡→0

Pr(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡 ∣ 𝑇 ≥ 𝑡)
Δ𝑡

= 𝑓(𝑡)
𝑆(𝑡) (5)

Hazard function ℎ(𝑡) specifies instantaneous rate of failure at time 𝑡
given that the individual survives up to time 𝑡.
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Hazard function

Hazard function is conditional failure rate not probability (so can take
any positive value, i.e. between 0 to ∞, unlike the mortality rate
which is bounded by one)

For a mortality rate

𝑃 = Pr(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡 | 𝑇 ≥ 𝑡) = 1/4,

the corresponding hazard rate depends on the length of the interval
Δ𝑡

𝑃 Δ𝑡 (𝑃/Δ𝑡) = rate
1
4

1
3day 1/4

1/3 = 0.75/day
1
4

1
21week 1/4

1/21 = 5.25/week
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Hazard function

The probability that an individual fails in [𝑡, 𝑡 + Δ𝑡) given that the
individual survives up to time 𝑡 is approximated by

ℎ(𝑡)Δ𝑡 ≈ Pr(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡 ∣ 𝑇 ≥ 𝑡) (6)

The ℎ(𝑡) can also be regarded as the expected number of events
experienced by an individual in unit time, given that the event has not
occurred before then, and assuming that the hazard is constant over
that time period.

Hazard functions are sometimes given other names, such as
conditional failure rate, hazard rate, force of mortality, etc.
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Relationship between different functions

The functions 𝑓(𝑡), 𝐹(𝑡), 𝑆(𝑡), and ℎ(𝑡) give mathematically
equivalent specifications of the distribution of 𝑇
From a given expression of one function, say hazard function,
expressions of other functions (e.g. density function) can be derived
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Relationship between different functions
Expressing 𝑆(𝑡) in terms of ℎ(𝑡)

ℎ(𝑥) = 𝑓(𝑥)
𝑆(𝑥) = − 𝑑

𝑑𝑥 log 𝑆(𝑥)

∫
𝑡

0
ℎ(𝑥) 𝑑𝑥 = ∫

𝑡

0
[ − 𝑑

𝑑𝑥 log 𝑆(𝑥)]𝑑𝑥

− ∫
𝑡

0
ℎ(𝑥) 𝑑𝑥 = log 𝑆(𝑥)∣

𝑡

0

− ∫
𝑡

0
ℎ(𝑥) 𝑑𝑥 = log 𝑆(𝑡) − log 𝑆(0)

Note 𝑆(∞) = 0 and 𝑆(0) = 1
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Relationship between different functions

Expressing 𝑆(𝑡) in terms of ℎ(𝑡)

− ∫
𝑡

0
ℎ(𝑥) 𝑑𝑥 = log 𝑆(𝑡) ⇒ 𝑆(𝑡) = exp ( − ∫

𝑡

0
ℎ(𝑥) 𝑑𝑥)

It is useful to define the cumulative hazard function as

𝐻(𝑡) = ∫
𝑡

0
ℎ(𝑥) 𝑑𝑥 (7)
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Cumulative hazard function

Relationship between 𝑆(𝑡) and 𝐻(𝑡)

𝑆(𝑡) = exp ( − 𝐻(𝑡)) ⇒ 𝐻(𝑡) = − log 𝑆(𝑡)

▶ 𝑆(∞) = 0 ⇒ 𝐻(∞) = ∞
For a given time 𝑡, the greater the risk, the smaller 𝑆(𝑡), and hence
the shorter mean survival time 𝐸(𝑇 ), and vice verse
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Cumulative hazard function

It is possible for the cumulative hazard function to exceed unity

𝐻(𝑡) ≥ 1 ⇒ − log 𝑆(𝑡) ≥ 1 ⇒ 𝑆(𝑡) ≤ 𝑒−1 = 0.368

The cumulative hazard is then greater than unity when the probability
of an event occurring after time 𝑡 is less than 0.37
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Relationship between different functions

Expressing 𝑓(𝑡) in terms of ℎ(𝑡)

ℎ(𝑡) = 𝑓(𝑡)
𝑆(𝑡)

𝑓(𝑡) = ℎ(𝑡)𝑆(𝑡) = ℎ(𝑡) exp ( − ∫
𝑡

0
ℎ(𝑥) 𝑑𝑥)
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Example 1.2.1

Suppose 𝑇 has p.d.f.

𝑓(𝑡) = 𝛽𝑡𝛽−1 exp(−𝑡𝛽), 𝑡 > 0

▶ Obtain survivor function and hazard function of 𝑇
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Discrete models

Sometimes, lifetimes are grouped or measured as a number of cycles
of some sort

In such situations, 𝑇 may be treated as a discrete random variable

Let 𝑇 can take on values 𝑡1, 𝑡2, … , with

0 = 𝑡0 ≤ 𝑡1 < 𝑡2 < 𝑡3 < ⋯
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Discrete models

The probability mass function

𝑓(𝑡𝑗) = Pr(𝑇 = 𝑡𝑗), 𝑗 = 1, 2, …

The survivor function

𝑆(𝑡) = Pr(𝑇 ≥ 𝑡) = ∑
𝑗∶𝑡𝑗≥𝑡

𝑓(𝑡𝑗) (8)

When considered as a function for all 𝑡 ≥ 0, 𝑆(𝑡) is left continuous,
nonincreasing step function, with

𝑆(0) = 1 and 𝑆(∞) = 0
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Continuity
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Discrete models

The discrete time hazard function is defined as

ℎ(𝑡𝑗) = Pr(𝑇 = 𝑡𝑗 ∣ 𝑇 ≥ 𝑡𝑗)

= 𝑓(𝑡𝑗)
𝑆(𝑡𝑗)

, 𝑗 = 1, 2, …
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Discrete models

Using the relationship

𝑓(𝑡𝑗) = 𝑆(𝑡𝑗) − 𝑆(𝑡𝑗+1),

We can show

ℎ(𝑡𝑗) = 𝑓(𝑡𝑗)
𝑆(𝑡𝑗)

= 1 − 𝑆(𝑡𝑗+1)
𝑆(𝑡𝑗)

, 𝑗 = 1, 2, …

As in the continuous case, discrete hazard function uniquely
determines the distribution of the survival time 𝑇
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Discrete models

Expressing 𝑆(𝑡) in terms of ℎ(𝑡)

𝑆(𝑡) = ∏
𝑗∶𝑡𝑗<𝑡

[1 − ℎ(𝑡𝑗)] (9)

Expressing 𝑆(𝑡) in terms of ℎ(𝑡)

𝑓(𝑡𝑗) = ℎ(𝑡𝑗)
𝑗−1
∏
𝑖=1

[(1 − ℎ(𝑡𝑖))] (10)
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Discrete models

We have

ℎ(𝑡𝑗) = 1 − 𝑆(𝑡𝑗+1)
𝑆(𝑡𝑗)

⇒ 1 − ℎ(𝑡𝑗) = 𝑆(𝑡𝑗+1)
𝑆(𝑡𝑗)
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Discrete models

Assume 𝑡 lies between 𝑡𝑗 and 𝑡𝑗+1, then

𝑆(𝑡) = 𝑆(𝑡𝑗+1) = 𝑆(𝑡𝑗) × 𝑆(𝑡𝑗+1)
𝑆(𝑡𝑗)
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Discrete models

Then

𝑆(𝑡) = 𝑆(𝑡𝑗) × 𝑆(𝑡𝑗+1)
𝑆(𝑡𝑗)

= 𝑆(𝑡𝑗)[1 − ℎ(𝑡𝑗)]

That means
𝑆(𝑡) = 𝑆(𝑡𝑗)[1 − ℎ(𝑡𝑗)]
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Discrete models

We can write

𝑆(𝑡) = 𝑆(𝑡𝑗)[1 − ℎ(𝑡𝑗)]

= 𝑆(𝑡𝑗−1) × 𝑆(𝑡𝑗)
𝑆(𝑡𝑗−1) [1 − ℎ(𝑡𝑗)]

That means

𝑆(𝑡) = 𝑆(𝑡𝑗−1)[1 − ℎ(𝑡𝑗−1)][1 − ℎ(𝑡𝑗)]
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Discrete models

In general

𝑆(𝑡) = 𝑆(𝑡0)[1 − ℎ(𝑡0)][1 − ℎ(𝑡1)] ⋯ [1 − ℎ(𝑡𝑗−1)][1 − ℎ(𝑡𝑗)]
= ∏

𝑗∶𝑡𝑗<𝑡
[1 − ℎ(𝑡𝑗)]
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Discrete models

Expressing 𝑓(𝑡) in terms of ℎ(𝑡)

𝑓(𝑡𝑗) = 𝑆(𝑡𝑗) − 𝑆(𝑡𝑗+1)
= ∏

𝑥∶𝑥<𝑡𝑗

[1 − ℎ(𝑥)] − ∏
𝑥∶𝑥<𝑡𝑗+1

[1 − ℎ(𝑥)]

=
𝑗−1
∏
𝑖=1

[1 − ℎ(𝑡𝑖)] −
𝑗

∏
𝑖=1

[1 − ℎ(𝑡𝑖)]
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Discrete models

Expressing 𝑓(𝑡) in terms of ℎ(𝑡)

𝑓(𝑡𝑗) = 𝑆(𝑡𝑗) − 𝑆(𝑡𝑗+1)

=
𝑗−1
∏
𝑖=1

[1 − ℎ(𝑡𝑖)] −
𝑗

∏
𝑖=1

[1 − ℎ(𝑡𝑖)]

=
𝑗−1
∏
𝑖=1

[1 − ℎ(𝑡𝑖)][1 − 1 + ℎ(𝑡𝑗)]

= ℎ(𝑡𝑗)
𝑗−1
∏
𝑖=1

[1 − ℎ(𝑡𝑖)]
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Discrete models

The probability that an individual fails at time 𝑡𝑗

𝑓(𝑡𝑗) = ℎ(𝑡𝑗)
𝑗−1
∏
𝑖=1

[1 − ℎ(𝑡𝑖)]

The individual survives the preceding discrete failure times 𝑡1, … , 𝑡𝑗−1
with corresponding (conditional) probabilities
[1 − ℎ(𝑡1)], … , [1 − ℎ(𝑡𝑗−1)]
Having survived just before 𝑡𝑗, the individual fails at 𝑡𝑗 with
probability ℎ(𝑡𝑗)
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Some remarks on hazard functions

The hazard function is an important characteristic of a lifetime
distribution that indicates the way the risk of failure varies with age or
time, and this is of interest in most applications.

In many instances, information is available on how failure rates
change with time and such prior information about the shape of the
hazard function can help guide model selection.

The model/information for hazard function can easily be translated
for survivor and density functions using the formulas derived earlier
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Different shapes of hazard functions

The shapes of hazard functions could be different, such as

▶ monotone increasing (e.g. positive aging) (a)

▶ monotone decreasing (e.g. negative aging) (b)

▶ bathtub-shaped or U-shaped (e.g. age at death of human populations,
lifetime of manufactured items, etc.) (c)

▶ inverse bathtub-shaped (e.g. survival after treatment for cancer,
duration of marriage, etc.) (d)
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Different shapes of hazard functions
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Different shapes of density functions
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Some remarks on hazard functions

Shapes of density function could be different corresponding to the
shapes of hazard functions

Although different survivor functions can have the same basic shape,
their hazard functions can differ dramatically

The hazard function is usually more informative about the underlying
mechanism of failure than the survivor function.

Modelling the hazard function is an important method for
summarizing survival data
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Subsection 3

1.3 Some important failure time models
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Introduction

Various parametric families of models are used in the analysis of
lifetime data and a few distributions have the usefulness in a
wide-range of situations

The most commonly used univariate distributions for failure time data
▶ exponential, Weibull, log-normal, and log-logistic

Notations
▶ 𝑇 → lifetime, takes only nonnegative values, i.e. from 0 to ∞
▶ 𝑌 = log 𝑇 → log-lifetime, takes any value on the real line, i.e. from

−∞ to ∞
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The exponential distribution
The exponential distribution is characterized by a constant hazard
function

ℎ(𝑡) = 𝜆, 𝑡 ≥ 0

▶ 𝜆 > 0
The cumulative hazard function

𝐻(𝑡) = ∫
𝑡

0
ℎ(𝑥) 𝑑𝑥 = ∫

𝑡

0
𝜆 𝑑𝑥 = 𝜆𝑡

The survivor function

𝑆(𝑡) = exp(−𝐻(𝑡))
= exp(−𝜆𝑡)
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The exponential distribution

The probability distribution function

𝑓(𝑡) = ℎ(𝑡) 𝑆(𝑡) = 𝜆 exp(−𝜆𝑡)

Reprametrization 𝜃 = 𝜆−1 Then, 𝑇 ∼ Exp(scale = 𝜃), where

𝑓(𝑡) = (1/𝜃) exp(−𝑡/𝜃), 𝑡 ≥ 0
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The exponential distribution

Properties
▶ 𝐸(𝑇 ) = 𝜃
▶ 𝑉 (𝑇 ) = 𝜃2

Quantiles, the 𝑝𝑡ℎ quantile

𝐹(𝑡𝑝) = 𝑝 ⇒ 1 − exp(−𝑡/𝜃) = 𝑝
⇒ 𝑡𝑝 = −𝜃 log(1 − 𝑝)

▶ The median, .5𝑡ℎ quantile

𝑡.5 = −𝜃 log(.5)
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The exponential distribution

The exponential distribution with 𝜃 = 1 is known as standard
exponential distribution

If 𝑇 ∼ Exp(𝜃) then
(𝑇 /𝜃) ∼ Exp(1)

▶ The mean and variance of Exp(1) is 1
▶ The median of the Exp(1) is − log(.5) = 0.6931
▶ The density function of Exp(1) is positively skewed
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The exponential distribution
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Figure 3: Density function of exponential distribution
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The exponential distribution

Historically, the exponential was the first widely discussed lifetime
distribution model

▶ This was in part because of the availability of simple statistical
methods for it

The assumption of a constant hazard function is very restrictive, so
the model’s applicability is fairly limited
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The Weibull distribution

The Weibull distribution is the most widely used lifetime distribution
model.

It has applications to the lifetimes or durability of manufactured

▶ It is used as a model with diverse types of items, such as ball bearings,
automobile components, and electrical insulation.

It is also used in biological and medical applications, for example, in
studies on the time to the occurrence of tumors in human populations
or in laboratory animals.
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The Weibull distribution

The hazard function of Weibull distribution

ℎ(𝑡) = 𝜆𝛽(𝜆𝑡)𝛽−1, 𝜆 > 0, 𝛽 > 0.

Show that ℎ(𝑡) is

1 monotone increasing for 𝛽 > 1
2 monotone deccreasing for 𝛽 < 1
3 constant for 𝛽 = 1

Exponential distribution is a special case

▶ For 𝛽 = 1, Weibull distribution reduces to exponential distribution with
ℎ(𝑡) = 𝜆
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The Weibull distribution
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Figure 4: Hazard function of Weibull distribution (𝜆 = 1.0)
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The Weibull distribution

The cumulative hazard function

𝐻(𝑡) = ∫
𝑡

0
ℎ(𝑥) 𝑑𝑥 = ∫

𝑡

0
𝜆𝛽 (𝜆𝑥)𝛽−1 𝑑𝑥 = (𝜆 𝑡)𝛽

The survivor function

𝑆(𝑡) = exp[−𝐻(𝑡)] = exp[−(𝜆𝑡)𝛽]

The density function

𝑓(𝑡) = ℎ(𝑡) 𝑆(𝑡) = 𝜆𝛽 (𝜆𝑡)𝛽−1 exp[−(𝜆𝑡)𝛽]
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The Weibull distribution
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Figure 5: Density function of Weibull distribution (𝜆 = 1.0)
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The Weibull distribution
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Figure 6: Density function of Weibull distribution (𝜆 = 2.0)
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The Weibull distribution

Show that the 𝑟𝑡ℎ moment of Weibull distribution

𝐸(𝑇 𝑟) = 𝜆−𝑟Γ(1 + 𝑟/𝛽)

▶ Obtain the expressions of 𝐸(𝑇 ) and 𝑉 (𝑇 )
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The Weibull distribution

The 𝑝th quantile can be obtained as

𝐹(𝑡) = 1 − 𝑒−(𝜆𝑡𝑝)𝛽 = 𝑝 ⇒ 𝑡𝑝 = 𝛼[− log(1 − 𝑝)]1/𝛽

▶ 𝛼 = 1/𝜆 is known as the scale parameter of the distribution
▶ The shape of the distribution depends on 𝛽, which is known as the

shape parameter

It can be shown that 𝛼 is the .632 quantile of the distribution
irrespective of the value of 𝛽

▶ i.e. 𝛼 is greater than the median of the distribution!
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The extreme value distribution

Let 𝑇 follows a Weibull distribution

𝑇 ∼ Weib(𝛼, 𝛽) with 𝛼 = 1/𝜆

Extreme value distribution (also known as Gumbel distribution) is
closely related to Weibull distribution

If lifetime 𝑇 follows a Weibull distribution then log-lifetime 𝑌 = log 𝑇
follows an extreme value distribution

Extreme value distribution has two parameters, which have
one-to-one connection with the Weibull distribution parameters!
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The extreme value distribution

𝑇 ∼ Weib(𝛼, 𝛽) ⇔ 𝑌 = log 𝑇 ∼ EV(𝑢, 𝑏)
▶ 𝑢 = log 𝛼 and
▶ 𝑏 = (1/𝛽)

The pdf of 𝑌

𝑓(𝑦) = (1/𝑏) exp [𝑦 − 𝑢
𝑏 − exp (𝑦 − 𝑢

𝑏 )] − ∞ < 𝑦 < ∞

▶ −∞ < 𝑢 < ∞ and 𝑏 > 0
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The extreme value distribution

Exercise: obtain the pdf of 𝑌 = log 𝑇 , where 𝑇 ∼ Weib(𝛼, 𝛽)

▶ Hints. 𝐽 = 𝑑𝑡
𝑑𝑦 = 𝑒𝑦 and

𝑓𝑌 (𝑦) = 𝑓𝑇 (𝑒𝑦) | 𝐽 |
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The extreme value distribution
The survivor function

𝑆(𝑦) = ∫
∞

𝑦
𝑓(𝑥 𝑑𝑥)

= ∫
−∞

𝑦
(1/𝑏) exp [𝑥 − 𝑢

𝑏 − exp (𝑥 − 𝑢
𝑏 )] 𝑑𝑥

= exp [ − exp (𝑦 − 𝑢
𝑏 )]

The cumulative hazard function

𝐻(𝑦) = exp (𝑦 − 𝑢
𝑏 )

The hazard function

ℎ(𝑦) = 𝑑 𝐻(𝑦)
𝑑𝑦 = (1/𝑏) exp (𝑦 − 𝑢

𝑏 )
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The extreme value distribution

Standard extreme value distribution
If 𝑌 ∼ EV(𝑢, 𝑏), then

𝑌 − 𝑢
𝑏 ∼ EV(0, 1),

the standard extreme value distribution.
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The extreme value distribution
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Figure 7: The density function of extreme value distribution with 𝑢 = 0 and 𝑏 = 1
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The extreme value distribution
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Figure 8: The density function of extreme value distribution with 𝑢 = 0
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The extreme value distribution

The moment generating function of 𝐸𝑉 (𝑢, 𝑏)

𝑀(𝜃) = ∫
∞

−∞
𝑒𝜃𝑦 𝑓(𝑦) 𝑑𝑦

= ∫
∞

−∞
𝑒𝜃𝑦 (1/𝑏) exp [𝑦 − 𝑢

𝑏 − exp (𝑦 − 𝑢
𝑏 )]𝑑𝑦

▶ Let (𝑦 − 𝑢)/𝑏 = 𝑧

𝑀(𝜃) = ∫
∞

−∞
𝑒𝜃(𝑢+𝑏𝑧) exp [𝑧 − exp(𝑧)]𝑑𝑧

▶ Let 𝑒𝑧 = 𝑥

𝑀(𝜃) = ∫
∞

0
𝑒𝜃𝑢 𝑥𝜃𝑏 𝑒−𝑥 𝑑𝑥 = 𝑒𝜃𝑢 Γ(𝜃𝑏 + 1)
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The extreme value distribution

If 𝑌 ∼ 𝐸𝑉 (𝑢, 𝑏)
𝑀(𝜃) = 𝑒𝜃𝑢 Γ(𝜃𝑏 + 1)

If 𝑌 ∼ 𝐸𝑉 (0, 1)
𝑀(𝜃) = Γ(𝜃 + 1)
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The extreme value distribution

Moments of standard extreme value distribution 𝑍 ∼ 𝐸𝑉 (0, 1)

𝐸(𝑍) = 𝑑
𝑑𝜃𝑀(𝜃)∣𝜃=0 = Γ′(1) = −𝛾 (Euler’s constant)

𝑉 (𝑍) = Γ″(1) − 𝛾2 = 𝜋2/6

For 𝑌 ∼ 𝐸𝑉 (𝑢, 𝑏), show that

𝐸(𝑌 ) = 𝑢 − 𝛾𝑏 and 𝑉 (𝑌 ) = 𝑏2(𝜋2/6)
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The extreme value distribution

The 𝑝𝑡ℎ quantile of extreme value distribution

𝐹(𝑦𝑝) = 𝑝
𝑆(𝑦𝑝) = 1 − 𝑝

𝑦𝑝 = 𝑢 + 𝑏 log [ − log(1 − 𝑝)]
Show that the location parameter 𝑢 is the .632 quantile of
𝑌 ∼ 𝐸𝑉 (𝑢, 𝑏)
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The log-normal distribution

The lifetime 𝑇 is said to be log-normally distributed if log-lifetime
𝑌 = log 𝑇 is normally distributed.

The parameters of normal distribution 𝜇 and 𝜎 are also considered as
the parameters of log-normal distribution

𝑌 = log 𝑇 ∼ 𝑁(𝜇, 𝜎2) ⇒ 𝑇 = exp(𝑌 ) ∼ log 𝑁(𝜇, 𝜎2)
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The log-normal distribution

Let 𝑌 = log 𝑇 ∼ 𝑁(𝜇, 𝜎2), show that the density function of
𝑇 = exp(𝑌 )

𝑓𝑇 (𝑡) = 𝑓𝑌 (log 𝑇 )∣𝑑𝑦
𝑑𝑡 ∣

= 1
𝜎𝑡

√
2𝜋 exp [ − 1

2( log 𝑡 − 𝜇
𝜎 )

2

]

▶ 𝑡 > 0, 𝜎 > 0, and −∞ < 𝜇 < ∞
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The log-normal distribution

The survivor function of 𝑇 = exp(𝑌 )

𝑆(𝑡) = 1 − Φ( log 𝑡 − 𝜇
𝜎 )

▶ Φ(⋅) → distribution function of 𝑁(0, 1)
The hazard function is defined as 𝑓(𝑡)/𝑆(𝑡), which takes the value 0
at 𝑡 = 0, increases to a maximum and then decrease, approaching 0
as 𝑡 → ∞.
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The log-normal distribution

It can be shown

𝐸(𝑇 ) = exp(𝜇 + 𝜎2/2)
𝑉 (𝑇 ) = [exp(𝜎2) − 1][exp(2𝜇 + 𝜎2)]

For log-normal distribution

▶ exp(𝜇) → the scale parameter
▶ 1/𝜎 → the shape parameter

Show that for 𝑇 ∼ log 𝑁(𝜇, 𝜎2)

𝑡.5 = exp(𝜇)
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The log-normal distribution
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Figure 9: Density function of log-normal distribution with 𝜇 = 0
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The log-normal distribution
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Figure 10: Hazard function of log-normal distribution with 𝜇 = 0
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The Log-logistic distribution

If 𝑌 = log 𝑇 follows a logistic distribution then 𝑇 follows a
log-logistic distribution

The p.d.f. of a logistic distribution with parameters 𝑢 and 𝑏

𝑓(𝑦) = (1/𝑏) exp [(𝑦 − 𝑢)/𝑏]
{1 + exp [(𝑦 − 𝑢)/𝑏]}2

▶ −∞ < 𝑦 < ∞, −∞ < 𝑢 < ∞, 𝑏 > 0
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The Log-logistic distribution

The survivor function of a logistic distribution

𝑆(𝑦) = 1
{1 + exp [(𝑦 − 𝑢)/𝑏]}

The hazard function of logistic distribution

ℎ(𝑦) = (1/𝑏) exp [(𝑦 − 𝑢)/𝑏]
{1 + exp [(𝑦 − 𝑢)/𝑏]}
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The Log-logistic distribution

The p.d.f. of log-logistic distribution

𝑓𝑇 (𝑡) = 𝑓𝑌 (log 𝑇 ) ∣𝑑𝑦
𝑑𝑡 ∣

= (𝛽/𝛼)(𝑡/𝛼)𝛽−1

[1 + (𝑡/𝛼)𝛽]2

▶ 𝛼 = exp(𝑢) > 0 and 𝛽 = 1/𝑏 > 0
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The Log-logistic distribution

The survivor function of 𝑇 ∼ LLogis(𝛼, 𝛽)

𝑆(𝑡) = ∫
∞

𝑡

(𝛽/𝛼)(𝑥/𝛼)𝛽−1

[1 + (𝑥/𝛼)𝛽]2 𝑑𝑥

▶ Let (𝑥/𝛼)𝛽 = 𝑦
𝑆(𝑡) = ∫

∞

(𝑡/𝛼)𝛽

1
(1 + 𝑦)2 𝑑𝑦

= −1
1 + 𝑦 ∣

∞

(𝑡/𝛼)𝛽

= [1 + (𝑡/𝛼)𝛽]−1
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The Log-logistic distribution

The p.d.f.

𝑓(𝑡) = (𝛽/𝛼)(𝑡/𝛼)𝛽−1

[1 + (𝑡/𝛼)𝛽]2

The survivor function

𝑆(𝑡) = [1 + (𝑡/𝛼)𝛽]−1

The hazard function

ℎ(𝑡) = (𝛽/𝛼)(𝑡/𝛼)𝛽−1

[1 + (𝑡/𝛼)𝛽]
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The Log-logistic distribution
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Figure 11: The density function of log-logistic distribution with 𝑢 = 0
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The Log-logistic distribution
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Figure 12: The hazard function of log-logistic distribution with 𝑢 = 0
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The Log-logistic distribution

Show that for 𝑇 ∼ LLogis(𝛼, 𝛽), provided 𝛽 > 𝑟

𝐸(𝑇 𝑟) = 𝛼𝑟 Γ(𝑟/𝛽 + 1)Γ(1 − 𝑟/𝛽)

Beta distribution of the first kind

𝑓(𝑥; 𝛼, 𝛽) = 1
Beta(𝛼, 𝛽) 𝑥𝛼−1 (1 − 𝑥)𝛽−1 0 < 𝑥 < 1

Beta distribution of the second kind

𝑓(𝑥; 𝛼, 𝛽) = 1
Beta(𝛼, 𝛽)

𝑥𝛼−1

(1 + 𝑥)𝛼+𝛽 𝑥 > 0
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The Log-logistic distribution

The logistic and normal distribution have similar shapes

For 𝛽 > 1, the hazard function of log-logistic distribution has the
same characteristic as that of log-normal distribution, i.e. ℎ(0) = 0,
increases to maximum and then approaches 0 monotonically as
𝑡 → ∞.

For 𝛽 < 1, the hazard function is monotone decreasing
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The gamma distribution

The gamma distribution has a pdf of the form

𝑓(𝑡) = 𝜆(𝜆𝑡)𝑘−1 𝑒−𝜆𝑡

Γ(𝑘) 𝑡 > 0

▶ 𝑘 > 0 and 𝜆 > 0
▶ 𝜆−1 → scale parameter
▶ 𝑘 → shape parameter

For 𝑘 = 1, gamma distribution reduces to exponential distribution
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The gamma distribution

Incomplete gamma function

𝐼(𝑘, 𝑥) = 1
Γ(𝑘) ∫

𝑥

0
𝑢𝑘−1 𝑒−𝑢 𝑑𝑢
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The gamma distribution

Survivor function

𝑆(𝑡) = ∫
∞

𝑡

𝜆(𝜆𝑥)𝑘−1 𝑒−𝜆𝑥

Γ(𝑘) 𝑑𝑥

▶ Let 𝜆𝑥 = 𝑡

𝑆(𝑡) = 1
Γ(𝑘) ∫

∞

𝜆𝑡
𝑦𝑘−1 𝑒−𝑘 𝑑𝑦 = 1 − 𝐼(𝑘, 𝜆𝑡)
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The gamma distribution

The hazard function
ℎ(𝑡) = 𝑓(𝑡)

𝑆(𝑡)

▶ For 𝑘 > 1, with ℎ(0) = 0 and lim𝑡→0 ℎ(𝑡) = 𝜆
▶ 0 < 𝑘 < 1, ℎ(𝑡) is monotone decreasing, with

lim
𝑡→0

ℎ(𝑡) = ∞ 𝑎𝑛𝑑 lim
𝑡→∞

ℎ(𝑡) = 𝜆
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The gamma distribution

The distribution with 𝜆 = 1 is called one-parameter gamma
distribution, denoted by 𝐺𝑎(𝑘), and has p.d.f.

𝑓(𝑡) = 𝑡𝑘−1 𝑒−𝑡

Γ(𝑘) 𝑡 > 0

If 𝑇 follows a gamma distribution with scale parameter 𝜆−1 and
shape parameter 𝑘, then show that 𝜆𝑇 ∼ 𝐺𝑎(𝑘)

▶ Hints. 𝑌 = 𝜆𝑇 and 𝑓𝑌 (𝑦) = 𝑓𝑇 (𝑦/𝜆) |𝑑𝑡/𝑑𝑦|
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The gamma distribution

If 𝑌 ∼ 𝐺𝑎(𝑘) then 2𝑌 ∼ 𝜒2
(2𝑘)

Let 𝑇1, … , 𝑇𝑛 are independent and identical and exponentially
distributed with parameter 𝜆

▶ ∑𝑛
𝑖=1 𝑇𝑖 follows a gamma distribution with parameters 𝜆 and 𝑛

The moment generating function of 𝑌 ∼ 𝐺𝑎(𝑘) is 𝑀(𝜃) = (1 − 𝜃)−𝑘
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The gamma distribution
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Figure 13: Density function of standard gamma distribution
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The gamma distribution
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Figure 14: Hazard function of standard gamma distribution
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Log-Location-scale models

A parametric location-scale model for a random variable 𝑌 on
(−∞, ∞) is a distribution with p.d.f. of the form

𝑓(𝑦) = (1/𝑏) 𝑓0(𝑦 − 𝑢
𝑏 ) − ∞ < 𝑦 < ∞

▶ −∞ < 𝑢 < ∞, location parameter
▶ 𝑏 > 0, scale parameter
▶ 𝑓0(𝑧) is a specified p.d.f. on (−∞, ∞)
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Log-Location-scale models

The cumulative density function of 𝑌

𝐹(𝑦) = ∫
𝑦

−∞
(1/𝑏) 𝑓0(𝑥 − 𝑢

𝑏 ) 𝑑𝑥

= ∫
(𝑦−𝑢)/𝑏

−∞
𝑓0(𝑧) 𝑑𝑧

= 𝐹0(𝑦 − 𝑢
𝑏 )

Similarly, the survivor function of 𝑌

𝑆(𝑦) = 1 − 𝐹0(𝑦 − 𝑢
𝑏 ) = 𝑆0(𝑦 − 𝑢

𝑏 )
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Log-Location-scale models

The distribution of the standardized variable 𝑍 = (𝑌 − 𝑢)/𝑏
▶ Probability density function of 𝑍

𝑓𝑍(𝑧) = 𝑓𝑌 (𝑦 − 𝑢
𝑏 ) ∣𝑑𝑦

𝑑𝑧 ∣ = (1/𝑏) 𝑓0(𝑧) (𝑏) = 𝑓0(𝑧)

▶ Survivor function of 𝑍

𝑆𝑍(𝑧) = ∫
∞

𝑧
𝑓0(𝑥) 𝑑𝑥 = 𝑆0(𝑧)

▶ Cumulative density function of 𝑍

𝐹𝑍(𝑧) = 𝐹0(𝑧)
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Log-Location-scale models
There is an one-to-one correspondence between some lifetime and
log-lifetime distributions

Lifetime (𝑇 ) log-Lifetime (𝑌 )
Weibull ⟷ extreme value
log-logistic ⟷ logistic
log-normal ⟷ normal

Parameters of lifetime distributions

scale (𝛼) and shape (𝛽)

Parameters of log-lifetime distributions

location (𝑢 = log 𝛼) and scale (𝑏 = 1/𝛽)
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Log-Location-scale models

For the standardized log-lifetimes 𝑍 = (𝑌 − 𝑢)/𝑏

The density, cumulative density, and survivor functions can be
expressed in terms of 𝑓0(⋅), 𝐹0(⋅), and 𝑆0(⋅), respectively

For example, the survivor functions of log-lifetimes are defined as

𝑆0(𝑧) = exp(−𝑒𝑧) ⟶ extreme value
𝑆0(𝑧) = 1 − Φ(𝑧) ⟶ normal
𝑆0(𝑧) = (1 + 𝑒𝑧)−1 ⟶ logistic
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Log-Location-scale models

Using the transformation 𝑇 = exp(𝑌 ), lifetime distributions can be
obtained from each of the distributions of location-scale family

𝑆𝑇 (𝑡) = 𝑃 (𝑇 ≥ 𝑡)
= 𝑃(log 𝑇 ≥ log 𝑡)

= 𝑆0( log 𝑡 − 𝑢
𝑏 )

= 𝑆⋆
0(( 𝑡

𝛼)
𝛽
)

▶ 𝑆⋆
0(𝑥) = 𝑆0(log 𝑥)
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Log-Location-scale models

Obtain the survivor function of 𝑇 ∼ Weib(𝛼, 𝛽) from 𝑌 ∼ 𝐸𝑉 (𝑢, 𝑏)

𝑆(𝑡) = 𝑆⋆
0((𝑡/𝛼)𝛽)

= 𝑆0( log (𝑡/𝛼)𝛽)

= exp ( − 𝑒log(𝑡/𝛼)𝛽

)

= exp ( − (𝑡/𝛼)𝛽)

Similarly, obtain the expressions of survivor function of log-logistic
and log-normal distribution using the relationship 𝑆(⋅) = 𝑆⋆

0(⋅)
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Subsection 4

1.4 Regression models
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Regression models

Regression models are used to understand the relationship between
lifetime and a set of covariates (e.g. age, gender, disease status,
values of bio-markers, etc.), some of which may depend on time

Regression models considered for lifetimes can be divided into two
broad categories

▶ parametric models
▶ semiparametric models
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Parametric regression models

Parametric models discussed in this chapter (e.g. Weibull, log-logistic,
etc.) can be considered for modeling lifetime

In parametric regression model, one of the parameters of the assumed
lifetime distribution is expressed as a function of available covariates
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Parametric regression models

Let 𝑇 be the lifetime and x = (𝑥1, … , 𝑥𝑝)′ be the available 𝑝
covariates

Assume 𝑇 ∼ Exp(𝜃) and since 𝜃 > 0, a reasonable model for 𝜃 would
be

𝜃(x) = exp (𝛽′x), 𝑤ℎ𝑒𝑟𝑒 𝛽 = (𝛽1, … , 𝛽𝑝)′

The model specification 𝜃(x) = exp (𝛽′x) ensures 𝜃(x) ≥ 0 for any
set of values of 𝛽 and x

For the given set of covariates x, the survivor function is defined as

𝑆(𝑡 | x) = exp(−𝑡/𝜃(x))
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Parametric regression models

If 𝑌 = log 𝑇 follows a distribution of location-scale family, the model
𝑢(x) = 𝛽′x would be useful, −∞ < 𝑢(x) < ∞
The corresponding survivor function has the form

𝑆𝑌 (𝑦 | x) = 𝑃 (𝑌 ≥ 𝑦 | x) = 𝑆0(𝑦 − 𝑢(x)
𝑏 )

▶ For example, if 𝑆0(⋅) is the survivor function of standard normal
distribution, then the model 𝑢(x) = 𝛽′x represents the multiple linear
regression model!
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Semiparametric regression models

In semiparametric regression model, the dependence of 𝑌 or 𝑇 on x
is specified by a parametric function without making any
distributional assumption regarding 𝑌 or 𝑇
For lifetime data, the most famous semiparametric regression mode is
Cox’s proportional hazards model (Cox 1972)

Cox’s model cosiders the hazard function of 𝑇 given x of the form

ℎ(𝑡 | x) = ℎ0(𝑡) exp(𝛽′x)

▶ ℎ0(𝑡) ⟶ arbitrary “baseline” hazard function
▶ Time-dependent covariates can be included in Cox’s proportional

hazards model
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Exercises

1 Obtain graphs of probability density, survivor, and cumulative hazard
functions of the following distributions using R codes.

(a) Weibull distribution with (i) scale parameter 10, and shape parameter
1.5 and (ii) scale parameter 10, and shape parameter 0.95

(b) Logistic distribution with (i) location parameter 10 and scale
parameter 1.5 and (ii) location parameter 10 and scale parameter 0.75
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