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Section 1

0. Linear Regression Models
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Subsection 1

0.1 Multiple Linear Regression Models
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Multiple Linear Regression Models

Let {(𝑦𝑖, 𝑥𝑖1, … , 𝑥𝑖𝑝), 𝑖 = 1, … , 𝑛} be the data obtained from the 𝑖𝑡ℎ

subject
▶ 𝑦𝑖 → response
▶ 𝑥𝑖𝑗 → 𝑗𝑡ℎ independent variable
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Multiple Linear Regression Models

A multiple linear regression model

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖𝑗

In matrix notation
y = x′𝛽 + 𝜖

▶ y = (𝑦1, … , 𝑦𝑛)′

▶ x → 𝑛 × (𝑝 + 1) matrix with first column is a vector of one’s
▶ 𝛽 = (𝛽0, 𝛽1, … , 𝛽𝑝)′

▶ 𝜖𝑖𝑗 → error term
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Multiple Linear Regression Models

General assumptions
▶ 𝜖’s are independent
▶ 𝐸(𝜖𝑖𝑗) = 0
▶ 𝑉 (𝜖𝑖𝑗) = 𝜎2

▶ 𝜖𝑖𝑗 ∼ 𝑁(0, 𝜎2)
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Multiple Linear Regression Models

The fitted model

̂𝑦𝑖 = ̂𝛽0 + ̂𝛽1𝑥𝑖1 + ⋯ + ̂𝛽𝑝𝑥𝑖𝑝

▶ Ordinary least squares or maximum likelihood estimators

�̂� = (x′x)−1x′y

▶ Asymptotically �̂� follows a normal distribution with mean vector 𝛽 and
variance-covariance matrix (x′x)−1𝜎2
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Multiple Linear Regression Models

Residuals
̂𝜖 = y − ŷ

▶ Estimate of error variance

�̂�2 = 𝜖′𝜖
𝑛 − 𝑝 − 1

▶ Residuals are used for model diagnostics
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Multiple Linear Regression Models

Statistical inference regarding multiple linear regression models are
based on t-test, F-test, and chi-square test

𝐻01 ∶ 𝛽𝑗 = 0 (𝑗 = 1, … , 𝑝)
𝐻02 ∶ 𝛽1 = ⋯ = 𝛽𝑝 = 0
𝐻03 ∶ 𝛽1 = ⋯ = 𝛽𝑞 = 0 (𝑞 < 𝑝)
𝐻04 ∶ 𝛽1 = ⋯ = 𝛽𝑞 (𝑞 < 𝑝)
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Subsection 2

0.2 An example with data on inheritance of height

Linear Regression Review 11 / 57



Inheritance of height

During 1893–1898 in the UK, K. Pearson (a famous statistician)
organized the collection of heights of 1375 mothers aged 65 or less
and one of their adult daughters aged 18 or more (Pearson and Lee
1903)

▶ Mother height (𝑥) → predictor
▶ Daughter height (𝑦) → response
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Does taller mother tend to have taller daughter?

Assumed model “Daughter height on mother height”

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖
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Inheritance of height

The data heights
library(alr4)
data("Heights")

Transform Heights from data.frame() to tibble()
heights <- as_tibble(Heights)
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Scatterplot of mother height and daughter height

ggplot(heights) +
geom_point(aes(mheight, dheight), size = .75) +
theme_bw()
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Scatterplot of mother height and daughter height
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Subsection 3

0.3 Model fit

Linear Regression Review 17 / 57



lm()

lm() is the most popular R function to fit linear model (with
continuous response)

▶ A typical syntax of lm() function lm(formula, data), which returns
a list

For example, codes for fitting the model “Daughter height on mother
height”

mod_h <- lm(formula = dheight ~ mheight,
data = heights)
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lm()

Elements of lm() output object contain useful objects related to the
corresponding fit of linear model

names(mod_h)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

mod_h$coefficients

(Intercept) mheight
29.917437 0.541747
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lm()

Elements of lm() output object contain useful objects related to the
corresponding fit of linear model

names(summary(mod_h))

[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

summary(mod_h)$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 29.917437 1.62246940 18.43945 5.211879e-68
mheight 0.541747 0.02596069 20.86797 3.216915e-84
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lm()

Output of lm() object can also be used as an argument of some
useful functions, such as

▶ coefficients() returns the estimates of regression parameters
▶ residuals() returns associated residuals (there are different types of

residuals, use type argument to specify this)
▶ fitted() returns fitted values corresponding to the predictor values of

the data
▶ anova() returns ANOVA table
▶ summary() returns objects related to linear model fits, some of them

are not included in the lm() object
▶ confint() returns confidence intervals of the regression parameters
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Subsection 4

0.4 broom package
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broom

Most of the built-in R objects related to model fits (e.g. lm(),
t.test(), etc.) require tidy data as input, but its outputs are messy
(not tidy), which cannot be used as input for the methods of
tidyverse

▶ e.g. lm() returns a list, not a data frame

broom package has functions that transform messy data into tidy
data, which are used as inputs of different tidyverse functions, such
as ggplot(), kable(), etc.
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broom

broom has three functions that takes model fit object as an argument
and returns a tibble (tidy data)

▶ glance() returns a signle row summary of the model fit, which
contains estimates of coefficient of determination, error variance, etc.

▶ tidy() returns different values corresponding to each parameter, such
as estimates, t-stat, p-value, etc.

▶ augment() returns fitted information corresponding to each
observations, e.g. residuals, fitted values, SE of fitted values, etc.
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glance()

Single row summary of the model fit
glance(mod_h)

# A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.241 0.240 2.27 435. 3.22e-84 1 -3075. 6156. 6172.
# i 3 more variables: deviance <dbl>, df.residual <int>, nobs <int>
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tidy()

Summary of the parameter estimates
tidy(mod_h)

# A tibble: 2 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 29.9 1.62 18.4 5.21e-68
2 mheight 0.542 0.0260 20.9 3.22e-84
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augment()

Observation-wise values of model fit
augment(mod_h) %>%

slice(1:6)

# A tibble: 6 x 8
dheight mheight .fitted .resid .hat .sigma .cooksd .std.resid

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 55.1 59.7 62.3 -7.16 0.00172 2.26 0.00862 -3.16
2 56.5 58.2 61.4 -4.95 0.00310 2.26 0.00743 -2.19
3 56 60.6 62.7 -6.75 0.00118 2.26 0.00523 -2.98
4 56.8 60.7 62.8 -6.00 0.00113 2.26 0.00397 -2.65
5 56 61.8 63.4 -7.40 0.000783 2.26 0.00418 -3.27
6 57.9 55.5 60.0 -2.08 0.00707 2.27 0.00303 -0.923
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Subsection 5

0.5 Model diagnostics
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Model diagnostics

Residual vs fitted (Independence of errors, Constant variance)

Residual vs predictor (Linearity, Zero mean)

Q-Q normal plot of residuals (Normality of error)
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Residual plots

Scatterplot of fitted values and residuals

ggplot(augment(mod_h)) +
geom_point(aes(.fitted, .resid), size = .75) +
labs(x = "fitted", y = "residuals") +
theme_minimal()
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Residual plots
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Residual plots

Scatterplot of predictor and residuals

ggplot(augment(mod_h)) +
geom_point(aes(mheight, .resid), size = .75) +
labs(x = "Mother Ht", y = "residuals") +
theme_minimal()
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Residual plots
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Q-Q normal plot

Using base R functions

qqnorm(residuals(mod_h))
qqline(residuals(mod_h))
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Q-Q normal plot
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Q-Q normal plot

For Q-Q plot, ggplot2 functions stat_qq() and stat_qq_line()
can be used

ggplot(augment(mod_h), aes(sample = .resid)) +
stat_qq() +
stat_qq_line() +
theme_minimal()
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Q-Q normal plot
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Summary

lm() function is used to fit the models

Functions of broom package can be used to obtain tidy data from the
output of lm() function, which is usually messy

Output of functions of broom package can be used as arguments of
ggplot and other tidyverse functions
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Exercise

Using the FEV data (Download the FEV data), fit the following
models and perform the model diagnostics

1 fev on Age

2 fev on Age and Hgt
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Subsection 6

0.6 Regression models with categorical predictors
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Regression models with categorical predictors

In general, for a predictor with two levels, define a dummy or binary
variable that takes the values 1 and 0 corresponding to the two levels
of the original variable

▶ For example, if the variable 𝑋 has the levels “male” and “female”, we
can define a dummy variable 𝐷 such that

𝐷 = {1 if 𝑋 = male
0 if 𝑋 = female

▶ The level “female” is considered as the “reference” category in this case
▶ Dummy variable can also be defined with “male” as the reference

category
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Regression models with categorical predictors

The model “𝑌 on 𝑋” can be expressed in terms of “𝐷” as

𝐸(𝑌 | 𝐷) = 𝛽0 + 𝛽1𝐷

▶ 𝛽0 = 𝐸(𝑌 | 𝐷 = 0)
▶ 𝛽1 = 𝐸(𝑌 | 𝐷 = 1) − 𝐸(𝑌 | 𝐷 = 0)

Interpretations of regression parameters depend on the reference
category considered
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Regression models with categorical predictors

For a categorical variable with more that two categories, more than
one dummy variables needed to be defined

Let 𝑋 be a categorical variable with three categories, say “poor”,
“middle”, and “rich”

▶ To consider 𝑋 as a predictor, two dummy variables need to be defined

𝐷1 = {1 if 𝑋 = poor
0 otherwise

𝐷2 = {1 if 𝑋 = middle
0 otherwise

▶ In this case, the category “rich” is considered as the reference category
and dummy variables can be defined with other category as the
reference
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Regression models with categorical predictors

The regression model “𝑌 on 𝑋”, where 𝑋 has three categories can
be defined as

𝐸(𝑌 | 𝐷1, 𝐷2) = 𝛽0 + 𝛽1𝐷1 + 𝛽2𝐷2

▶ 𝛽0 = 𝐸(𝑌 | 𝐷1 = 0, 𝐷2 = 0)
▶ 𝛽1 = 𝐸(𝑌 | 𝐷1 = 1, 𝐷2 = 0) − 𝐸(𝑌 | 𝐷1 = 0, 𝐷2 = 0)
▶ 𝛽2 = 𝐸(𝑌 | 𝐷1 = 0, 𝐷2 = 1) − 𝐸(𝑌 | 𝐷1 = 0, 𝐷2 = 0)
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Subsection 7

0.7 Interaction
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Regression models with one categorical and one continuous
predictors

Consider a regression model “𝑌 on 𝑋1 and 𝑋2”, where 𝑋1 has two
levels (“male” and “female”) and 𝑋2 is continuous (say age in years)

Define a dummay variable for 𝑋1
▶ 𝐷1𝑀 = 𝐼(𝑋1 = Male)
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Regression models with one categorical and one continuous
predictors

Consider the models

(1) 𝐸(𝑌 | 𝐷1𝑀 , 𝑋2) = 𝛽0 + 𝛽1𝐷1𝑀 + 𝛽2𝑋2
(2) 𝐸(𝑌 | 𝐷1𝑀 , 𝑋2) = 𝛽0 + 𝛽1𝐷1𝑀 + 𝛽2𝑋2 + 𝜃𝐷1𝑀𝑋2

How would you interpret the parameters in model (1)?
How would you interpret 𝜃 in model (2)?
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Regression models with one categorical and one continuous
predictors

(2) 𝐸(𝑌 | 𝐷1𝑀 , 𝑋2) = 𝛽0 + 𝛽1𝐷1𝑀 + 𝛽2𝑋2 + 𝜃𝐷1𝑀𝑋2

= {𝛽0 + 𝛽2𝑋2 for female
(𝛽0 + 𝛽1 + (𝛽2 + 𝜃)𝑋2 for male

𝛽0 → mean response of female of age 0

𝛽1 → difference of mean response between male and female when
both of them at age of 0

𝛽2 → change of mean response for 1 year change in age for female

𝜃 → difference in the change of the mean response between males
and females when their age changes by 1 year

▶ it represents how the effect of age differs between males and females

Linear Regression Review 48 / 57



Regression model with two categorical variables

Consider a regression model “𝑌 on 𝑋1 and 𝑋2”, where 𝑋1 has two
levels (“male” and “female”) and 𝑋2 has three levels (“poor”,
“middle”, and “rich”)

Define the dummy variables for the categorical variables 𝑋1 and 𝑋2
▶ For 𝑋1, 𝐷1𝑀 = 𝐼(𝑋1 = male)
▶ For 𝑋2, 𝐷21 = 𝐼(𝑋2 = poor) and 𝐷22 = 𝐼(𝑋2 = middle)
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Regression model with two categorical variables

Model 1

𝐸(𝑌 | 𝐷1𝑀 , 𝐷21, 𝐷22) = 𝛽0 + 𝛽1𝐷1𝑀 + 𝛽21𝐷21 + 𝛽22𝐷22

𝛽0 → mean response of rich female individuals
𝛽1 → mean difference between male and female when 𝑋2 is fixed
𝛽21 → mean difference between poor and rich when 𝑋1 is fixed
𝛽22 → mean difference between middle and rich when 𝑋1 is fixed
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Regression model with two categorical variables

Model 2
The “Model 2” contains both main effects and interactions

𝐸(𝑌 | 𝐷1𝑀 , 𝐷21, 𝐷22) = 𝛽0 + 𝛽1𝐷1𝑀 + 𝛽21𝐷21 + 𝛽22𝐷22

+ 𝜃1𝐷1𝑀𝐷21 + 𝜃2𝐷1𝑀𝐷22

▶ 𝛽0 → mean response of rich female individuals
▶ Interpretations of other parameters are complicated!!
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Regression model with two categorical variables

The following table of expected response would help us to define
parameters of “Model 2”

gender Poor Middle Rich
Male 𝛽0 + 𝛽1 + 𝛽21 + 𝜃1 𝛽0 + 𝛽1 + 𝛽22 + 𝜃2 𝛽0 + 𝛽1
Female 𝛽0 + 𝛽21 𝛽0 + 𝛽22 𝛽0

Interpret 𝜃’s
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Regression model with two categorical variables

Difference of mean response between male and female among the
“rich”

𝐸(𝑌 | Male, Rich) − 𝐸(𝑌 | Female, Rich) = 𝛽1

Difference of mean response between male and female among the
“middle”

𝐸(𝑌 | Male, Middle) − 𝐸(𝑌 | Female, Middle) = 𝛽1 + 𝜃1
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Regression model with two categorical variables

Difference in differences (DID)

{𝐸(𝑌 | Male, Middlw) − 𝐸(𝑌 | Female, Middle)}

−{𝐸(𝑌 | Male, Rich) − 𝐸(𝑌 | Female, Rich)} = 𝜃1

Interaction term 𝜃1 measures whether the effect of “gender” is the
same at the levels “Rich” and “Middle”

Similarly, the interaction term 𝜃2 measures whether the effect of
“gender” is the same at the levels “Rich” and “Poor”
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Regression model with two categorical variables

In the presence of significant interactions, the main effects have no
interesting interpretations

Interaction terms should not be in the model if both the
corresponding main effects are not significant

Insignificant interaction terms should not be in the model
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