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Preface to the Second Edition 

The modeling and analysis of lifetimes is an important aspect of statistical work in a 
wide variety of scientific and technological fields. This book provides a comprehen-
sive account of models and methods for lifetime data. 

The field of lifetime data analysis has grown and matured since the first edition of 
the book was published. This second edition has accordingly been rewritten to reflect 
new developments in methodology, theory, and computing. The orientation and phi-
losophy, however, remain close to the first edition. Lifetime data analysis is cov-
ered without concentrating exclusively on any specific field of application, though 
as before most of the examples are drawn from engineering and the biomedical sci-
ences. There is a strong emphasis on parametric models, but non- and semiparametric 
methods are also given detailed treatments. Likelihood-based inference procedures 
are emphasized and serve to unify the methodology; implementation using both spe-
cial lifetime data software, and general optimization software is discussed. 

Extensive developments in software have made it possible to focus less on com-
putational details and simplified methods of estimation than in the first edition, and 
to expand examples and illustrations, Graphical tools now feature more prominently. 
Many new references have been added, and some references and material from the 
first edition thus have been dropped. I have attempted, however, to retain enough 
early references to indicate the origins and evolution of different topics. 

This edition of the book, like the first, is intended to serve as a reference for indi-
viduals interested in the analysis of lifetime data and as a text for graduate courses. 
Several appendices review aspects of statistical theory and computation that underlie 
the methodology presented in the book. A Problems and Supplements section con-
cludes each chapter. There are many statistical software packages with capabilities 
in lifetime data analysis, and I have not attempted to provide an overview or com-
parison. Most of the examples were prepared using S-Plus, but other packages could 
have been used. Brief Computational Notes are provided at the ends of most chap-
ters. Data sets discussed in the book are almost all either given or identified as being 
available electronically from Web locations mentioned in Appendix G, 

There has been a small reorganization of topics from the first edition, consisting 
mainly of an expanded discussion of observation schemes and censoring (now in a 
new Chapter 2), and an expanded treatment of multiple failure modes (now given in 

XV 
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a separate Chapter 9). Several new topics have been introduced, including counting 
process-martingale tools, re ;ampling and simulation methodology, estimating func-
tion methods, treatments of interval censored and truncated data, and discussions of 
multivariate lifetimes and event history models. In addition, material on many other 
topics has been updated and extensively revised, as have the Problems and Supple-
ments sections. 

To keep the book at a masonable length I have had to omit or merely outline 
certain topics that might have been included. Some such topics are mentioned in the 
Bibliographic Notes that have been introduced at the ends of chapters, or in the Prob-
lems and Supplements sections. Statistical science encyclopedias (e.g. Kotz et al. 
1988; Armitage and Colton 1998) are valuable sources of further information on 
a wide 1.ange of topics associated with lifetime data. Web-based tools for locating 
resource materials also =Icy it relatively easy to research topics not covered in the 
hook, 

Chapter I contains introductory material on lifetime distributions and surveys 
important models, Chapter 2 deals with observation schemes for lifetime data and 
the Ibrmation of likelihood functions. Chapter 3 discusses graphical methods and 
nonparametric estimation of distribution characteristics based on different types of 
lifetime data. Chapter 4 introduces inference procedures for parametric models, 
including exponential, gamma, inverse Gaussian, and Mixture models. Chapter 5 
provides corresponding procedures for log-location-scale models and extensions to 
them; the Weibull, log-normal and log-logistic models are treated in detail. Chap-
ter 6 discusses regression models, exploratory and diagnostic methods, and develops 
inference procedures for parametric models. Chapter 7 deals with semiparametric 
methodology for proportional or multiplicative hazards models, Chapter 8 presents 
rank-based and setniparametric procedures based on location-scale models. Chap-
ter 9 gives a thorough treatment of multiple failure modes, or competing risks. 
Chapter 10 discusses goodness-of-fit tests and describes procedures for specific 
models in the book. Finally, Chapter II introduces several important topics that 
go heyond univariate survival analysis: multivariate lifetime models, sequences of 
lifetimes, event history proce.ises, bind joint models for lifetimes and coprocesses. It 
is shown how the methods of previous chapters can be applied to Many problems in 
these areas. 

I am indebted. to various ildividuals for their contributions to this edition of the 
book. Ker-Ai Lee and Melanie Wigg assisted with computing and the preparation 
of examples. Some example; are based on joint work with Richard Cook, Jack 
Kalbfleisch, and graduate sti . dent Wenqing He. I have benefitted for many years 
from collaboration and conversations with Richard Cook, Jack Kalbfleisch, and Jock 
MacKay, and from my interactions with numerous fine graduate students at Water-
loo. 

I want to acknowledge and thank Lynda Clarke, who has labored long, hard, and 
expertly on the manuscript, as she did on the first edition of the book 20 years ago. 

The University of Waterloo's Department of Statistics and Actuarial Science has 
provided a stimulating envirooment for research and teaching throughout my career. 
Part of the work for this editior was done during a sabbatical leave spent at University 
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of Auckland (January—March 2000) and at University College London (January—
March 2001); their hospitality is gratefully acknowledged. I also want to acknowl-
edge support over many years from the research grants programs of the Natural 
Sciences and Engineering Research Council of Canada (NSERC), and to thank Gen-
eral Motors Canada for their cosponsorship, with NSERC, of a personal Industrial 
Research Chair. 

Finally, I thank my family and especially my wife, Liz, for her patience and sup-
port during this project. 

JERALD. F. LAWLESS 

Waterloo, Ontario 

April 2002 
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Preface to the First Edition 

The statistical analysis of lifetime or response time data has become a topic of con-
siderable interest to statisticians and workers in areas such as engineering, medicine, 
and the biological sciences. The field has expanded rapidly in recent years, and pub-
lications on the subject can be found in the literatures of several disciplines besides 
statistics. This book draws together material on the analysis of lifetime data and gives 
a comprehensive presentation of important models and methods. 

My aim is to give a broad coverage of the area without unduly concentrating on 
any single field of application. Most of the examples in the book, however, come 
from engineering or the biomedical sciences, where these methods are widely used. 
Tho book contains what I feel are the most important topics in lifetime data method-
ology. These include various parametric models and their associated statistical meth-
ods, nonparametric and distribution-free methods, and graphical procedures. To keep 
the book at a reasonable length I have had to either sketch or entirely omit topics that 
could have usefully been treated in detail. Some of these topics are referenced or 
touched upon in the Problems and Supplements sections at the ends of chapters. 

This book is intended as a reference for individuals interested in the analysis of 
lifetime data and can also be used as a text for graduate courses in this area. A basic 
knowledge of probability and statistical inference is assumed, but I have attempted to 
carefully lay out the models and assumptions upon which procedures are based and 
to show how the procedures are developed. In addition, several appendices review 
statistical theory that may be unfamiliar to some readers. Numerical illustrations 
are given for most procedures, and the book contains numerous examples involving 
real data. Each chapter concludes with a Problems and Supplements section, which 
provides exercises on the chapter material, and supplements and extends the topics 
discussed. For the reader interested in research on lifetime data methodology I have 
given fairly extensive references to recent work and outstanding problems. 

Chapter 1 contains introductory material on lifetime distributions and surveys the 
most important parametric models. Censoring is introduced, and its ramifications for 
statistical inference are considered. In Chapter 2 some methods of examining uni-
variate lifetime data and obtaining nonparametric estimates of distribution charac-
teristics are discussed; life tables and graphical procedures play key roles. Chapters 

xix 
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3, 4, and 5 deal with in"erence for important parametric models, including the expo-
nential, Weibull, gamma, log-normal, and generalized gamma distributions. This is 
extended in Chapter 6 to problems with concomitant variables, through regression 
models based on these distributions. Chapters 7 and 8 present nonparametric and 
distribution-free procedures: Chapter 7 deals with methods based on the propor-
tional hazards regression model, and Chapter 8 gives distribution-free procedurés 
for single- and many-sample problems. Goodness-of-fit tests for lifetime distribution 
models are considered in Chapter 9. Chapter 10 contains brief discussions of two 
important topics for which it was not feasible to give extended treatments: multi-
variate and stochastic rocess models, Several sections in this book are marked with 
asterisks; these contain liscussions of a technical nature and can be omitted on a firSt 
reading. 

A final remark concerning the methods presented is that the computer is, as always 
in modern statistics, a useful if not indispensible tool. For some problems, methods 
that do not require a co nputer are available, but more often access to a computer is 
a necessity, 1 have corn nented, wherever possible, on the computational aspects' of 
procedures and have included additional material on computation in the Appendice, 

Part of the work for  the book was done during a sabbatical leave spent at Imperial 
College, London, and the University of Reading from 1978 to 1979; their hospital-
ity is gratefully acknowledged. I would also like to express my appreciation to two 
extremely tine typists, Annemarie Nittel and Lynda Hohner, who labored long and 
diligently in the preparation of the manuscript. 

J. F, LAWLESS 

Waterloo, Ontario 

how 1981 
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CHAPTER 1 

Basic Concepts and Models 

1.1 INTRODUCTION 

The statistical analysis of what are variously referred to as lifetime, survival time, 
or failure time data is an important topic in many areas, including the biomedical, 
engineering, and social sciences. Applications of lifetime distribution methodology 
range from investigations of the durability of manufactured items to studies of human 
diseases and their treatment. Some methods of dealing with lifetime data are quite 
old, but starting about 1970 the field expanded rapidly with respect to methodology, 
theory, and fields of application. Software packages for lifetime data analysis have 
been widely available since about 1980, with the frequent appearance of new features 
and packages. 

This book presents and illustrates statistical methods for modeling and analyzing 
lifetime data. The aim is to provide a general treatment, and not focus exclusively on 
a particular field of application . Lifetime distribution methodology is widely used in 
the biomedical and engineering sciences, however, and most of the examples in the 
book come from those areas. 

Throughout the book various types of data will, for convenience, be referred to as 
"lifetime" data. Basically, however, we consider situations in which the time to the 
occurrence of some event is of interest for individuals in some population. Some-
times the events are actual deaths of individuals and "lifetime" is the length of life 
measured from some particular starting point. In other instances "lifetime" and the 
words "death" or "failure," which denote the event of interest, are used in a figura-
tive sense. In discussing applications, other terms such as "survival time" and "failure 
time" are also frequently used. 

The following examples illustrate some ways in which lifetime data arise. 

Example 1.1.1. Manufactured items with mechanical or electronic components 
are often subjected to life tests in order to obtain information on their durability. This 
involves putting items in operation, often in a laboratory setting, and observing them 
until they fail. It is common here to refer to the lifetimes as "failure times," since 
when an item ceases operating satisfactorily, it is said to have "failed." 

1 



2 	 BASIC CONCEPTS AND MODELS 

Example 1.1.2. Demographers and social scientists are interested in the dura-
tion of certain life "states" t'or humans. Consider, for example, marriage and, in par-
ticular, the marriages formed during the year 1980 in a particular country. Then the 
lifetime of a marriage would be its duration; a marriage may end due to annulment, 
divorce, or death. 

Example 1.1.3. in medical studies dealing with potentially fatal diseases one 
is interested in the survival time of individuals with the disease, measured from the 
date of diagnosis or some other starting point. For example, it is common to compare 
treatments for a disease at least partly in terms of the survival time distributions for 
patients receiving the different treatments. 

Example 1.1.4. A standard experiment in the investigation of carcinogenic sub-
stances is one in which laboratory animals are subjected to doses of the substance 
and then observed to see if they develop tumors. A main variable of interest is the 
time to appearance of a tumor, measured from when the dose is administered. 

The definition of lifetimr. includes a time scale and time origin, as well as a speci-
fication of the event (e.g., ftilure or death) that determines lifetime, In some settings 
it is difficult to say precisely when the event occurs: for example, this is the case 
for the appearance of a tumor in Example 1.1.4. The time scale is not always real 
or chronological time, especially where machines or equipment are concerned. For 
example, mile driven migir be used as a time scale with motor vehicles, and number 
of pages of output for a computer printer or photocopier. 

The main problems addressed in this book are those of specifying models to rep-
resent lifetime distributions and of making inferences based on these models. The 
objectives of modeling and statistical analysis include description or estimation of 
distributions, comparison of distributions, furthering scientific understanding, pro-
cess or system improveme:it, prediction, and decision, Covariates or explanatory 
variables that can be related to lifetime usually feature prominently in these activ-
ities, In some settings there may be more than one lifetime variable assOciated with 
an individual, or an individual may die in different ways. The types of models used 
in lifetime data analysis range from fully parametric to nonparametric; semipara-
metric models that have both parametric and nonparametric features are common. 
The remaining sections of this chapter introduce lifetime models, but first we discuss 
some additional features and examples of lifetime data. 

The chronological time needed to observe the lifetimes of all individuals in a study 
may be large enough that practical constraints prevent full observation. This leads 
to what is termed "censorir g," in which an individual's lifetime is known only to 
exceed a certain value. In Example 1.1.1, for example, a life test might be terminated 
after, say, 28 days; if an item had not failed by that time, we would know only that 
its lifetime exceeded 28 days and refer to that value as a "censoring time." More 
generally, it may not be possible to determine exactly when a failure or death occurs, 
because individuals are seer only at certain times, In that case, we may know only 
that a lifetime lies in some interval (L, R); we refer to this as "interval censoring." 
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Another complication is that covariates associated with lifetime data may vary over 
time, and it may not be possible to observe their values at all times. 

These and other features associated with lifetime data create interesting problems 
for analysis, and much of the development of the subject has been devoted to dealing 
with them. Chapter 2 considers these issues in detail. The remainder of this chapter 
covers the basic concepts of lifetime distributions and introduces important mod-
els. Section 1.2 discusses lifetime distributions generally, and Section 1.3 introduces 
important parametric univariate models. Sections 1.4 to 1.6 discuss more complex 
models involving covariates, multiple lifetimes, and multiple types of failure. Before 
turning to this, we consider a few examples of lifetime data, to illustrate some of the 
points just mentioned. 

Example 1.1.5. Nelson (1972a) described the results of a life test experiment in 
which specimens of a type of electrical insulating fluid were subjected to a constant 
voltage stress. The length of time until each specimen failed, or "broke down," was 
observed. Table 1.1 gives results for seven groups of specimens, tested at voltages 
ranging from 26 to 38 kilovolts (kV). 

The main purpose of the experiment was to investigate the distribution of time to 
breakdown for the insulating fluid and to relate this to the voltage level. Quite clearly, 
breakdown tithes  tend to decrease as the voltage increases. In addition to the formu-
lation of a model relating breakdown times and voltage, the estimation of the break-
down time distribution at a "normal" voltage of 20 kV was important. Breakdown 
times tend to be very large at 20 kV, and this involves a substantial extrapolation 
from the experimental data. 

The experiment in Example 1.1.5 was run long enough to observe  the failure of 
all the insulation specimens tested. Sometimes it may talce a !wig time for all items 
to fail, and it is deemed necessary to terminate a study before this can happen. In this 
case, the lifetimes of certain items are censored. For example, if a decision had been 

Table 1.1. Times to Breakdown (in minutes) at Each of Seven Voltage Levels 

Voltage Level (kV) 	ni 	 Breakdown Times 

26 	 3 	5.79, 1579.52. 2323.7 
28 	 5 	68.85, 426.07, 110.29, 108.29, 1067.6 
30 	 II 	17.05, 22.66, 21.02, 175.88, 139.07, 144.12, 20.46, 43.40, 

194.90, 47.30, 7.74 
32 	 15 	0.40, 82.85, 9.88, 89.29, 215.10, 2.75, 0.79, 15.93, 3.91, 

0.27, 0.69, 100.58, 27.80, 13.95, 53,24 
34 	 19 	0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27, 33,91, 

32.52, 3.16, 4.85, 2.78, 4.67, 1.31, 12.06, 36.71, 72.89 
36 	 15 	1.97, 0.59, 2.58, 1.69, 2.71, 25,50, 0,35, 0.99, 3.99, 3.67, 

2.07, 0.96, 5.35, 2,90, 13.77 
38 	 8 	0.47, 0,73, 1.40, 0.74, 0.39, 1.13, 0.09, 2.38 



Table 1.2. Lifetimes for 10 Pieces of Equipment 

Item Number 	 I 	2 	3 	4 	5 	6 	7 	8 	9 	10 

Date of installation 	11 June 	21 June 	22 June 	2 July 	21 July 	31 July 	31 July 	1 Aug 	') Aug 	10 Aug 
Date of failure 	13 June 	— 	12 Aug 	— 	23 Aug 	27 Aug 	14 Aug 	25 Aug 	6 Aug 	— 
Lifetime (days) 
	

2 	> 72 	51 	> 60 	33 	27 	14 	24 	4 	> 21  
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made in the preceding experiment to terminate testing after 180 minutes had elapsed, 
then two of the observations in the 26- and 28-kV sample and one each in the 30- 
and 32-kV samples would have been censored. In each case, we would not know the 
exact failure time of the item, but only that it exceeded 180 minutes. 

Censoring arises in lifetime data in a variety of ways and is discussed in detail 
in Chapter 2. The remaining examples in this section all involve censoring of some 
kind. 

Example 1.1.6. Bartholomew (1957) considered a situation in which pieces of 
equipment were installed in a system at different times. At a later date some of the 
pieces had failed and the rest were still in use. With the aim of Studying the lifetime 
distribution of the equipment, Bartholomew gave the data in Table 1.2 for 10 pieces 
of equipment. The first item was installed on June 11 and data were collected up to 
August 31. At that time, three items (numbers 2, 4, and 10) had still not failed, and 
their failure times are therefore censored; we know for these items only that their 
failure times exceed 72, 60, and 21 days, respectively. 

Example 1.1.7. Gehan (1965) and others have discussed the results of a clinical 
trial reported by Freireich et al. (1963), in which the drug 6-mercaptopurine (6-MP) 
was compared to a placebo with respect to the ability to maintain remission in acute 
leukemia patients. Table 1.3 gives remission times for two groups of 21 patients each, 
one group given the placebo and the other the drug 6-MP. 

The starred observations are censoring times; for these patients, the disease was 
still in a state of remission at the end of the study. Censoring is common in clini-
cal trials, since the trial is often terminated before all individuals have "failed." In 
addition, individuals may enter a study at various times, and hence may be under 
observation for different lengths of time. In this trial, individuals entered the study in 
matched pairs at different times and a sequential stopping rule was used to terminate 
the study (Klein and Moeschberger 1997, p. 2). 

Example 1.1.8. Therneau and Hamilton (1997) discussed data that arose in a 
study of persons with cystic fibrosis (Fuchs et al. 1994). These individuals are sus-
ceptible to an accumulation of mucus in the lungs, which leads to pulmonary exacer-
bations and deterioration of lung function. In a clinical trial to investigate the efficacy 
of daily administration of a recombinant form of the human enzym" e DNase I in pre-
venting exacerbations, subjects were randomly assigned to the new treatment (called 
rIONase or Pulmozyme) or a placebo. Subjects, who were exacerbation-free at ran- 

Table 1.3. Lengths of Remission (in weeks) for Two Groups of  Patients" 

6-MP 	6, 6, 6, 6',  7,9*,  10, 10', 11", 13, 16, 17', 19', 20', 22, 23, 25*, 32", 32', 34", 35* 
Placebo 	1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15, 17, 22, 23 

"Stars denote censored observations. 
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Table 1.4. limes to First Pulmonary Exacerbation for 
10 Subjects 

(days)" trt fevb  

168' 1 28,8 
169" 1 64.0 
65 0 67.2 

168" I 57.6 
171 .  0 57.6 
166.  1 25,6 
168 .  0 86.4 
90 0 32.0 

169" 1 86.4 
8 0 28.8 

"Starred values are censoring times, 

/ley measure IF percent of predicted normal  fey, based on sex, age, 
and height, 

domization, were followed for approximately 169 days and the days at which an 
exacerbation period started were noted. When an exacerbation spell began, a subject 
was given antibiotics, and after the exacerbation had disappeared the subject was 
then considered at risk for it new exacerbation. Consequently, some subjects had no 
exacerbations over the 169-day follow-up period, some had one, and some had two 
or more. 

There were 324 subject:: assigned to the Placebo group by randomization, and 
321 to the rhDNase group. The objective was to compare the two groups in terms of 
the avoidance of exacerbati -ins, The simplest comparison is to note that 139 (43%) 
of Placebo subjects had at least one exacerbation and that 104 (32%) of rhDNase 
subjects did. A more comp:eliensive  comparison can be based on the time t to the 
first exacerbation after rand mnization. Table 1,4 shows data for ten subjects: failure 
time t and two covariates, lit (= 0 for Placebo and 1 for rhDNase) and fey (forced 
expiratory volume at the time of randomization, which is a measure of initial pul-
monary function). A still ir ore comprehensive analysis might also use the data on 
second and subsequent exacerbations; this topic is discussed in Chapter 11. 

Example 1.1.9. Table LS presents survival data on 40 advanced lung cancer 
patients, taken from a study discussed by Prentice (1973). The main purpose of 
the study was to compare t:ie effects of two chemotherapy treatments in prolong-
ing survival time. All patien ts represented here received prior therapy and were then 
randomly assigned to one o the two treatments, termed "standard" and "test." Sur-
vival times t, measured from the start of treatment for each patient, are recorded in 
Table 1.5. Censored observvtions correspond to patients who were still alive at the 
time the data were collected. Concomitant variables that were thought possibly to 
be important are also shown for each patient. First, patients can have different types 
of tumors; they have been c lassified into four categories (squamous, striall , adeno, 
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Table 1.5. Lung Cancer Survival Data"' 

X1 	 X2 X3  t X1 X2 X3 

411 
126 
118 
82 
8 

25* 
11 

54 
153 
16 
56 
21 

287 
10 

8 
12 

177 
12 

200 
250 
100 

Standard, Squamous 

70 	64 
60 	63 
70 	65 
40 	69 
40 	63 
70 	48 
70 	48 

Standard, Small 

80 	63 
60 	63 
30 	53 
80 	43 
40 	55 
60 	66 
40 	67 

Standard, Adeno 

20 	61 
50 	63 

Standard, Large 

50 	66 
40 	68 
80 	41 
70 	53 
60 	37 

5 
9 
11 
10 
58 
9 
11 

4 
14 
4 
12 
2 

25 
23 

19 
4 

16 
12 
12 
8 
13 

999 
231* 
991 

I 
201 
44 
15 

103* 
2 

20 
51 

18 
90 
84 

164 
19 
43 
340 
231 

Test, Squamous 

90 	54 
50 	52 
70 	50 
20 	65 
80 	52 
60 	70 
50 	40 

Test, Small 

70 	36 
40 	44 
30 	54 

•30 	59 

Test, Aden() 

40 	69 
60 	50 
80 	62 

Test, Large 

70 	68 
30 	39 
60 	49 
80 	64 
70 	67 

12 
8 
7 

21 
28 
13 
13 

22 
36 
9 

87 

5 
22 
4 

15 
4 
11 
10 
18 

"Starred quantities denote censored observations. 

"Days of survival t, performance status xi, age in years x2, and number of months from diagnosis to 
entry into the study to. 

and large). Also given for each patient is a Karnofsky score, or performance status, 
assigned at the time of diagnosis. This is a measure of general medical status on a 
scale of 10 to 90: 10, 20, and 30 mean that the patient is completely hospitalized; 40, 
50, and 60 that he is partially confined to hospital; and 70, 80, and 90 that he is able 
to care for himself. Finally, the age of the patient and the number of months from 
diagnosis of lung cancer to entry into the study are recorded. 

Example 1.1.10. The data in Table 1.6 are from an experiment in which new 
models of a small electrical appliance were being tested (Nelson 1970b), The appli-
ances were operated repeatedly by an automatic testing machine; the lifetimes given 
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Table 1:6. Failure Data for Electrical Appliance Test 

Number 
of Cycles 
to Failure 

Failure 
Code 

Number 
of Cycles 
to Failure 

Failure 
Code 

Number 
of Cycles 
to Failure 

Failure 
Code 

Il  1 958 10 35 15 
2.223 9 7,846 9 2,400 9 
4,329 9 170 6 1,167 9 
3,112 9 3.059 6 2,831 2 
13,403 0 3,504 9 2,702 10 
6,367  1 1 2,568 9 708 6 
2,451 5 2,471 9 1,925 9 
381 6 3,214 9 1,990 9 
I .062 5 3,034 9 2,551 9 
1,594 2 3,034 9 2,761 6 
329 6 49 15 2,565 0 
9,317 6 6,976 9 3,478 9 

here are the number of cycles of use completed until the appliances failed. There are 
two complicating factors: one is that there were many different ways in which an 
appliance could fail: 18 to be exact. Therefore in Table 1.6 each observation has a 
failure code beside it. Numbers 1 through 18 refer to the 18 different possible causes 
of failure for the appliance.  addition, some of the observations were censored, 
since it was not always possible to continue testing long enough for an appliance to 
fail, Appliances that have censored failure times are indicated in Table 1.6 as having 
a failure code  oft). 

The joint distribution of failure times and failure modes is of interest. This can 
be used to help plan further development and testing of the appliance, The failure 
time distribution will•change as the appliance is deVeloped, and product improve-
ments effectively remove cei tain causes of failure. In the final stages, the failure time 
distribution model can be used to predict the implications of a warranty plan for the 
appliance ,  

The preceding examples ;how some of the ways in which lifetime data arise and 
sonic of the questions that such data hope to answer. We now leave the discussion of 
data for the time being and ;:uni to an examination of statistical models for lifetime 
distributions. 

1.2 LIFETIME DISTRIItUTIONS 

1.2.1 Continuous Models 

We begin by considering the case of a single continuous lifetime variable, T. Specifi-
cally, let T be a nonnegative random variable representing the lifetimes of individuals 
in some population. 
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All functions, unless stated otherwise, are defined over the interval [0, co). Let 
f (t) denote the probability density function (p.d.f.) of T and let the (cumulative) 
distribution function (c.d.f.) be 

F(t) = Pr(T t) = 	f (x) dx. 
Jo 

The probability of an individual surviving to time t is given by the survivor function 

oo 
S(t) = Pr (T 1) = f f (x) dx. 	 (1,2.1) 

In some contexts involving systems or lifetimes of manufactured items, SW is 
referred to as the reliability function. Note that S(t) is a monotone decreasing con- 
tinuous function with 5(0) = 1 and S(co) = lim,.  S(t) = O. Occasionally we 
may wish to allow S(co) > 0 to consider settings where some individuals never fail; 
these will be treated as special cases, 

The pth quantile of the distribution of T is the value tp  such that 

Pr(T  ti,) = p, 

That is, tp  = F-1  (p). The pth quantile is also referred to as the 10Opth percentile 
of the distribution. The .5 quantile is called the median of the distribution. 

A very important concept with lifetime distributions is the hazard function h(t), 
defined as 

h(t) = EM 

	

At -■ 0 	 At 

Pr(t < T  <t AtIT >  t)  

f (t) 
= 	, 	 (1.22) 

S(t) 

The hazard function specifies the instantaneous rate of death or failure at time t, 
given that the individual survives up to t; h(t) At is the approximate probability of 
death in [t, t + At), given survival up to t. The hazard function is sometimes given 
other names, among them the hazard rate and the force of mortality. 

The functions f (t), F(1), S(t), and h(t) give mathematically equivalent specifi-
cations of the distribution of T It is easy to derive expressions for S(t) and f (t) in 
terms of h(t); since f (t) = —S'(t), (1.2.2) implies that 

h(x) = --
d 

log 5(x). 
dx 

Thus 

log S(x)1 10  = — 	h(x)dx, 
0 
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and since S(0) = 1, we find that 

S(t) = exp (— f h(x)dx) 	 (1.2,3) 

Ills also useful to define the cumulative hazard function 

H (t) = f h(x) dx, 
Jo 

which, by (1.2.3), is related to the survivor function by S(t) = exp[— 	If 
S(oc) = 0, then  H(co) = co. Finally, in addition to (1.2.3), it follows immediately 
from ( I ,2.2) that 

1) = 11(t) exp (— 	h(x)dx) 	 (1,2.4). 

Example 1.2.1. Suppose T has p,d.f. 

f0) = /3 t13-1  exp (--tfl) 	t > 0, 

where 13 > 0 is a parametet ; this is a Weibull distribution, discussed in Section 1.3.2. 
It follows easily &bin (1.2. I) that the survivor function for T .  is S(t) = exp(-0), 
and then from (1.2.2) the h izard function is 1/(0 =  pt'-' 1 .  Conversely, if the model 
is specified initially in terms of h(t), then S(t) and  f0)  are readily obtained from 
(I .2.3) and ( 

1.2.2 Discrete Models 

Sometimes, for example, when lifetimes are grouped or measured as a number of 
cycles of some sort, T may be treated as a discrete randoni variable. Suppose T can 
take on values /1,12, swith 0 < r < t2 < • • and let the probability function 
(p.f.) be 

f(ii)= Pr(T 	= 1,2, 

The survivor function is then 

S(') = Pr(T 	t) = E ,f(t i ). 	 (1,2,5) 

When considered as a function for all t > 0, SW is a left-continuous, nonincreasing 
:;tep  function, with 5(0) = 1 and S(oc) = 0, 
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The discrete time hazard function is defined as 

h(t1) = Pr (T = t IT ti ) 

f (tf) j = 1, 2, 	 (1.2.6) 
SO» 

As in the continuous case, the probability, survivor, and hazard functions give equiv-
.alent specifications of the distribution of T Since  f(ti) = i) — SOi+1), (1.2.6) 
implies that 

S(ti+1) 
h(ti) — 1  

S(ti) 

and thus 

= 11 [1 — hcon• 

An analog of the continuous H (t) could be defined two ways in the discrete case. 
One would be by analogy with (1.2,3), as — log S(t), where S(t) is given by (1.2.8). 
It is easily seen that this does not equal h(ti ), which is the second analog. 
The next section introduces a way to unify continuous, discrete, and mixed lifetime 
distributions in one framework, and it is the second definition of  H O)  that is adopted. 

1.2.3 A General Formulation 

Continuous, discrete, and mixed distributions can conveniently be treated within a 
single framework. To do this we introduce two types of integrals, called Riemann-
Stieltjes integrals and product integrals. 

Let  G(u) be a nondecreasing, right-continuous function with left-hand limits and 
a finite number of discontinuities in any finite interval, Assume that g(u) = G' (u) 
exists except at points of discontinuity of G and that at points of discontinuity ai we 
have G(ai) — G(ai—) =  g1,  where G (a—) = Jim 0..o G (a — sa). The Riemann-
Stieltjes integral of dG over the interval (a, b)  is then defined as 

f dG(u) = g (u) du + E g» 
(a,b) Ja  

(1.2.9) 

where the first integral on the right side of (1.2.9) is a Riemann integral. We can think 
of dG(u) as equal to g(u) du + G(u) — G (u—). 

In general, a distribution function F(t) = Pr (T < t) is a right-continuous, non-
decreasing function, with jumps at points ai for which Pr (T = ai) = f > 0, 
and p,d,f, f (u) = F1  (u) at points where F(u) is continuous. Then (1.2.9) gives 

(1.2.7) 

(1,2.8) 
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Pr(tr < 7' <' b) as 

F(b) — F (a) =  f  dF(u) 
(a ,b1 

= 
a 	 :a <a 

(12.10) 

If  F(i) is continuous, there we no jump points, and if T has a discrete distribution, 

then F(u) is a step function with f (u) = 0 at all continuity points. Figure 1,1 por-

trays discrete and continuoui: cases for F(t). 
To give a general treatment of the hazard function we introduce the product inte-

gral. Let a =.uo < ui « u„, = b partition (a, b], with Au; = ui — ut_i and 

max (Ani) 0 when pi -÷  no, The product integral of a function dG(u) as defined 
earlier is 

n (1 	dG(tt)) =  11m Fp, 
nt ■ co 

(a,b] 	 1=1 

(1.2,11) 

If G(u) is continuous for all u in  (a,  b], then dG(u) = g (u) du and (1.2.11) gives 

-1- g(U)du) = lim  fl ( 1 -I-  g(u) Aut 	o(Au I)} 
(a .1)1 	 1=1 

„, n i, ±g(111)  
in--. 00 

1=1 

1.0 - 

F (I) 0.5 

0.0 - 

1 	2 	3 
	 o 	5 

	
10 

(I) 0.5 

0.0 

Figure 1.1. Cumulative distribution functions. 
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where o(x) means a function w(x) such that w (x)/x 	0 as x 	O. By noting that 
log(1 + 8(10 Alit} = g(ui) Au, o(Atei) for Au, small and taking the log of the 
product integral, we see that in the continuous case 

+ g(u) du) = exp f g(u) du} , 	 (1.2.12) 
(ah] 	 a 

which relates the product and Riemann integrals. 
If G(u) has jumps at points of  (j = 1, 2, .. ,) of sizes g j, then (1.2.11) gives 

11{1 dG(u)) = nil g(u)du} 	(,+gj ). 	(1.2.13) 
(ah] 	 Cab] 	 Pa<aisb 

Note that if G(u) is a step function, then g(u) = 0 at all continuity points and the 
first term on the right side disappears. 

We are now in a position to consider the hazard function. Let h(u) = ,f (u)/S(u) 
represent the hazard function for T at points where F(u) (or S(u)) is continuous, and 
hi = Pr (T =  a] IT  >  a)  be the discrete hazard values at times aj for which a jump 
in F occurs. The cumulative hazard function is then defined by a Riemann—Stieltjes 
integral of the form (1.2.9): 

11(t) 	dH(u) = f h(u) du -I- E hp 	(1.2.14) 
O 

Given the cumulative hazard function, we can obtain the survivor function through 
the fundamental result that for any sequence of values 0 = tto c ui < 	< u,n  = 1, 

Pr(T 	t) = n  Pr(T >, ut IT 	it; _1). 	 (1,2.15) 
1=t 

Now for Au! = ui — ui_ sufficiently small, rui_i, tit) contains either 0 or 1 jump 
points, and 

Pr (ui_I < T < ut)  
Pr(T 1i1IT u1-1)  = 1 	Pr(T 

= 1 — [I- (ui —) — if(ui_i— )J  o(Atti). 

Therefore by (L2.15) and (1.2.11), 

Pr(T > t) = 	[1 - d H 	 (1.2.16) 
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Note that in (1,2.16) the prof luct integral is over the open interval (0, t) since S(t) = 

P r (T > t) and is left-continuous, whereas. H(u) is right-continuous. Sometimes 

S(t)  is defined as Pr(T > t) and in that case (1.2.16) is replaced with the product 

integral over (0, tl. 

The relationships (1,2.14) and (1.2, I 6) apply to all types of distribution. We get 

(1.2,3) from (1.2,16) in the c:ase of a continuous distribution by using (1.2.12), and 

we get (1.2,8) for a discrete distribution by using (1.2.13). In general (1.2.16) gives 

I 	Pt 

P r (T t)  r  exp — 	h(u) dui n ( I-12 .1). 
pa) <I 

(1.2,17) 

Finally, we note a useful result following immediately from (1.2.16): for a < b, 

P r (T > bIT > a) = [I  _ d li (u)], 	 (1.2.18)  fl 
,b) 

1.2.4 Some Remarks on tie Hazard Function 

The hazard function is a particularly important characteristic of a lifetime distribu-

tion. It indicates the way the r sk of failure varies with age or time, and this is of inter-

est in most applications. Prior information about the shape of the hazard fiinetion can 

help guide model selection. Finally,  if factors affecting an individual's lifetime vary 

over time, it is often essential to approach modeling through the hazard function. 

Figure 1.2 shows hazard fnctions and p.d,f.'s for four continuous distributions. 
The shapes of the hazard functions are qualitatively different; distribution (a) has 
it monotone increasing hazard function, distribution (b) has a monotone decreasing 
hazard function, (a) has a  so called bathtub-shaped, or U-shaped, hazard function, 
and (t1) displays an inverse ba , htub shape. Models with these and other shapes are all 
useful in practice. 11, for example, individuals in a population are followed right from 
actual birth to death, a bathtub-shaped hazard function is often seen. We are familiar 
with this pattern in human populations: after an initial period in which deaths result 
primarily from birth defects or infant diseases, the death rate drops and is relatively 
constant until the age of 30 or so, after which it increases with age .  This pattern also 
manifests itself in other biolo;ieal populations and in populations of manufactured 
items, some of  which contain Jefects. 

Distributions with increasing hazard fOnctions are seen for individuals for whom 
some kind of aging Or wearoui takes place. Also, populations that display a bathtub-
shaped hazard function are sot ieti mes purged of weak individuals ;  leaving a reduced 
population with an increasing hazard function. For example, manufacturers may use 
inspection or a burn-in Process. in which items are subjected to a brief period of oper-
ation before being sent to customers. In this way defective or poor-quality items that 
would fail early Ewe removed 'Tom the population; this frequently leaves a residual 
population that exhibits an inc -easing hazard function. 

Certain types of electronic devices display a decreasing hazard as items with 
defects fall and are removed from the population. Roughly constant hazard functions 
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Figure 1.2. Some hazard and probability density functions. 

tend to occur in stable settings where failure or death is due to random phenomena 
such as shocks or accidents, which are external to the individual. Shape (d) in Fig-
ure 1.2, where  fl (1) first increases to a maximum and then decreases, is encountered 
in many applications, for example, in the case of survival after treatment for cancer, 
where some individuals are cured, and in connection with the duration of marriage. 

In many settings factors or covarlates affecting an individual's lifetime vary 
over time; we refer to them as "time-varying" or "time-dependeht" covariates. For 
example, in life tests of electrical insulation (see Example 1.1.5) the voltage level 
that items are subjected to is sometimes changed over time according to a fixed 
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schedule, In studies of th c at.e at which smokers develop chronic diseases, the type 
and level of smoking for etch individual can vary over time. The duration of a 
marriage (see Example 1,1.'2) may be affected by the presence of children or the 
couple's employment status, both of which can change over time. When there are 
time-varying covariates, it is lsually essential to think about models in terms of their 
hazard functions. We cannot discus S a lifetime's relationship to covariates without 
considering the covariate "history," that is, the values the covariates take over time; 
a generally useful approach is to consider the hazard function at time t conditional 
on previous covarinte values. Subtle issues arise in connection with the modeling 
and interpretation of time-vat ying covariate effects. Discussion is provided in Chap-
ters 6, 7, and 8, and introductory remarks are given in Section 1.4, where regression 
models are discussed. 

1.3 SOME IMPORTANT MODELS 

Various parametric families of models are used in the analysis of lifetime data and the 
modeling of aging or failure processes. Among univariate models, a few distributions 
occupy a central position because of their demonstrated usefulness in a wide range 
of situations. Foremost in tt.is  category are the exponential, Weibull, log-normal, 
log-logistic, and gamma distributions. This section introduces these and some other 
models. 

Sometimes there is information about the aging or failure process in a popula-
tion that sUggests a particular distribution, though this informatibn is rarely specific 
enough to narrow consideration to just one family of models. Some references pro-
viding theoretical motivatior for certain models are provided in the Bibliographic 
Notes section at the end of die chapter. The motivation for using a particular model 
in a given situation is often empirical, it having been found that the model satisfac-
torily describes the distribution of lifetimes in populations like the one under study. 
Convenience of analysis car also be a factor, Section 1.6 provides some general 
remarks on model selection and analysis. 

We make one additional preliminary remark. Models are presented here without 
the inclusion of a so-called threshold parameter, ot guarantee time. Briefly, this is a 
Mile y > 0 before which it is assumed that an individual cannot die. Occasionally 
a situation calls for the inclusion of such a parameter. The distributions considered 
can all be extended to inclucle a threshold parameter by replacing the lifetime t by 

=  t  — 'y, with t' satisfying the restriction t' > O. For example, we consider in 
Section 1.3; I the exponential 'distribution, in which T has p.d.f. (t) = X exp(—Xt), 
with t > O. If El threshold parameter were introduced, the p.d.f. would be 

(t) = Xe 
	 t > y, 

Properties of the latter distribution follow immediately from those of the former, 
since T' = T — ji has p.d.f. exp(—X'), with t' > O. 
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1.3.1 The Exponential Distribution 

The exponential distribution is characterized by a constant hazard function 

h(t) = X 
	

t > 0, 	 (1.3.1) 

where A > 0. The p.d.f. and survivor function are found from (1,2,4) and (1,2.3) to 
be 

f (t) =  Xe"  and S(t) = 	 (1.3.2) 

respectively. The distribution is also often written using the parameterization 9  = 
A 1 ,  in which case the p.d.f. becomes 

f (t) = 	 t > 0. 	 (1.3.3) 

We will sometimes use the notation T 	Exp(0) to indicate that a random variable 
T has distribution (1,3,3). The mean and variance of the distribution are  9 and 0 2 , 
respectively, and the pth quantile is t,  = —9 log(1 — p). The distribution where 

= 1 is called the standard exponential distribution; its p.d.f. is shown in Figure 1.3. 
Clearly, if T has p.d.f. (1.3.2), then AT 	Exp(1). 

Historically, the exponential was the first widely discussed lifetime distribution 
model. This was in part because of the availability of simple statistical methods for 
it. The assumption of a constant hazard function is very restrictive, so the model's 
applicability is fairly limited, Statistical inference under an exponential model is 
considered in Chapter 3. 

1.0 - 

(0 0 . 5  

0.0 - 

0 
	

2 
	

3 

Figure 1.3. The standard exponential p.d.r. 
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1.3.2 The Weibull Distribution 

The Weibull distribution is perhaps the most widely used lifetime distribution model. 
Application to the lifetimes or durability of manufactured items is common, and it 
is used as a model with diverse  types of items, such as ball bearings, automobile 
components, and electrical insulation. It is also used in biological and medical appli-
cations, for example, in studies on the time to the occurrence of tumors in human 
populations or in laboratory animals. 

The Weibull distribution has a hazard function of the form 

Ii(i) = xp(xt)fl- ', 	 (1.3.4) 

where X > () and /3 > 0 are parameters. It includes the exponential distribution as 
the special case where fi = E By (1.2.4) and (1.2.3), the p.d.f. and survivor function 
of Ihe distribution are 

f(t) = A9(Xt)P -1  exp[ - (X1) 4 ] 	t > 0 
	

(1,3.5) 

SO) = expr-(XI)S] 
	

t  >0. 	 (1.3.6) 

The rth moment E (X') of th.; distribution is X-r1(1 + r I P), where 

oc 
(k) = f 	e-u  du 

. o 

is the gamma function (see Appendix B). The mean and variance are thus XT I F (1 + 
I Hi) atid X -2 1F(1 + 2/fi) - F( I + 1113) 2]. 

The Weibull hazard functim is monotone increasing if [3 > 1, decreasing if fi < 
I,  and constant for fi = I.  The model is fairly flexible (see Fig. 1.4) and has been 
found to provide a good description of many types of lifetime data. This and the fact 
that the model has simple exp cssions for the p.d.f. and survivor and hazard functions 
partly account for its populalty. The Weibull distribution arises as an asymptotic 
extreme value distribution (sue Problem 1.12), and in some instances this can be 
used to provide motivation fo -  it as a model. 

The scale parameter a = 	I  is often used in place of X. The pth quantile corre- 
sponding to (1.3.6) is then 

= cYr- log(1 - p)] 1 /t3 , 	 (1.3.7) 

and by putting p = I - e 	.632 into (1.3.7) we see that a is the .632 quantile of 
the distribution. regardless of the value of /3. In some areas, especially in engineering, 
a is termed the characteristic life of the distribution. 

The notation T 	Weib(cy, fi) will occasionally'be used to indicate that a random 
variable T has distribution (1.1.5) with X = 	. The shape of the Weihull p.d.f. and 

k > 0 
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Figure 1.4. Weibull p.d.f.'s and hazard functions for X = 1 and 13 = 0.5, 1.5. and 3.0. 

hazard function depends only on 0, which is sometimes called the shape parameter 
for the distribution. 'Typical p values vary from application to application, but in 
many situations distributions with  fi  in the range 0.5 to 3 are appropriate. Figure 1.4 
shows some Weibull p.d.f.'s and the corresponding hazard functions for X = I and 
several values of fi. Note that the effect of different values of X in Figure 1.4 is 
just to change the scale on the horizontal (t) axis, and not the basic shape of the 
graph. 
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1.3.2.1 The Extreme Value 1)ishibution 
It is convenient at this point to introduce a distribution that is closely related to the 
Weibull distribution, This is the so-called first. asymptotic distribution of extreme 

values, hereafter referred to simply as the extreme value distribution. This distribu-

tion is also sometimes referred to as the Gumbel distribution. Our interest in it arises 

because if T has a Weibull distribution, then log T has an extreme value distribution. 
The p.d.f. and survivor fuvction for the extreme value distribution are, respec-

tively, 

= 	exp [L -2!. _ ex  (Y u)] 
P 	b  

S(Y) = exp [— exp (y  — If  )] 
b 

—co < y < co 	(1.3.8) 

—oo < y < co, 	(1.3.9) 

where b > 0 and u(—oo < u <  oc) are parameters. It is easily seen that if T 
has a Weibull distribution with p.d.f. (1.3.5), then Y = log T has an extreme value 
distribution with b = /3 -1  and u = — log X =  log. In analyzing data it is often 

convenient to work with log lif ;times, so the extreme value distribution is frequently 
encountered, 

We use the notation Y — i171/ (u, b) to indicate that the random variable Y has 
p.d.f. (1.3.8). The extreme value distribution EV (0, 1) with u = 0 and b =•-• 1 is 
termed the standard extreme value distribution. A graph of its p,d.f. is given in Fig-
ure 1.5. Clearly, if Y — EV (u, b) then (Y — u)/b — EV (0, 1). Since u is a location 
and b a scale parameter, value; of u and b different from 0 and 1 do not affect the 
shape of  .1(y),  but only the loc Won and scale. 

Moments of the distribution arc conveniently obtained via the moment generating 
function, For the standard extreme value distribution, this is 

—2 	 0 	 2 

Y 

Figure I.. The suuulard extreme value p.cl.f. 
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00 

M(0) =e0X  exp(x — 
—00 

Letting u = ex , we have 

M(9)  = f u°  e"  du 

The mean of the standard extreme value distribution is found from this to be (I) = 
—y, where y = 0.5772 • • • is known as Euler's constant; the variance is 1'1 (1)— y 2  = 
7r 2 /6 (see Appendix B). The mean and variance of the general distribution (1.3.8) are 
u — yb and (7r 2 /6)b2, since (Y — u)lb has the standard extreme value distribution. 
The pth quantile of (1.3.8) is 

y p  = 	blog[— log(1 — p)1 

which implies that the location parameter u is the .632 pantile. 
The statistical analysis of data under a Weibull distribution model is discussed in 

Chapter 5, and the extreme value distribution is considered further there. 

1.3.3 The Log-Normal Distribution 

The log-normal distribution has been used as a model in diverse applications in engi-
neering, medicine, and other areas. The lifetime T is said to be log-normally dis-
tribtited if Y = log T is normally distributed, say with mean IL, variance a 2 , and 
p.d,f, 

1 I ()) 	\ 21 

(270 1 /2a exP  [ 2 	a 	) 
- 00 G < 00. 

From this the p.d.f. of T = exp Y is easily found to be 

11 (log t — /.4.) 21 
f (t) = 	exp 	 t > 0, 	(1,3.10) 

(27r)I/2at 	[ 2 	a 	) 

The survivor and hazard functions for the log-normal distribution involve the stan-
dard normal distribution function 

	

(1)(x) = 	I 
 _ 

(2)ie'212 du. 
cc, 7n 

The log-normal survivor function is easily seen to be 
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— 1 	(I) ( 1°g t 	, 
) 

(1.3.11) 

and 	hazard function is gi./en as h(t) = f (t)/S(t). 
The hazard function can be shown (see Problem 1.4) to have the value 0 at t = 0, 

increase to a maximum, and then decrease, approaching 0 as t oo. This shape 

arises in many situations, for example, when a population consists of a mixture of 

Probability Density Functions 

2 
	

3 

Hazard Functions 

5 - 	 a= 0.25 

4 - 

2 
(5=0.50 

(7=1.50 

0 	 2 	 3 

Figure 1.6. Log-n twal pci f,'s and hazard functions for rA = 0 and a = 0.25, 0.5, and 1.5. 
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individuals who tend to have short and long lifetimes, respectively. Examples include 
survival after treatment for some forms of cancer, where persons who are cured 
become long-term survivors, and the duration of marriages, where after a certain 
number of years the risk of marriage dissolution due to divorce tends to decrease. 

The notation Y N(p„ a 2) is used to denote that Y is normal with mean g. and 
variance a2 , and T — Log N(p, a2) is used to denote that T has p.d.f. (1.3.10), Fig-
ure 1.6 shows some log-normal p.d.f.'s and hazard functions for p. = 0 and different 
values of a. It should be noted that a nonzero value of p. just changes the scale on the 
time axis, and not the basic shapes of the functions portrayed, since 1.4 'is a location 
parameter for Y (= log T) and eA is a scale parameter in (1.3.10). 

Some additional properties of the log-normal distribution are discussed in Prob-
lem 1.4, including the fact that the mean and variance are exp(p., a 2 /2) and 
[exp(cr 2) — 1 ][exp(2p a 2)], respectively. The median (t ,50) is exp(p.). Statistical 
inference for log-normal distributions is considered in Chapter 5. 

1.3.4 The Log-Logistic Distribution 

The log-logistic distribution has p.d.f. of the form 

f(s) = (fiice)(t/ce)/3-1 
 [1 + (t/a)fi32  

t > 0, 	 (1.3.12) 

where a > 0 and fi > 0 are parameters. The survivor function and hazard function 
are, respectively, 

= I 1  + (t/c) /5 ] -1  

Oh:OWL:OP -1  h(t) = 
[1 -I- (t /09 ] • 

(1.3.13) 

The log-logistic gets its name from the fact that Y = log T has a logistic distribution 
with p.d.f. 

6 -1  exp[(y  —  
f (y) = {1 + exp[(y — u)/b]) 2  

— oo < y < oo, 	(1.3.14) 

where u =  logo' and b = 13-1 , so that —oo < u < oo and b > 0. We use the 
notation Y — Logist(u, b) to indicate that Y has p.d.f. f(y), and T LLogist(a, 13) 
to indicate that T has p.d.f. (1.3.12). 

The rth moment of T exists and is given by E(Tr) = ar r(l + r/fi)r (1 — rifi), 
provided fi > r (see'Problem 1.5). The mean therefore exists only if p > 1, in which 
case E(T) = ar(1+ /3- 1 )r(i- /3 -1 ). The moments of Y = log T are easily found 
via its moment generating function; the mean equals u and the variance is rr 2 b2/3 
(Problem 1.5). Figure 1.7 shows p.d.f.'s and hazard functions of T for b = 0.14, 
0.28, and 0.83. These are chosen so that the variance of Y is roughly the same as the 
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Figure .  1.7, Log-logistic p.d.f.'.; and hazard functions for u = 0 and b = 0.14, 0.28, and 0.83. 

variance of a normal distribution with a = 0,25, 0.5 and 1.5, respectively. Note the 

similarity of Figures 1.6 and  '.7.  
The logistic and normal distributions have similar shapes, and it is easily seen 

(Problem 1.5) that for fi > I the hazard function has the same characteristic shape 
as the log-normal: il has h(0) = 0, increases to a maximum, and then approaches 0 
monotonically as I -4 co. For  fi <  1 the hazard function is monotone decreasing. 

Inference for the log-logistic and logistic distributions is discussed in Chapter 5. 



The gamma distribution has a p.d.f. of the form 

X (Xt 
t > 0, 	 (1.3.15) f (t) — 

P(k) 
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1.3.5 The Gamma Distribution 

where k > 0 and X > 0 are parameters; X -1  is a scale parameter and k is sometimes 
called the index or shape parameter. This distribution, like the Weibull distribution, 
includes the exponential as a special case (k = 1). The survivor and hazard functions 
involve the incomplete gamma function [see (B.12) of Appendix F3] 

1 	fX  

I (k, x) = —uk -1  c" du. 
r(k) o  

Integrating (1.3.15), we find that the survivor function is 

= 1 — 1(k, Xt). 

(1.3,16) 

The hazard function is h(t) = (I)/ S(t); it can be shown (see Problem 1.6) to be 
monotone increasing for k > 1, with h(0) = 0 and 	h(t) = X. For 0 <Ic < 1, 
h(t) is monotone decreasing, with lim f _r o h(t) = co and 	h(t) =  X. 

The distribution with I = 1 is called the one-parameter gamma distribution and 
has p.d.f, 

e — t 
f (t) — 

I' (k) 
	t > 0. 	 (1.3.17) 

	

Its c.d.f. is given by (1.3.16), The notation Y 	Ga(k) will be used to indicate 
that a random variable Y has p.d.f. (1.3.17). Note that if T has p.d.f. (1.3.15), then 

Ga(k). The one-parameter gamma distribution is closely related to the chi-
squared (x 2) distribution: if Y — Ga(k), then 2Y has a x 2  distribution with 2k 
degrees of freedom, henceforth simply referred to as 42k) . Figure 1.8 shows p.d.f.'s 
and hazard functions for a few gamma distributions. 

The moment generating function of (1,3.17) is 

fo' eel tk —  e -1  cit 

(k) 

= 	erk 

and that of (1.3.15) is (1 — 0/X) — k. The moments of the distribution can be found 
from this; for example, E(Tr) = k(k + 1) • • (k r — 1) for (1,3.17). 

The gamma distribution is not used as a lifetime model as much as the Weibull, 
log-normal, and log-logistic distributions. It does fit a variety of lifetime data ade-
quately, however. It also arises in some situations involving the exponential distri-
bution, because of the well-known result that sums of independent and identically 

M(0) = 
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Figure 1.8. Gamma p.d.f.'s and hazard functions for X = I and k = 0.5, 2,0, and 3.0. 

distributed (i.i.d.) exponential random variables have a gamma distribution. Specifi-
cally, if  T,,   T„ are indeNndent, each with p.d.f. (1.3.2), then T1 + • • • + T,, has 
a gamma distribution with parameters X and k = n. 

1.3.6 Log-Location-Scale Models 

A parametric location-scale nod& for a random variable Y on (—oc, co) is a distri-
bution with p.d.f. of the form 
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f (Y) = fo b 	b 
—  oc  <y  < oc, 	(1.3.18) 

where u(—co < u < co) and b > 0 are location and scale parameters, and fo (z) 
is a specified p.d.f. on (—oc, oo). The distribution and survivor functions for Y are 
Fo[(y — u)/b] and So[(y — u)/b], respectively, where 

Fo(z)  =f 
 z  fo(w)dw =  1—  So(z). 

—00 

The standardized random variable Z = (Y — u)lb clearly has p.d.f. and survivor 
functions fo(z) and So(z), and (1.3.18) with u = 0, b = 1 is called the standard form 
of the distribution. 

The lifetime distributions introduced in Sections 1.3.2 to 1.3.4 all have the prop-
erty that Y = log T has a location-scale distribution: the Weibull, log-normal, and 
log-logistic distributions for T correspond to extreme value, normal, and logistic 
distributions for Y. The survivor functions for Z = (Y — u)I b are, respectively, 

So (z) = exp(—e z ) 	extreme value 

So(z) = 1 — (1)(z) 	normal 

So(z) = (1 	ez) —  I 	logistic, 

where —co < z <  oc and (13(z) is given just before (1.3.11). By the sanie token, any 
location-scale model (1.3.18) gives a lifetime distribution through the transformation 
T = exp(Y). Note that the survivor function for T can in this case be expressed as 

Pr (T > t) 
= sc  log t — tt 

b 

= si; R 	, (1.3,19) 

where cz = exp(u),  fi = LP -1 , and 4(x) is a survivor function defined on (0, oc)  by 
the relationship Si", (x) = So(log x). 

Families of distributions with three or more parameters can be obtained by gener-
alizing (1.3.18) to let fo(z),  F0  (z),  or So (z) include one or more "shape" parameters. 
We mention two such families that are useful because they include common two-
parameter lifetime distributions as special cases. 

The first model is the generalized log-Burr family, for which the standardized 
variable (Y — u)lb has survivor function of the form 

So(z; k) = (1 + 
k ) 

— oo < z < co, 	(1.3.20) 
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where k > 0 is a third paramter; it is easily verified that (1.3.20) is a survivor func-
tion for all k > 0. The special  case k = 1 gives the standard logistic distribution (see 
(1.3.14)), and the limit as k co gives the extreme value distribution (see (1.3.9)). 
The family of lifetime distributions obtained from (1.3.20) is given by (1.3.19) and 
has 

> t) =[1 + (-11if 
k a 

(1,3.21) 

The log-logistic survivor function is given by k = 1, and the Weibull survivor func-
tion is given by the limit as k oc. Figure 1.9 shows p.d.f.'s for log-Burr distribu-
tions (1,3.20) with k = .5, 1 10, and co. Note that E(Z) and Var(Z) vary with k 
(see Problem I .9) so that the distributions in Figure 1.9 do not have identical means 
and standard deviations. 

Since the generalized log-Ilurr family includes the log-logistic and Weibull distri-
butions, it allows discrimination between them, It is also a flexible model for fitting 
to clata; inference for it is discussed in Chapter 5. 

A second extended model is the generalized log-gamma distribution, which 
includes the Weibull and log-normal distributions as special cases. The model was 
originally introduced by specifying that  (T /a) has a one-parameter gamma distri-
bution (1,3.17) with index parameter k > 0. Equivalently, W = (Y — u i)/bi , where 
Y = log T, u = log a and hi = p -1 , has a log-gamma distribution. However, the 
mean and the variance for the. gamtna distribution both equal k, and as k increases, 
the gamma and log-gamma distributions do not have limits. The mean and variance 
or W are (see Problem I E(W) = *(k) and Var(W) =  "(k),  where V/ and 

are the digamma and trigvmma functions (see Appendix B.2). For large k they 

0.4 

(z) 0.2 - 

Figure 1.9. 	of log -Burr distributions  for k  = ,5, 1, 10, co. 
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behave like log k and k-1 , respectively (see (B9)), and it is therefore convenient and 
customary to define a transformed log-gamma variate Z = k'/2 (W — log k), which 
has p.d.f. (see Problem 1.10) 

kk-1/2 
f0(Z; k) = 	exp(k 1 /22 — kek — ' /2z) 

T (k) 
— oo < z < oo. 	(1.3.22) 

The generalized log-gamma model is then the three-parameter family of distributions 
for which Z = (Y — u) I b has p.d.f, (1,3.22); the corresponding distribution of T = 
exp(Y) is obtained from this, and is called the generalized gamma model. Figure 1.10 
shows p.d.f.'s (1.3.22) for k = .5, 1, 10, and co. As for the log-Burr distributions in 
Figure 1,9, note that E(Z) and Var(Z) vary with k. 

For the special case k = 1, (1.3.22) becomes the standard extreme value p,d.f. 
(see (1.3.8)). It can also be shown (see Problem 1,10) that as k oo, (1.3.22) con-
verges to the standard normal p.d.f., and thus the generalized gamma model includes 
the Weibull and log-normal distributions as special cases .  The two-parameter gamma 
distribution (1.3.15) also arises as a special case; in the original (ce, p, k) parameteri-
zation this corresponds to 13 = 1, and in the (u, b, k) parameterization with (1.3.22), 
to b = /2  . Inference for the generalized gamma and log-gamma distributions is 
discussed in Chapter 5. 

Other extended families may be useful from time to time, For example, one might 
take Z = (Y — u)I b to have a Student t distribution with k degrees of freedom. 
Kalbfleisch and Prentice (1980, Sec. 2,2.7) consider a four-parameter model in which 
Z is a rescaled log F random variable; it includes the generalized log-Burr and log-
gamma families as special cases. 

—3 	—2 
	 o 	 2 

	
3 

Figure 1.10. P.d.f.'s  oflag-gamma distributions for k = ,5,  I. 10, co, 
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1.3.7 The Inverse Gaussian Distribution 

The inverse Gaussian distribution arises as the time until a continuous-time Wiener 

process with drift parameter y > 0 and dispersion parameter cr 2  first crosses a 

given threshold level d > O. The Wiener process is a Gaussian stochastic process 

{X (t), t > 0), with X (0)  = 0, and one of its properties is that X(t) N (yt, o-21) 
for any specified I > 0 (e.g., Ross 1983). The random variable T = inf(t X(t) = 
d) can be shown to have NU, 

d 	[—(d  

	

f(I) — 	, ,„ exp 

	

cy.(2.7r1 .11 / 4 	2,72t 

This p.d.f. depends only on dly and  dia,  and it is common to reparameterize it by 

defining bt=dly,),=d2 17 2  so that 

—X(/ — p,) 2  1 

	

(t) = 	
2t/i2 	j 

	exp  	t > 0. 	(1.3.23) 

The mean and variance of T may be shown to be E(T) = p and Var(T) = kt3 /A, 
and the c.d.f. is 

\ 	1/2 

F 	[( = (I)— — 1) ( 	eu/AtI) [— (-t- + 1) (2-) 	, 	(1.3.24) 
/t 

where (b(z) is the standard normal c.d.f, We will denote this model by f  G(/b, A). 
The inverse. Gaussian diAribution is sometimes a  plausible model in settings 

where failure occurs when a deterioration process reaches a certain level. More 
generally, it is a reasonably flexible two-parameter family of models with properties 
that are rather similar to those of the log-normal distribution. 'Figure 1.11 shows the 
hazard and density functions for p. = 1 and several values of A. 

1.3.8 Models with Piecewise Constant or Polynomial Hazard Functions 

Let ao «r, « a„, be specified values with ao = 0 and a„, = co, If the hazard 
function for T is of the form 

	

Ii(i) = A» 	ai _1 < t  < ai 	 (1,3.25) 

where the A1 are positive valu ,;s for j =  1, 	ni, then T is said to have a piecewise- 
constant hazard function. Thi ; model may seem implausible, since h(t) is discontin-
uous at the cut points  ai ,  a„,_ f , but with an appropriate value of ni and selection 
of cut points, it can approximate arbitrary shapes of hazard functions and survivor 
functions. Further, as we will ee in Chapter 4, statistical methods based on the model 
are straightforward, and it provides a convenient link between parametric and non-
paitmeiric methods. 

t  > 0.  
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Figure 1.11. Inverse Gaussian p.d.f.'s and hazard functions for At = 1 and A  = 1, 2, and 4. 

The survivor function corresponding to (1.3.25) is readily found from (1.2.3) to 
be 

[ 
rn(t)-1 

S(t) = exp — E Xj(ai — a J-1) — 41(00 — arn0)-1) , 
J=1  

where nz (t ) is defined by  a„7(g)_l < t < am (1 ). The p.d.f. f (t) = X,,,(0S(t) is piece- 
wise exponential. The survivor function is conveniently expressed by introducing the 
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notai  ion  below, which will be useful in the book: 

JO) = 1 	1(u 5.. t) du 	 (1.3,26) 

Then, 

HI 

SO) = exp [— Exi A.,(t)1 	 (1.3.27) 
1=1 

Piecewise-constant hazard functions and the corresponding probability density 
function  are discontinuous, which makes them unappealing in many settings. 
Another way to obtain flexible hazard functions is to use spline functions, which 
consist of polynomial pieces joined at the cut points ai , , I. A cubic spline 
R(t)on  lao,  am ) consists of cubic polynomial . pieces that are designed so that g(t) 
and its first two derivatives ore everywhere continuous on (au, a,,,). In particifiar, 
they are continuous at the cu points ai am _ , Which are referred to as knots 
iii spline terminology. One can also define splines of other orders (e.g., quadratic or 
linear), but cubic splines are favored for a number of reasons, and here we restrict 
discussion to them. 

It can be seen that only m +3 parameters are needed to specify a cubic spline with 
— I knots al a, . One specification is 

nt—I 

g(I) = 	+ 0  il  + 012/2  + cr31 3  E fli ct — 
.1=1 

where .r 4. = max(x. 0). This is not a particularly good representation when fitting a 
model (i.e., when eslimating au ..... 0/3 and fi  fim—i),  however. In general, we 
can write g (/)  as 

g(t) = E of  B,(/), 

1=1 

where the B . / (t) are specified piecewise cubic basis functions. A common approach 
is to use the so-called B-splin , 3 basis functions (e.g., de Boor 1978); software exists 
for generating such functions, 

Spline-based hazard mode's usually take h(I) or log h(t) as a cubic spline. An 
alternative is to use a cubic spline for the p.d.f. f(t). Models with as few as one or 
two well-chosen knots pi.ovid .; considerable flexibility. Models where h(t) or f 
are splines have the advantalie that cumulative hazard and distribution functions 
(1(t)  and FO) are easily obtained, but parameters may need to be constrained to 
keep h(t) and  f0)  nonnegative. With a larger number of knots the end pieces over 
(ao, 

 

ai)  and (am _ i, am ) can  te  difficult to estimate, and so linear instead of cubic 
pieces are often used for thos.: intervals. When this is done, the spline is termed a 
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natural cubic spline. It can be seen that only m — 1 parameters are needed to specify 
a natural cubic spline g(t) with m — 1 knots. 

Spline models are discussed further in Section 4.2.3 , 

1.3.9 Some Other Models 

The distributions described in preceding sections are the most frequently used para-
metric models. Other models are, however, sometimes used in applications. We list 
a few models with references from which more information can be obtained. 

1. Distributions in which either h(t) or log[h OA is a low-order polynomial (e.g., 
Bain 1974; Gehan and Siddiqui 1973). Models of this type include the Gom-
pertz distribution, with h(t) = exp(a + fit), and the Rayleigh, or linear hazard 
rate, distribution, with h(t) = a + bt. Note that for the Weibull distribution, 
the log hazard function is linear in log t. Models where h(t) or log h(t) is a 
linear combination of specified functions can also be considered. 

2. Models with bathtub-shaped hazards. Glaser (1980) and Hjorth (1980) discuss 
distributions with nonmonotone hazard functions, and provide references. 

1 Discrete distributions. Usually, when a discrete model is used with lifetime 
data, it is a multinomial distribution. Methods for multinomial models are dis-
cussed in Chapter 3. Occasionally, discrete parametric distributions are used; 
often these are based on one of the common continuous life distributions. 

1.3.10 Mixture Models 

Discrete mixture models arise when individuals in a population are each one of k 
distinct types, with a proportion, pi, of the population being of the ith type; the pi 
satisfy 0 < pi < 1 and E pi = 1. Individuals of type i are assumed to have a 
lifetime distribution with survivor function Si (t). An individual randomly selected 
from this population then has survivor function 

S(t) = 	(t) + • • • + pkSic(1). 
	 (1.3.28) 

Models of this kind are termed discrete mixture models, and are useful in situations 
where the population is heterogeneous but it is not possible to distinguish between 
individuals of different types. Often the Si (t) in (1.3.28) are taken to be from the 
same parametric family, though this is, of course, unnecessary. The properties of 
a mixture model follow from the properties of the k distributions, or components, 
involved in the mixture. Estimation can be difficult, and models with k larger than 3 
are rarely used. 

Two special models with k = 2 are important. One has a degenerate component 
with a probability mass at T = co. The survivor function for this model is 

S(t) = pSi(t) + 1 — p 	t > 0, 	 (1.3.29) 

where 0 < p < 1, and Si (t) is a survivor function with Si (oo) = O. This is used in 
settings where some fraction 1 — p of individuals in a population have very long life- 
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times, which for convenience are assumed infinite. In medical applications involving 
treatment of disease 1 (1.3.29 ) is sometimes referred to as a cure-rate model. 

The second special model has a degenerate component with a probability mass at 
T = 0. The survivor function is 

s(t). psi(t) 
	

t > 0, 	 (1.3.30) 

where 0 < p < I, and Si (') is a survivor function. This is used in settings where 
some fraction 1— p of individuals in a population die or fail at t = 0; one application 
is to manufactured items that defects may render inoperative. 

Continuous mixture mod.;ls can also be considered. They have survivor functions 
of the form 

03 

S(1) = f 	(t1z)g(z)dz, 	 (1.3.31) 
. —co 

where z is an unobservable random variable with p.d.f. g(z) and Si (t lz) is the sur-
vivor function for 7', given z. The most widely studied and used models assume that 
the hazard function for T given z is zho(t), where z > 0 and ho(t) is a baseline 
hazard function. In this case 

00 

1 ! (t) = f e -411.1)(1) g(z)dz, 
o 

(1.3.32) 

where  H0(t) = 1.0̀  1i(u)  di. Such models are called "frailty" models; the naine 
conies from thinking of z as a factor that renders an individual's hazard function 
zho(t) bigger or smaller than the baseline h0 (t). 

Discrete and continuous mixture models can be discussed within a single frame-
work by replacing (1.3.31) with the Riemann—Stieltjes integral 

03 

5(1) = f 	(liz) riG(z), (1.3.33) 

where G(z) is a distribution function as in (1.2.10). 
Since the random variabN z is unobservable, (1.3.33) can be viewed as merely a 

way to generate new models SW. However, insight into the effects of heterogeneity 
in populations can be gained from such models; see Problem 1.14. Inference for 
mixture models is discussed in Chapter 4. 

1.4  REGRESSION MODELS 

The use of explanatory variables, or covariates, in a regression model is an important 
way to represent heterogeneity in a population. Indeed, the main objective in many 
studies is to understand and oxploit the relationship between lifetime and covariates. 
Thus, data often include covariates that might be related to lifetime: for example, in 
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a survival study for lung cancer patients (see Example 1.1,9) factors such as the age 
and general condition of the patient, and the type of tumor, were recorded. In experi-
ments on the time to failure of electrical insulation an important factor is the voltage 
the insulation is subjected to (see Example 1.1.5). In clinical trials in medicine, the 
treatment assigned to a patient may be considered a covariate (Example 1.1.8). 

Regression models for lifetimes can be formulated in many ways, and several 
types are in common use. Regression analysis is discussed at length in Chapters 6, 7, 
and 8. We provide a brief introduction here. 

Any of the parametric models discussed in this chapter can be made into a regres-
sion model by specifying a relationship between the model parameters and covari-
ates. Suppose that each individual in a population has a lifetime T and a column 
vector x =  TO' of covariates. Then, for example, an exponential distribu-
tion model (see Section 1.3.1) would assume that given x, the distribution of T is 
exponential with survivor function 

	

S(t ix) = exp[—X(x)1]. 	 (1.4.1) 

The specification of the model also involves a functional form for X(x). A common 
form is X(x) = exp(13 /x), where p is a p x 1 column vector of regression coefficients; 
this has the convenient property that X(x) > 0 for all real vectors 13 and x. 

Often only certain parameters in a lifetime distribution are assumed to depend on 
covariates. For example, log-location-scale models (1.3.18), with only u depending 
on x, are useful. The specification u(x) = /3'x gives a model where Y = log T has 
survivor function of the form 

Pr(Y y lx) = so ( Y  613/x ) 

	
(1.4.2) 

where b > 0 is a scale parameter. Such models are familiar in ordinary regression 
analysis, particularly for the case where So(z) is the standard normal survivor func-
tion. 

Semiparametric models are also widely used; they specify the dependence of T 
or Y on x parametrically, but leave the actual distribution arbitrary. For example, 
ordinary least-square estimation of /3 when E(Y1x) = fl'x can be viewed as an 
estimation procedure for a model (1.4.2) where So(z) is unspecified aside from the 
assumption about E(Y Ix), The best known semiparametric lifetime regression model 
is the proportional hazards model introduced by Cox (1972a), which takes the hazard 
function for T given x to be of the form 

	

h(tix) = 110(0 exp(P'x), 	 (1.4.3) 

where ho (t) is an arbitrary "baseline" hazard function. 
As discussed in Section 1.2.4, covariates may vary over time. In this case models 

cannot simply be specified in terms of survivor functions like (1.4.1) and (1.4.2), 
because there is an entire "history," X = (x(t), t > 01, to consider for a covari-
ate. Sometimes a time-varying covariate may be linked physically with the lifetime 
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process: l'or example, blood pressure may be linked to the time or age at which an 
individual has a first stroke. such covariates are termed internal, and their treatment 
requires care. A covariate process X = (x(t), t > 0), which develops independently 
of the lifetime process, is telned external; factors such as air pollution or climatic 

conditions ;  or applied stresses such as voltage or temperature in life test experiments, 
are examples. Wc restrict furl her discussion in this section to external covariates; note 

that fixed (constant) covariats are external. 

A  convenient approach tc modeling with time-varying covariates is through the 
hazard function, which may ')e allowed to depend on previous covariate history. Let 

X (t) = fx(,$), 0 < s < t} denote the history up to time I, with X(Do) = X. Tt is a 
natural assumption that the hazard function for T given X depend only on X(t); we 

denote this as h (t I X (t)), A Ample but flexible approach is to define a vector w(t) 

that represents features of X (t), then specify h (t (t)) as a function of t and w(t). 
The multiplicative formulation 

	

h (.` I X (/)) = ho(t) exp(p'w(t)) 	 (1.4.4) 

is useful; ills an extension of the proportional hazards model (1.4.3). 

A connection between thc hazard function and survival probabilities can still be 
made in the usual way. If T  las  hazard function h(t IX) = h(t1w(t)), then it follows 
from the argument leading to (1,2.16) that 

P r (T ;!: t I X) = n i, _ d H (ulw (0)]. 
(Oa) 

In the case where T is continuous, d H (idly (u)) = h(ulw(u)) du, where h(ulw(u)) 
is assumed continuous, except possibly at a finite set of points in any interval, and 
( 1.2, I 2) gives 

P r (T :IX) = exp {— 	h(ulw(u)) du} 
0 

Regression models for the case of discrete lifetimes T are also conveniently for-
mulated via the hazard function, giving h (t lw(t)) for fixed or time-varying covari-
ates. The relationship (1,4.5) still holds, with dli(Ilw(t)) = h(a iIw (a .1)) at times 

where P r(T = IX) > 0, and 0 elsewhere. 

1.5 MULTIPLE LIFETIMES AN))  MULTIPLE MODES OF FAILURE 

Sometimes two or more lifeti ne variables 71, • , Tk are of interest simultaneously; 
there are several types of set .ings where this may occur. One is where there are k 
separate lifetimes  for an individual: for example, the lifetimes of left and right front 
brake pads in a car or the tin tes until a *particular condition appears in the left and 
right 03/ea of a person. A similar situation occurs when individuals fall into clusters 
or groups, with the expectation being that the lifetimes  Tt,   Tk of k individuals 

(1.4.5) 

(1.4.6) 
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in the same group have some degree of association. In carcinogenicity experiments 
involving the time to the appearance of a tumor in laboratory animals, for example, 
we would expect some association for animals in the same litter (i.e., with the same 
parents). 

These situations lead to a consideration of multivariate lifetime distributions, 
which can be specified in terms of a joint p.d.f. or a joint survivor function, 

S(ti ,   tk) = Pr(Ti > ti ,,,,, Tk > 110. (1.5.1) 

A full treatment of multivariate models is beyond the scope of this book; separate 
treatments of this area exist (e.g., Joe 1997, Hougaard 2000). We provide a brief 
discussion in Section 11.1, focusing on problems where methods based on univariate 
lifetimes may be adopted. 

Another class of situations is where a sequence of times Ti ,  7 '2, 	can occur 
for a single individual. For a repairable system, for example, Tj could be the time 
between the (j — 1)st and jth failures. In Example 1.1.8, patients with cystic fibrosis 
could experience successive intervals of time free from pulmonary infections, of 
lengths T1,  T2, In these circumstances the lifetime Tj can be observed only if 
T1..... Ti_i  have already been observed, and it is natural to consider a sequence of 
models  f(il),  f (1210, f (t3Iti , t2), and so on. This allows univariate lifetime models 
to be used; we consider examples in Section 11.2. 

A third kind of multivariate problem occurs when there is a single lifetime for each 
individual, but failure or death may be of different modes or types. Often the modes 
refer to causes of failure, in which case the term "competing risks" is sometimes 
used. For example, an individual in a demographic study might be recorded as dying 
at age T from one of cancer, cardiovascular disease, or "other" causes; a marriage 
may end due to death of one partner, death of both partners, or divorce; an appliance 
may fail for any of several different reasons (see Example 1.1.10). 

The distinguishing feature of the multiple failure modes setting is that each indi-
vidual has a lifetime T and a mode of failure C, so we require a joint model for T 
and C. This can be approached by specifying models for Pr (T < t, C = j) or by 
specifying mode-specific hazard functions 

Xj(t) = urn
Pr (T  <t  + At, C = jIT t)  

(1.5.2) 
At-4.0 	 At 

for failure modes j = 1, . , K. The analysis of multiple modes of failure is of 
considerable importance, and it turns out to be closely related to the analysis of 
ordinary univariate lifetime data, Chapter 9 is devoted to this topic. 

1.6 SOME COMMENTS ON MODEL SELECTION 
AND STATISTICAL ANALYSIS 

A number of factors enter into the process of modeling and analyzing lifetime dis- 
tributions. These include the level of detail needed to address specific objectives, 
background information about the variables and distributions in question, the type of 
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data available to fit and Oa* models, the availability of software and, more gener-
ally, the ease of analysis and interpretation. The planning of experiments and other 
processes for data collection is also closely linked to modeling issues; observational 
.schemes and matters of  design  are discussed in Chapter 2. 

Two sets of choices are whether to use discrete or continuous-time models, and 
whether to use parametric or nonparametric assumptions. Most of the standard life-
time data methodology and software is for continuous-time models, and so even 
when time is discrete (e.g., number of cycles to failure) we often use continuous 
models. This book deals primarily with continuous models, but discrete distributions 
are described and used in several chapters. 

The choice between parametric and nonparametric specifications is influenced by 
the amount and type of data available, by background knowledge that may point 
to specific parametric forms, by assumptions about the regularity or smoothness of 
the distributions in question, and by the objectives of analysis. Personal taste influ-
ences what approach is adopted, but analysis of data usually involves both parametric 
and nonparametric aspects. This book deals with both parametric and nonparametric 
methods. 

Advantages of parametricmodels include simplicity, the availability of likelihood-
based inference procedures, and ease of use for description, comparison, predic-
tion, or decision. The selection of a specific parametric model is often dictated 
by its tractability and how well it fits the data. A primary requirement is that the 
model adequately capture features of the lifetime distribution that are apparent 
from empirical data. The ability to represent perceived features of the density and 
hazard functions is often important, as  is the behavior of the model in either the 
left or right tails of the distribution. Convenient representation and comparison of 
distribution characteristics such as quantiles and survival probabilities is another 
consideration. 

Even when 110 covariates :Ire present, rather large samples are often needed before 
the superiority of one model over another in terms of fit is indicated, and severe right 
censoring limits the compairon of models. This increases an already strong tendency 
to use Models that are mathematically or computationally convenient, and to a large 
extent this accounts for the  extensive use of Weibull, log-logistic, and log-normal 
models. As the number and complexity of fixed covariates increases, the emphasis on 
distributional shape is usuall: ,  much reduced, the primary focus being on location and 
dispersion aspects of 7' or ]cg  T Many software packages include methodology for 
exponential, Weibull, log-normal, log-logistic, and gamma distributions. We discuss 
how to deal conveniently with them mid other models throughout the book. 

Nonparametric and semipararnetric methods are somewhat less fettered by 
assumptions than fully parametric methods. They are also useful for checking para-
metric modeling assumption 3. Many software packages provide stich methodology. 

It is important  to bear in mind that models only approximate reality, and that in 
a given situation several models may provide a good description of observed data. 
A question of considerable i nportance is whether alternative models provide consis-
tent conclusions or outputfrun the analysis. Observed data may admit more than one 
interpretation, but beyond this, we should recognize which conclusions or actions are 
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sensitive to the choice of model and which are not. This book emphasizes applica-
tions in which the objectives are "scientific," for example, to increase understanding 
of some lifetime process, to estimate important characteristics, or to develop a good 
model. Lifetime distributions are also used to make decisions in many fields; see, for 
example, Klugman et al. (1998, Ch. 2) for applications to insurance, and Ascher and 
Feingold (1984, Ch. 7) and Blischke and Murthy (2000, Chs, 16-18) for applications 
to system maintenance planning and to product warranty design. The soundness of 
such decisions naturally depends on the soundness of the models on which they are 
based. 

BIBLIOGRAPHIC NOTES 

Many of the origins of lifetime data analysis are in demography and actuarial science, 
in particular the use of the hazard function or "force of mortality," as it is often called 
in those disciplines. Over the twentieth century, problems arising in the engineering, 
life, physical, economic, and social sciences motivated extensive development of 
models and methodology. Properties of hazard functions and applications to reliabil-
ity were considered by Barlow, Proschan, and others (Barlow and Proschan 1975). 
Cox (1972a) stressed the use of the hazard function in problems involving covari-
ates. The use of product integrals to represent lifetime distributions became common 
from about 1980; Gill and Johansen (1990) survey this topic. Fleming and  Harring
ton(1991) and Andersen et al. (1993) are fundamental references on mathematical 
aspects of lifetime and event history processes. 

Parametric lifetime distributions were used a good deal in the 1930s and 1940s, 
and started to be very widely studied from about 1950, though some of the models 
in question had been used much earlier in other contexts. The encyclopedic volumes 
by Johnson, Kotz, and Balalcrishnan (1994, 1995) provide numerous references and 
properties of many parametric models, as do articles in the Encyclopedia of Statisti-
cal Sciences (Kotz et al. 1988). We provide only a few key references here. 

Davis (1952) described applications of the exponential distribution to reliability; 
Feigl and Zelen (1965) provided an early application of an exponential model with 
covariates to medical survival data. The Weibull distribution was studied by Weibull 
(1951) in connection with the strength of materials; Lieblein and Zelen (1956) and 
Kao (1959) considered applications in reliability, and Pike (1966) applications in 
medicine, Gumbel (1958) considered the Weibull and the extreme value distribution 
in extreme value theory. The log-normal distribution was used by Boag (1949) and 
Glasser (1965) for cancer survival data and by Nelson and Hahn (1972) for reliability 
data. Bennett (1983a) described medical applications of the log-logistic distribution. 
Buckland (1964) and Cox (1962) discussed the gamma distribution in connection 
with failure times. 

The generalized log-Burr model (1.3.21) derives from the work of Burr (1942); 
Tadikamalla (1980) considers the form here. The generalized gamma distribution 
was introduced by Stacy (1962), but Prentice (1974) gave the form (1.3.22) con-
sidered here, and Farewell and Prentice (1977) discussed applications to reliability. 
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Chhilcara and Folks (1977, 1989) discuss the inverse Gaussian model and its use 
as a lifetime distribution. Desmond (1985) studies physical models of failure and 
the relationship between tho inverse Gaussian and Birnbaum-Saunders distribution 
(Birnbaum and Saunders 1069), The piecewise exponential model has been used 
for a long time in demography; Holford (1976) is an important modern reference. 
Kooperberg and Stone (1992) and Rosenberg (1995) consider cubic-spline models 
for density and hazard functions. Titterington et al. (1985) discuss discrete-mixture 
models. Early examples of rpplications in reliability were given by Cox (1959) and 
Kilo (1959); Mallet. and Zhou (1996) discuSs cure-rate models of the form (1.3.27). 
Vaupel et al, (1979), Aalen (1988 1994), and Hougaard (2000) discuss continuous 
mixtures and the concept of frailty. 

Parametric regression models for lifetime data have been widely used since about 
1960; early references include Feigl and Zelen (1965), Zippin and Armitage (1966), 
Pike (1966), Nelson (1970a), Nelson and Hahn (1972), Prentice (1973) and Breslow 
(1974). Cox (1972a) introduced the semiparametric proportional hazards model and 
the  incorporation  of time-varying covariates, Semiparametric location-scale mod- - 

 el s are closely linked with rank-based methodology; an early reference to problems 
involving censored data is P 'entice (1978). 

Multivariate lifetime distributions are considered at length by Hougaard (2000) 
and also by Joe (1997). Multiple failure modes have a long history in connection 
with competing risk, or Multiple decrement, models in actuarial science or demog-
raphy. Important modern references include Cox (1959), Altschuler (1970), Nelson 
(1969, 1972b), and Prentice et al. (1978). Crowder (2001) gives a detailed account. 

numerous books di: cuss the application of lifetime distributions to specific 
Fields. In addition to the pmceding references, we mention Kingman et al. (1998) 
for appliCations to insurance and actuarial science, Lancaster (1990) for applica-
tions to economies, and Blossfeld and Rohwer (1995) for applications to the social 
sciences. 

COMPUTATIONAL NOTES 

Software to compute the &amity function, distribUtion or survivor function, and 
quantiles of many of the parametric families in this chapter is widely available, as is 
the capability to simulate observations from these distributions. Procedures for com-
puting special functions suet as gamma, diganuna, and trigammd functions are also 
available. Software that imr lements statistical methodology in subsequent chapters 
is also widely available hi packages such as SAS, S-Plus, BMDP, SPSS, Systat, and 
State. This book does not give instructions on how to use specific packages, since 
there are so many choices available. However, specific procedures in S-Plus (Math-
soft, Inc.) and SAS (SAS Institute) will be mentioned in some places, since these 
packages are very popular And were used in preparing the examples in the book. 
Brief comments are also provided in the Computational Notes at the ends of chap-
ters. Various surveys of software for lifetime data analysis also exist. For example, 
Collett (1994) and Harrell and Goldstein (1997) provide general overviews. 
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PROBLEMS AND SUPPLEMENTS 

1.1 Mean residual lifetinze. Let T be a continuous random variable with survivor 

function S(t). The mean residual life function m(t) is defined as 

m(t) = E(T — tIT t). 

(a) Prove that if m(t) exists, then 

S(x)dx 

	

m(t) — 	 
S(t) 

The case t = 0 gives the well-known result 

oc. 
E(T) = f S(x)dx. 

0 

Also obtain S(t) in terms of m(t), showing that  m(t) uniquely defines the 

distribution of T, through 

S(t) = 	 . exp [— f m(u) I  du] 
m (t) 

(b) Prove that 

lim nt(t) = lim (
d

-- log f (t) 
dt 

where f (t) = —S'(t) is the p.d.f. of T Use this to show that for the log- 

	

normal distribution m(t) 	co as t 	oc, 

(Sections 1.2.1, 1.3.4) 

1.2 Classifying life distributions. Suppose a continuous lifetime distribution has 
survivor function S(t), hazard function h(t), cumulative hazard function H (t), 
and mean residual life function m(t). Consider the following properties that a 
distribution might have: 

I. h(t) is nondecreasing for t > O. Distributions with this property are often 

said to have the increasing failure rate (1FR) property. 

IL  H(t)/t is nondeoreasing for t > O. Distributions with this property are 

often said to have the increasing failure rate on the average (IFRA) prop-

erty. 

HI. m(t) < m(0) for all t > O. Distributions with this property are often said 

to have the "new better than used" property. 

IV. m(t) is a decreasing function for t > O. This is called the decreasing mean 

residual life property. 
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(a) Prove that I 	11 	HI. 

(b) Prove that I 	IV 	III. 

(It is sometimes useful to classify distributions according to criteria like these, 

for example, in applications to system reliability.) 
(Section 1.2; Blyson and Siddiqui 1969; Barlow and Proschan 1975) 

1.3 Distributions with decreasing failure rates. A continuous lifetime distribution 

is said to have the decreasing failure rate (DFR) property if its hazard function 

h(t) is nonincreasing  lor i  > 0. 

(a) Show that h'(t) < 0 only if fi (t) 	0, and thus a necessary condition for 

a distribution to hive  a DFR is that its p.d.f. have a unique mode at t = 0, 

(b) Prove that a disert te mixture of distributions that all have DFRs itself has 

DFR. Show that a discrete mixture of exponential distributions therefore 

has.a DFR and also that a mixture of IFR distributions does not necessarily 

have an IFR. 
(Sections 1.2, 1.3.10; Proschan 1963). 

1.4 The log-normal distribution. Consider the log-normal distribution With p.d.f. 
(1.3.10), 

(a) Show that the mean and variance of the distribution are 

E(7') = e/ 2 , 	Var(T) = (e 2  - o(e2A+0 2 ). 

(h) Show that the log-normal hazard function h(t) has h(0) = 0, increases to 
a maximum, then decreases, with h(t) 	0 as t 	co, 

(c) Show that the turning point t* for h(t) satisfies the equation 

= 0.21* (0- 2 -I- log t* — 

and use this to shoe v that 

(Section 1.3.3; Watson and Wells 1961; Goldthwaite 1961) 

1.5 77te logistic and log-logistic distributions. Consider the log-logistic distribution 
(1.3. I 2), and the corres )ondi ng logistic distribution with location parameter u 
and scale parameter b for Y = log T 

(a) Show that the moment generating function for W = (Y — u)lb is M(0) = 
E[exp(0 W)] = P( (?)P (1 — (9), and deduce from this that the mean and 
variance of W are 0 and 7r 2 /3, respectively. Thus deduce the mean and 
valiance of Y (Note that C(6) = log M(0) is the "cumulant" generating 
function, that  E( Wl = C'(0), Var(W) = C"(0), and see Appendix B.) 
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(b) Show that the hazard function (1.3.13) is monotone decreasing if 13 < 1 
and that it behaves like the log-normal hazard function if p > 1. That is, 
for fi > 1, h(t) has  h(0) = 0, increases to a maximum, then approaches 0 
monotonically as t 	CO. 

(c) Find the pth quantile of T and show that when fi > 1 the turning point for 
h(t) occurs at the 0 - 	p quantile. 

(d) Show that E(r) exists if and only if p > r, and in that case equals 
ar r(1 	/3 -1 )r(1 — /5 -1 ). 

(section 1.3.4) 

1.6 The gamma distribution. Consider the gamma distribution with p.d.f. f (t) 
given by (1.3.15). 
(a) Show that the hazard function for this distribution is strictly monotone 

increasing if k > 1 and strictly monotone decreasing if k < 1. In both 
casds show that 	h(t) = X, 

(b) Show that the mean residual life function in (t) as defin'ed in Problem 1.1 
satisfies 

lirn m (t) = 

(c) For the case in which the index parameter k is an integer, prove by repeated 
integration by parts that 

f t oo  
f (x) dx = E 	 

if 
i=0 	" 

In other words, if T has p.d.f. (1.3.15), then P (T > t) = P (YÂ, < k), 
where Y,, has a Poisson distribution with mean Xt. Note that this result 
also follows directly from well-known properties of the Poisson process. 

(Section 1.3.5) 

1.7 The generalized  Pareto  distribution. Consider the three-parameter distribution 
with hazard function of the form 

fi h(t) = a + 

Examine the range of values that a, P, and y can take. Investigate h(t) and 
show that it can be monotone increasing or monotone decreasing, according 
to the values of the parameters. Give the p.d.f. and survivor function for the 
distribution. 

(Davis and Feldstein 1979) 

1.8 A model capable of bathtub-shaped hazards. Consider the model that has haz-
ard function 

fi h(t) = — + St 
+ y 

t + y 
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Show that the hazard function may be bathtub-shaped, and  consider  the flexi- 
bility of the model in aPowing a variety of shapes for the hazard function. 

(Hjortil 1980) 

1.9 Show for thc generalized log-Burr distribution (1,3.20) that the moment gener-
ating function  M(G)  = S'[exp(0 Z)] is 

(0 ) = 0+ 1  r(k -0)r(i + 0)  
r(k +0 	• 

Show that E(Z) = log ie — tfr(k) 	i/î (l) and that Var(Z) = 	(k) 	(1), 
where 1//(2.) and 1//'( -4) r. re  the digamma and trigamma functions, respectively 
(Appendix B). Examine. the values of E(Z) and Var(Z) as k ranges from 1 
to oo. 

(Section 1.3.6) 

1.10 The log-gamma clistribu, ion. Suppose T has a gamma distribution (1.3,15) with 
X =  I.  Show that the moment generating function M(0) = E[exp(0 W):1 for 
W = log T is 

r(k+ 0)  
M(0) — r(k) 

Show further that E(W = ik(k) and Var(W) = 1//(k), where ik and 1//' are 
as in Problem 1.9. Derive (1.3.22) as the distribution of Z = k'/2 (W — log k), 
and show that as k --+ co, it approaches the standard normal p.d.f. 

(Bartlett and Kendall 1946; Prentice 1974; Section 1.3.6) 

1.11 Let Y = log T have a lo;istic distribution with u =  0, 1  = L 
(a) Determine the spec:fie extreme value and normal distributions that have 

the same mean and variance as Y Graph and compare the p.d,f.'s of the 
three distributions, Comment on the similarities and dissimilarities in the 
models, with a view to discriminating among them. 

(1 )  Compare in a  similcr way the p.d.f.'s of T = exp Y in the three cases. 
(Section 1.3.6) 

1.12 Let X1, X2, . . be lid, random variables with continuous distribution function 
V(s) = P (X < x) that satisfies the conditions 

F(0) = O. 

2, For some /3 > O. lim,_.,0.1-[F(xt)/F(t)] = x 13 , with x > 0. 

The second condition  specifies that / ... (x) 	axa,  where a > 0, as x 	0+ 
(a) Let Y,,  = min(Xi , . Xn). Determine the survivor function of Yn  and 

hence the  survivor function of Z,, = n 1113 Y„. Show that as n --+ co the 
distribution of Z„ ce ,nverges to a Weibull distribution. 

(1)) Examine whether or not condition 2 holds when the Xis have (I) a Weibull 
distribution (2) a gr.mma distribution, and (3) a uniform distribUtion on 
(0, a). 
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(These results are sometimes put forward as motivation for the Weibull model, 
as, for example, when an individual is assumed to die at the point at which 
one of many factors reaches a critical level. The approach here is not totally 
realistic, since the Xis have been assumed to be i.i.d., but the limiting Weibull 
form may hold under weaker conditions,) 

(Section 1.3,2) 

1.13 A mixed exponential model .  Suppose that a population contains individuals for 
which lifetimes T are exponentially distributed, but that the hazard function X 
varies across individuals. Specifically, suppose that the distribution of T given 
X has p.d.f. 

f(19.) =  Xe' 	t > 0, 

and that X itself has a gamma distribution with p.d.f, 

xk- 

 

g (X) = 
ak rycy 

(a) Find the unconditional p.d.f. and survivor function for T and show that the 
unconditional hazard function is 

h(t) = 
ka 

1 + at 

Note that this is a special case of the generalized Pareto model of Prob-
lem 1,7. Show that h(t) is monotone decreasing. 

(b) Prove that if the distribution of  T,  given X, is exponential and X has a con-
tinuous distribution on (0, oo), then the hazard function for the marginal 
distribution of T is monotone decreasing. 

(c) Prove more generally that if the distribution of  T,  given X, has a hazard 
function h(t; X) that is monotone decreasing for any X > 0, and X has a 
distribution on (0, oo), then the hazard function for the marginal distribu-
tion of T is monotone decreasing. This generalizes results in Problem 1.3. 

(Section 1.3.10; Proschan 1963; Barlow et al. 1963) 

1.14 Burr distributions and properties of mixtures. The results in the preceding prob-
lem can be generalized. Consider frailty models with survivor functions of the 
form (1.3.32), where Z has a gamma distribution with mean 1 and variance O. 
That is, the p.d.f. g(z) is given by (1.3.15) with X = k = q5 -1  
(a) Show that the survivor (1.3.32) in this case becomes 

t e 
X  >0. 

-k 
S(t) = [1 -I- Ho (t)] 

so that the Burr distribution (1.3.21) arises by taking Ho(1) = (t/a) ,8  of 
Weibull form. 
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(b) Consider the case where 110(t) = / 2  is of Weibull form. Obtain the hazard 
function h(t) = —S''(t)1,5(1) and plot it for the values k = 1, 2, co, 

(c) Determine and plot E (ZIT > 1) as a function of t. 

(d) Use the preceding results to comment on the effects of heterogeneity on 
hazard functions for lifetimes, 

(Sections 1.3.6, 1.3,10) 

1.15 Discrete models. 
(a) For the Poisson dit tribution with probability function 

1 Ai 
.(X = i) = e-1  

.i! 
j = 0, 1, 

show that the hazard function is monotone increasing. 
(b) For the negative bhiomial Model with probability function 

	

Pr(X j) = 	(p — 1)i 	j = 0,1, 

Where ty > 0 and (1 < p < 1, show that the hazard function is monotone 
decreasing (increasing) if a < 1(a > 1). What happens if a = 1? 

(Section 1,3.7) 

1.16 Failure rate in multiva-iate lifetime distributions, There are various ways in 
which the hazard functi )n (failure rate) concept can be extended to multivariate 
distributions. One approach to the idea of increasing hazard functions (Brindley 
and Thompson 1972) h as follows: suppose that continuous random variables 

, T,, have the joint survivor function 

„ 1, ) = Pr(Ti > t , 	T, > In) 	ti > 0. 

Suppose that for any subset  (fi, 	. im } of ( , 	n} the joint.survivor func- 
tion 	 . Ii,,,)  of Ti, , 	is such that 

(1.6.1) 
ti„,) 

is monotone decreasing in te, „ 	for any x > 0. Then (Ti, 	TO is said 
to have the multivariate increasing failure rate (MIFR) property. 
(a) For a univariate distribution with survivor function S(t) the MIFR property 

states that SO +x)/ S(t) is decreasing in 1 for all fixed x > 0. Show that this 
is equivalent to the statement that the hazard function h(t) = —S 1 (t)1 S(t) 
is monotone increasing; that is, the distribution has an IFR. 

(b) Prove that Y = mir  (Ti, 	 T,,) has an IFR if  (Ti, 	 Tn ) has the MIFR 
property. 
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(c) The standard bivariate logistic distribution has distribution function 

F(Yi • Y2) = (I -I- 	+ 	 — 	< Yt Y2 < cc. 

Obtain the joint survivor function for 71 = exp Y1 and T2 = exp Y2, and 
examine (1.7.1) in this case, Does (T1, T2) have the MIFR property? 

(Section 1.5) 

1.17 Multiple modes of failure. Consider the definition of mode-specific hazard 
functions (1.5.2). 
(a) Show  that. the hazard function for T is Elj=1  Xi (t), and thus obtain the 

marginal-survivor function S(t) for T 
(b) The mode-specific subdensity functions fi  (I) are defined by 

Pr(t < T <I+ At, C =  

	

f(t) = lim 	 • 

	

At--0 	 At 

Show that fi(t) = (t)S(t), 
(c) Find Fi = Pr(T .15t, C = j) and thereby also obtain Pr(C = j) and 

Pr(C = jiT :5t). 
(Section 1.5) 





CHAPTER 2 

Observation Schemes, Censoring, 
and Likelihood 

2.1 INTRODUCTION 

Section 1,1 showed that lifetime data often come with the feature known as right-
censoring. As we will see in this chapter, other restrictions on the information avail-
able about a set of lifetimes can also occur. A major challenge of lifetime data 
analysis is to develop methodology that deals with censoring and other conditions. 
The statistical inference procedures in this book use  likelihood  funetiOnS based on 
observed data. This chapter establishes the form of the likelihood under censoring 
and Eitfirei. conditions associated with the selection and observation of individuals in 
a shidy, and servesYs-TbiS-fc.Tor.  the methTid61ogy presented in subsequent chapters. 

We begin with some preliminary discussion of likelihood; a general summary is 
given in Appendix C. Suppose that the probability distribution of potentially observ-
able data in a study is specified up to the parameter vector O.  A likelihood function 
for 0 is, as a function of 0, proportional to the probability of data that were observed. 
That is, 

L(0) c< Pr (Data; 0), 	 (2. 1.1) 

where Data denotes observed data, and Pr denotes the probability density or mass 
function from which the data are assumed to arise, A more formal notation for L(0), 
which we will use only if necessary, is L(0; Data). 

Standard likelihood-based methodology applies to models where_O , is a finite 
dimensional vector,  and includes maximum likelihood estimation of 0 and the con-
struction of confidence intervals and tests. The  likelihood  is, in conjunction with 
a prior distribution  for 0,  also  the basis for Bayesian analysis. Inferences for  non-
parametric or semiparametric models can be developed by likelihood theory as well; 
in this case, the  parameter specifying the model is infinite dimensional, and often 
uncountable. As discussed in Appendix C, more than one likelihood function may 

49 
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be obtainable from a given data set and model, by employing subsets of the full data 
or by conditioning on certain outcomes. This is sometimes a way to avoid nuisance 
parameters, and is associated with the terms marginal and conditional likelihood. In 
this chapter we focus on "o .clinary" likelihood functions, but these terms and the 
more general concept of petal lilcelihood (Appendix C) are encountered briefly. 

The following example ill'istrates some of the points mentioned. 

Example 2.1.1. Supposo that lifetimes for individuals in some population fol-
low a distribution with proa .mbility density function (p,d.f.) f (t) and distribution 
function F0),  and that the lifelines ti  t„ for a random sample of n individuals 
are observed. In the format o (2.1.1), Data = 	..... t)  and 

P r (Data) = 11 f (ti). 	 (2.1.2) 

If it is assumed that f (t) "rias a specific parametric form f0;  0), then the likeli-
hood function is 

1,(0) = 	f (ti; 
	

(2.1.3) 
1=1 

This can be maximized to give an estimate , and consequently an estimate F(t; 6) 
of the distribution function, A. nonparrtmetric approach would be to.assume that F(t) 
is discrete, say with unspecified probabilities [(t)  =  F0)  — F(t — 1) at the jump 
points t = I, 2, 3, • , .; this I:: not very restrictive, since lifetime measurements are 
in practice discrete. In this case, we consider f =  ([(1), f (2), . . .) as the model 
parameter and the right side of (2. 1,2) as the likelihood. it is easily seen that (2,12) 
is maxinfized subject to [(t)  > 0, Ec(),_ 1  .f (s) = 1 by 

where / (A) is the indicator function that equals I if event A is true and 0 if it is not 
true. Although (I) may not be a highly appealing estimate because of its roughness, 
the corresponding estimate f-  (t) = f (1 ) + . • + f (t), or 

É fr (1) = E I (4 I), 
n i=i  

is an appealing estimate of F It is known as the empirical distribution function. 
Now suppose that 11   are not from an unrestricted random sample of indi-

viduals. but rather a random sample of those with lifetimes 1 year or less, with there 
being no information about the number of individuals with lifetimes greater than 1 
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year. Truncated samples of this type sometimes arise in reliability and in epidemi-
ology (e.g., Kalbfleisch and Lawless 1989). In this case, the data in (2.1.1) include 
the nonignorable information that ti < 1 for i = 1„ n. The likelihood function is 
then given by 

r-rn  f npr(ti m  5_ 	I (1) I i=1 	 1=1 

rather than by (2.1.2). 

We now turn to the question of how individuals are selected and observed in 
studying lifetime distributions. This may be done in a variety of ways, depending 
on factors such as the (chronological) time needed to observe the events that define 
lifetime, the feasibility of following individuals over time, and the mechanism for 
recording lifetimes and covariate values. 

Many studies follow individuals longitudinally over time. This is referred to as a 
prospective study, and examples include life tests, clinical trials, and other types of 
follow-up studies (see Examples 1.1.1 and 1.1.3-1.1.10). The group or cohort of indi-
viduals in such studies is often, but not necessarily, randomly selected from a popu-
lation of individuals who are at the time origin (t = 0) for the lifetime variable T 
Limitations on the information collected may be imposed by time, cost, and other 
constraints. Termination of follow-up before an individual fails causes their lifetime 
to be right censored. In some settings it may be possible only to determine whether 
an individual is unfailed or failed at a succession of time points al < a2 « am; 
in this case, the lifetime is known only to lie in some interval [ai_l , ai), a feature 
known as interval-censoring. The case where the interval is [0, al) is known as left 
censoring. The values of time-varying covariates may likewise be observable only at 
certain times. 

Sometimes individuals cannot be randomly selected and followed from t = 0. 
One possibility is that they are randomly selected from a population of individu-
als who are alive, and then followed. If u is an individual's t-value at the time of 
selection, then it is an initial condition on the data that T > u, and this must be 
reflected in the likelihood function. Another possibility is that the observation of 
data for an individual is at least in part retrospective; this means that at least some of 
Data used in the likelihood function arises chronologically before the time individu-
als are selected for the study. In this case, there may be nonignorable conditions that 
apply to the lifetimes of individuals who are selected. 

These observational features are discussed in subsequent sections. Right censor-
ing is the most prevalent complication with lifetime data, and Section 2.2 considers 
its sources and effects. Sections 23 and 2.4 deal with other forms of incomplete 
data and with nonignorable conditions that .arise because of the way individuals are 
selected for a study. Section 2.5 discusses issues pertaining to the planning of stud-
ies, With this material in place, we will be in a position to develop methodology for 
a wide range of settings and models. 
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2.2 RIGHT CENSORING AND MAXIMUM LIKELIHOOD 

Right censoring, whereby only lower bounds on lifetime are available for some indi-
viduals, can occur for variouf: reasons, It may be planned, as when a decision is made 
to terminate a life test before all items have failed, or unplanned, as wh-én a person in 
a prospective study is "lost t.;) f011ow=up" -betaIffe-thn-y-  move away from the region 
where the study takes place. To obtain . a likelihood function (2.1.1) or the proper-
ties orstatiStical procedures based on censored data it is necessary to consider the 
process  bwhich  both lifetimes and -censoring-tiiiibi-iiise. TO do this we apparently 
need a probability model for he censoring mechanism. Interestingly, it turns out that 
the observed likelihood func ion for lifetime parameters takes the same form under 
a wide variety of mechanisms. We consider some specific types of censoring in the 
next section and then give a general formulation. 

We first introduce some rt.otation for censored data, Suppose that n individuals 
have lifetimes represented b). t--.ifliCcom variables T1, , Tn. Instead of the observed 
values for each lifetime, however, we have a time ti which we know is either  the 
lifetime or a censoring time. Let us define a variable Si = I (Ti = ti) that equals 
I if Ti ti; this is called the censorir dicator for ti, 
since it tells us if ti is an obiterved lifetime (Si = I) or censoring time (Si = 0). 
The obsérvdd data then consi3t of  (t,, Si), i = 1, . . , n. With this notation we occa-
sionally let ti represent either a random variable or a realized value. This Violates 
the convention Where-Capital letters repré-s-er-ilTandom variatite-S  and lowercase letters 
represent realized values, but no confusion should arise. 

The most important result of this section is that for a variety of censoring mecha-
Ilitill1S the observed likelihood functiOn takes the form 

I, = 	(1. ) 5' S(ti -0 1 -81  
1=1 

This is derived below as expression (2.2.3) for the most basic type of censoring, and 
subsequently for some other censoring mechanisms. 

2.2.1 Some Types of Right Censoring 

Several censoring mechanisms and the likelihood function obtained for each are 
described in this section. For simplicity we ignore covariates and assume that life-
times 7)  are independent and identically distributed; extensions to allow covariates 
are straightforward. 

2.2.1.1 Type I Censoring 
A Type I Censoring mechanism is said to apply when each individual has a fixed 
potential eensoring time Ci > 0 such that Ti is observed if Ti < Ci; otherwise, we 
know only that Ti >  C,.  Tyr)! 1 censoring often arises when a study is conducted 
over a specified time period. In Example 1.1.5, termination of a life test on electrical 
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insulation specimens after 180 minutes would, for example, mean that Ci = 180 for 
each item, In clinical trials there is often staggered entry of individuals to the study 
combined with a specified end-of-study date. Example 1.1.7 discussed a clinical trial 
concerning the duration of remission for patients with leukemia, which was planned 
to run for one year, with patients entering the trial over that period. The lifetime 
variable Ti for a patient was the duration of their remission measured from time of 
entry to the study, and Ci would be the time between their date of entry and the end 
of study. Example 1.1.6 involved a similar design for a study of equipment reliability. 

In our general notation, we have 

tt = min(Ti , Ci), 	8i = I(7'1 < Cù 	 (2.2.1) 

for Type 1 censoring. The likelihood function for a Type 1 censored sample is based 
on the probability distribution of (ti, 8i), i = 1, . , n. Both ti and Si are random 
variables in (2.2.1), and their joint p.d.f. is 

	

f (0 6' P r(Ti > C1)1-61 	 (2.2.2) 

To see this, note that the Ci are fixed constants and that ti can take on values < Ci, 
with 

Pr(ti = Ci ,  O  = 0) = Pr(Ti > Ci) 

Pr(ti, öj = 1) = f(ti) 	t 	Ci , 

where Pr in the second expression denotes either a p.d.f. or probability mass func-
tion according to whether the Ti distribution is continuous or discrete at ti. Assuming 
that the lifetimes T1.....T are statistically independent, we obtain the likelihood 
function from (2.2.2) as 

	

L = n  f (4) 81  S(ti -I-) I 1 	 (2.2.3) 
1=1 

The term S(ti+) appears in (2,2.3) because it equals Pr(Ti > ti) in general; if  S(t) 
is continuous at ti, then S(ti+) = S(4). 

The adjustment to (2.2.3) when fixed covariates xi are present in the model is 
simply to replace S(t) and  f(t) with Si (t) = Pr (T tlxi) and fi (t) = f (11,xi).  In 
the case of external timervarying covariates (Section 1.4), Si (t) is given by (1.4.6) 
and fi (t) by hi (t)Si(t), where hi (t) = h(t1X1). 

Exact sampling properties of estimates or tests based on a likelihood function of 
the form (2.2.3) are generally intractable mathematically, but standard large sample 
results for maximum likelihood (described in Appendix C) apply, and finite sample 
properties can be investigated by simulation. Asymptotic theory and statistical infer-
ence from likelihoods based on censored data are discussed in Section 2.2.3 and, for 
specific models, in later chapters throughout the book. 
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Example 2.2.1. Suppcse that lifetimes Ti are independent and follow an expo-
nential distribution with p.d.f. f (t) =  A  exp(—Xt) and survivor function S(t) = 
exp(--A.t). Then (2.2.3)  gis  

L(X) = no, e —xtys, (e —xt ) i—si  

1=1 

= Xr exp (—X E 	 (2.2.4) 

where r = E Si is the observed number of uncensored lifetimes, or failures. The 
log-likelihood function C(X) = log L(X) is 

(X) = rlogX  
t=i 

(2.2.5) 

The maximum likelihood estimate is given by solving dt1 dX = 0, and is 5. = 
E7=1  ti. The exact distribution of 5. is rather intractable, as is the distribution of 

the minimal sufficient statistic (r, E t i ).. 

For the Type 1 censoring 3cheme the censoring times Ci are specified fixed values. 
In many settings they are actlally random. For example, in the clinical trial described 
in Example 1.1.7 and discussed earlier, individuals entered the study in a more or less 
random fashion according to their time of diagnosis with leukemia, so their censoring 
times were effectively rando n. In fact, the study was actually terminated early, based 
on the accumulating data, tl us altering the original censoring times. We consider a 
simple model for random eel tsoring next, and a more general model in Section 2.2.2, 

2.2.1.2 Independent Random Censoring 
A very simple random censoring process that is often realistic is one in which each 
individual is assumed to have a lifetime T and a censoring time C, with T and C 
independent continuous random variables, with survivor functions S(t) and G(t), 
respectively. All lifetimes and censoring times are assumed mutually independent, 
and it is assumed that G(t) c'oes not depend on any of the parameters of 5(t). As in 
the case of Type I censoring, ti = CO and S; = 1 if 7) < Crt and Si = 0 if 
7'; > C ; . The data from obs3rvations on n individuals is assumed to consist of the 
pairs Si), i =  I,  n.; the sanie final result is obtained if Ci is available for all 

= 1. 	, n. The p.d.f. of  (ii, Si) is easily obtained: if f (t) and g(t) are the p.d.f.'s 
loi  T, and Ci. then 

P r(11 	(Si = 0) = Pr(Ci = t,  T,  > Ct) 

= g(t)S(t) 

pr (t , = 1, = 1) = MT; =,',T, < 

= f (t)G (t). 
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These can be combined into the single expression 

Pr (ti = t, Si) =  

and thus the distribution of (ti, 	i = 1 ..... n, is 

n ,f (ti)G(ti)1 61  [g(ti)S (0) 1 -61  . 
i =I 

Since G(t) and g(t) do not involve any of the parameters in f (t), they can be 
neglected and the likelihood function taken to be 

L = 	f  cos! so01-61, 
i=1 

which is of the same form as (2.2.3). The earlier result for Type, 1 censoring can in 
fact be considered as a special case of this if we allow the Ci :to have degenerate 
distributions, each with mass at one fixed point. Another approach that leads directly 
to this likelihood function is to argue that if G(t) and g(t) do not 'involve any param-
eters of f (t), then C1  ..... C,1  are ancillary and one should condition on the realized 
censoring times when malcing inferences about the distribution of T This takes us 
back to the Type 1 censoring framework. A point to note is that although it may be 
desirable to make inferences conditional on the Ci in any given situation, the prop-
erties of procedures averaged over the distribution of the Ci may be of interest when 
planning studies, and in some applications. 

Although the independent random-censorship model is often reasonable, in many 
situations the censoring process is linked to the failure time process. Suppose, for 
example, that the termination date for a medical trial is not fixed before the study 
commences, but is chosen later, with the choice influenced by the results of the study 
up to that time. In such instances it may be difficult to write down a model that fully 
represents the process under study. Fortunately, the likelihood function (2.2.3) is still 
applicable in many such complicated situations, This is discussed in Section 2.2.2. 

2.2.1.3 Type 2 Censoring 
The term Type 2 censoring refers to the situation where only the r smallest lifetimes 
t(1) < < t(j .) in a random sample of n are observed; here r is a specified integer 
between 1 and n. This censoring scheme arises when n individuals start on study at 
the same time, with the study terminating once r failures (or lifetimes) have been 
observed. Although some life tests are formulated with Type 2 censoring, they have 
the practical disadvantage that the total time t (r) that the test will run is random and 
hence unknown at the start of the test. Type 1 censoring is therefore much more com-
mon in planned experiments. The exact sampling properties of statistical procedures 
based on a Type 2 censored sample are, however, tractable in many cases and this 
censoring scheme is often discussed in theoretical work. 
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With Type 2 censoring the -aloe of r is chosen before the data are collected, and 

the data consist of the r smalle'st lifetimes in a random sample  Tt,   Tn . For con-

tinuous distributions we can itnore the possibility of ties and denote the r smallest 

lifetimes as T(i) < T(2) < To). If the Ti have p.d.f. f (t) and survivor function 

S(î). then frorn general results on order statistics (Appendix B.3) the joint p.d.f. of 

Tol is 

i
r 

7, 11 f (t(o) 
 

The likelihood function is base  I on (2.2.6). By dropping the constant 1111(11 — r)1 and 

noting that in terms of the (3i. ti) notation we have Si = 0 and ti = tol for those 

individuals whose lifetimes are censored, we see that (2.2.6) gives a likelihood of the 

same form (2,2.3) as for Type 1 censoring. The sampling properties are, however, 

different in finite samples. 

Example 2.2.2. Consider the exponential distribution as in Example 2.2.1, but 

suppose lifetimes are Type 2 cc nsored, The log-likelihood is still of the form (2,2.5), 

but here it can be written as 

f(X) = r 1.)g X — 	+ (n — r).t(r) 

and the maximum likelihood ertimate for X can be written as 5. =  r/  W, where 

W= 	(i) 	(n — 1") 1 (r). 
1= 1 

Since r is fixed, the statistic W .  is sufficient for X, and it is readily shown (see Sec-

tion 4.1.2) that with the data cot isidered as random variables, 2X W = 20./51 — 42/1' 
a chi-squared distribution with 2r degrees of freedom. This allows exact confidence 
intervals and tests for X to be d:weloped. 

Pmgressive Type 2 Censoring 

Progressive Type 2 censoring is a generalization of Type 2 censoring. In this case, 

the first 6 failures in a life test of n items are observed; then ni of the remaining 
n —rj unfailed items are remcved from the experiment, leaving n—n items 
still present. When a further r; items have failed, n2 of the still unfailed items are 
removed, and so on. The exptriment terminates after some prearranged series of 
repetitions of this procedure. 

This scheme is of more them etical than practical interest, but let us obtain the like-
lihood function, assuming that 'ifetimes are independent and indentically distributed 
(lid.) with p.d.f. f(t) and survivor function S(t). For simplicity we suppose the cen-
soring has only two stages; at die time of the n th failure, n of the remaining n — n 

n! 
(2.2.6) 
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unfailed items are randomly selected and removed. The experiment then terminates 
when a further r2 items have failed. At this point there will be n — ri — ni — r2 items 
still unfailed. The observations in this case are the ri failure times  T(I) « 
in the first stage of the experiment and the r2 failure times in th  d second stage of 
the experiment, which we will denote by T(1 )  < < r The experiment is (r2) .  
represented in Figure 2.1. 

The distribution of the data can be written as 

81(t(i) 	 t(, . 1 ))82,K ) , 	 (2.2,7) 

where 81 and 82 represent p.d.f.'s of the variables indicated. The joint p.d.f, 

St (t(j ), 	, tfro) of T(i ) ,,,,, T(ri)  is given by (2.2.6), with r =  r. 	write down 
the second term in (2.2.7) we observe that given t(i), , tfro, the lifetimes of the 
items left in the experiment have a left-truncated distribution with p.d.f. and survivor 
functions 

f (t) 	 S(t)  
fi(t) = , 

S kt(ri)) ' 	Si (t)  — S  (t(r1)) 	

t 

respectively. Thus 7 (*1) , ... , T(7.2)  are the r2 smallest observations in a random sample 
of size n — ni — ri from this truncated distribution, By (2,2.6), the second term in 
(2.2.7) is therefore 

(n — ri — ni)! —n —I' s  

	 fi (e6)) • • f (1) [Si (t.2) )] 
(n —ri —ni — rz): 

Combining the two parts of (2.2.7), we obtain the likelihood function as 

cf (t(i )) f (tfri)) [S(t(ri))i ni  f (t 96 )) f (tt,. 2) )[S(e(1;,2) ) (2.2,8) 

where c = n!(n — ri — ni)!/[(n — ri )!(n — ri —ni — r2)!j. Once again, using the 
(ti, Si) notation, we find that (2.2.8) is of the same form as (2.2.3). 

0 	T( 	'r(2) T" 	Th 
(r 

	

(I) 	(2) I
) 

1 	I 	 I 	I 
I . 	

1 
  

n items 	 f 	 Experiment 
on test 	 Randomly remove 	 terminates 

n unfailed items, / 

	

leaving n - 	on 

test 

Figure 2.1. Progressive Type 2 censoring. 

T- 
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2.2.2 A General Formulation of Right Censoring 

The censoring process is of en not any of the types discussed so far, and may be 
sufficiently complicated to make modeling it impossible. For example, a decision 
to terminate a life test or cligical trial at time t, or to withdraw certain individuals, 
might be based on failure information prior to time 1, Fortunately it can be shown 
that under rather general coticlitions the observed likelihood is of the form (2.2.3) 
and can be used in the normal way to make inferences about the lifetime distribution 
under study. 

The key idea for a general approach is to consider the failure and censoring pro-
cesses for a group of individuals as time goes by. We develop results for discrete-time 
models first; the general case is then obtained by limiting arguments similar to those 
used in Section 1.2.3 for the general formulation of lifetime distributions. 

Suppose that n individual; are followed from t = 0 until each fails or is censored. 
Assume that lifetimes and celsoring times are discrete; for convenience and with no 
loss of generality we assume allowable values for each are t = 0, 1, 2 ,   Suppose 
for now that covariates do not vary over time and let hi (t) and Si (t) be the hazard.and 
survivor functions (see (1.2.'; ) and (1.2,8)) for individual i, conditional on observed 
covariate values. 

We introduce some additional notation directed at the evolution of the failure and 
censoring processes over tim as follows. For t = 0, 1, 2, 	let 

= / (T/ > /, Individual i is not censored before t) 

d (i) = Y (I); (Ti --= t) 

d (1) =  Y1 (t) (Individual i is censored at t) 

The variable Mt) is often flailed the at risk indicator; it equals 1 if and Only if 
individual i is alive and uncmsored just before time t, and hence at risk of being 
observed to fail at t. The vat iables d (t) and dCi(t) record observed failure and 
censoring events at time t, respectively. Among all the values (dNi(t), dCi(t), 
t > 0), only one is nonzero for any individual. 

We also define vectors dr4(t) = (d N ; (t) , 	 d N„ (1)), dC(r) = (dC (t), 
(/ C:„ (I)), and 

1-1(1) = f(dN (s), dC(s)), 	s = 0, 1, . , t — 1). 

We refer to 7-1(t) as the history of the failure and censoring processes at time I. It 
consists of the information al.mut all failures and censoring events that occurred up 
to time / — I. The important point is that the data that we observe (aside from the 
covariatc values) can be represented as 

Data = (dN(t), dC(t); t = 0, 1, 2, ...). 

Furthermore, we can decompose Pr (Data) as 
00 

Pr (Data) = ri  Pr (dN(1)17-1(t)) Pr (dC(t)jdN(t), 	 (2.2.9) 
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where 7-1(0) is null. In (2.2.9) all probabilities are conditional on covariate values, 
but for simplicity this is suppressed in the notation. 

So far we have made no assumptions about the censoring mechanism, but to pro-
ceed further it is necessary to do this. Assumptions that have become standard in 
lifetime data analysis require that 

Pr (dN(t)17-i(t)) = 	hi(t) divi (0 [1 _ hi  ( t )] (t)(1—ami  (t)) 	(2.2.10) 

Effectively, this requires that given 7-1(t) and covariate values, the failure mechanisms 
for individuals at risk at time t operate independently, and that for t = 0, 1, 2, 

Pr(dNi(t) = 117-1(t)) = Yi(t)hi(t). 	 (2.2.11) 

The notational convention 00  = 1 is used in (2.2.10), corresponding to the fact that 
if Mt) = 0 there is no information about individual i at time t, and the term in 
the likelihood should equal one. Note that the value of Yi(t) is determined by the 
information in 7.1(t). 

The condition (2.2.11) represents a conditional (on 7-1(t) and covariate values) 
independence between failure and censoring at time t,  and mechanisms that satisfy it 
are often termed independent censoring mechanisms. Under (2.2.11), the probability 
that an individual who is alive and uncensored just prior to time t is observed to fail 
at t is hi (t), the same as if there were no censoring. 

If the terms Pr(dC(t)IdN(t),7-1(t)) in (2.2.9) do not involve any of the param-
eters that specify the hi (t), the censoring scheme is called noninformative. These 
terms can then be dropped from the likelihood, and by inserting (2.2.10) into (2.2.9), 
we get 

IL 00 

L = 11 ri h i (odNi (t)[1 _ hi  (t )]Yat)(1-00)) 

1=1 t=0 
(2.2.12) 

Each individual is observed either to fail or be censored at some time t.  In the case 
of failure at t, dArt(t) = 1 and Yi(s) = 1(s < t); in the case of censoring at t, 
dAri(t) = 0 and Yi (s) = / (s < t). Since (see (1.2.6) and (1.2.8)) 

t—i 
(t)  = 11 (1  — hi(s)), 

s=o 
fi(t) = hi (t)St(t), 

we find that (2.2.12) gives, in the (ti, bi) notation, 

L = 11 fi (t r) 6' St (ti + 1 ) '4/ 	(2.2.13) 

Since Si (t + 1) = (t+), the likelihood is exactly of the form (2.2.3) encountered 
previously for Type 1 and other forms of censoring. 
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To obtain the likelihood in the case of continuous or mixed distributions we use 
the sanie ideas as in Section 1.2.3. We associate dNi (t) and dCi(t) with a short 
interval [I, 1 	di)  in a partit: on of  the time axis, and in (2.2.10) and (2.2.11) we 
replace hi (t) with d/ii 0), wl%ere 	(t) is the cumulative hazard function (1.2.14). 
The preceding arguments go through essentially unchanged as we take the product 
limit of (2.2, I 2) and then use ( 1.2.16) to obtain the product integrals in 

= FI 
1.1 (0.(x)) 

(ty  tivi o)r . Ll — d 	(r)]Yi (t)(1—d 0)) 

 

= 

exactly as in (2.2.3). 

 

(2.2.14) 

2.2.2.1 Discussion 
The independent censoring cor dition (2,2.11) requires that censoring in [t, t -Fdt) not 
depend on d N (t). In the cliscrc.te-time case we usually assume that a censoring event 
at time t • means that the physic al censorship is just after time t, so that if Yi(t) = 1, 
an individual who dies at t is observed to do so, as (2.2..11) indicates. Consistent with 
this, for an individual censored at t it is assumed that Ti > t,  as in (2.2.13), Censoring 
is typically noninformative in Jus case as well. More generally, (2.2.11) means that 
censoring at time t cannot be related to failure information at or after time t,  so it 
cannot selectively discriminate among individuals according to when they will fail 
in the future. This seems an obvious requirement for valid estimation of the lifetime 
distribution in the presence of eensoring, but is one that is uncheckable solely on the 
basis of the data (te, Si), 1 = 1 , . . . , n. It may also appear hard for it to be violated 
by a real censoring process, tut that is not so. For example, if a covariate x that 
affects lifetime also affects the censoring  process, then failure to include x in the 
model for T can cause a violation of (2.2.11). Another setting where (2.2.11) could 
be violated is in the discrete ease where t = 0, 1, 2, ... refers to equally spaced 
points in continuous time, and where an individual alive and uncensored at time t 
may be lost, to follow-up between t and t 1, in studies where the observation times 
are far apart, the event that an ildividual is lost to follow-up (and therefore censored, 
so that Y (t + 1) = 0) may not be independent of whether they fail in (1, t 1]. 

There are two additional important features of the preceding development. One 
is that the Censoring mechanirm at time t is allowed to depend on the history of 
censoring and failure before t.  The Type 2 censoring process is actually of this type. 
More generally, it would be pernissible in a study to make a decision about censoring 
individuals (i.e., removing them from the study) or terminating the study at time t 
according to failure information up to that time. A second point is that the likelihood 
(2.2.14) is available without a s:)ecific model of the censoring process. As long as the 
terms P r(dC(t)IdN(t),7-01))  in (2.2.9) do not involve parameters of interest, they 
drop out of the likelihood. With independent censoring this is generally the case, 
but even if these terms do contain information about the hi (t), it can be shown that 
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(2.2.14) is a partial likelihood (see Appendix C) and can still be used for inference 
in the dual way. 

The observed likelihood (2,2.14) thus has the same form for a variety of cen-
soring schemes. Moreover, inference procedures based on maximum likelihood 
large-sample theory can be applied in a straightforward way, as we will discuss in 
Section 2.2.3. However, the probability distributions upon which (2.2.14) is based 
can differ substantially according to the censoring process, and small sample proper-
ties of estimates or tests may therefore be different. In general, (2.2.14) is based on 
the joint distribution for the censoring and failure processes, and it is only in special 
cases such as Type 1 or independent random censoring that the censoring times can 
be viewed as fixed values. 

If there are external time-varying covariates x(t), then the preceding development 
can be extended. We now assume that models for the hazard function of T given X = 
{x(t) , t > 0) are as in Section 1.4, say of the form (1.4.4). The preceding argument 
goes through essentially unchanged, adding the Xi (t) to the history 7-1 (t) in (2.2.9), 
(2.2.10), and (2.2.11). The likelihood function is then of the form (2.2.14), with Si (t) 
given by (1.4.6) and fi (t) by hi (OS (t), where hi (t) = h(t  IX,) = h(tlw I (t)). 

2.2.3 Likelihood Inference with Censored Data 

Statistical inference for parametric models can in standard settings be based on well-
known maximum likelihood methodology, described in general terms in Appendix C, 
Let 0 be a p x 1 parameter vector, and let L(0) represent the likelihood and E(0) = 
log L(0) the log-likelihood function. The p x 1 vector U(0) = uova o is usually 
called the score vector and the p x p matrix 

_ a2 E  

	

go) _ me, 	 (2,115) 

is called the information matrix. The maximum likelihood estimate  (mie.)  i) maxi-
mizes L(0) and £(0), and usually satisfies the score equation U(0) = O. The Fisher 
or expected information matrix is defined as 

	

2(0) = E{I(0)), 	 (2,2.16) 

where the expectation in (2.2.16) is with respect to the random Data, which specifies 
the likelihood (see (2.1.1)), and is calculated under the probability distribution that 
generates the observed data. Well-known large sample or asymptotic results that are 
used for inference throughout this book include the fact that, considered as random 
variables, ê is approximately normally distributed in large-samples and the likeli-
hood ratio statistic A(0) =  2£(6)  —21(0)  is approximately x 2 . Details of these and 
other results are given in Appendix C. 

Standard large-sample procedures for maximum likelihood can be shown to apply 
to all of the settings described in Sections 2.2.1 and 2.2.2. With Type 1 censoring, 
asymptotic results of the usual type hold under essentially the same conditions as 
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fox the case of complete (ill., uncensored) random Samples. An added requirement 
is Ithat the sequence of fixed censoring times CI 	 C',, satisfy conditions so that as 
n co, the expected infor nation 1(0) increases at rate n; a sufficient condition in 
most instances is that the e::pected number of observed (i.e., uncensored) lifetimes 
approach infinity at rate n of: n —> oc.  

Independent random centtoring (Section 2.2.1.2) is subject to essentially the same 
requirements as Type 1 cens Dring, the only distinction being that the Ci are treated as 
random variables rather than fixed constants. Type 2 censoring is also straightforward 
to deal with: the usual assumption for the development of asymptotic results is that as 
n oc,  we have r —> co with ?in approaching a limiting constant  p. In a few cases 
involving Type 2 censoring, exact distributional results for m.l.e.'s or likelihood-
based procedures can be obtained. 

Asymptotic results can bt: derived in an elegant fashion for the general censoring 
framework of Section 2.2.2 by the use of counting processes and martingale theory 
(Appendix F). This approach obviates the need for special treatments of Type 1 or 
Type 2 censoring. Detailed mathematical treatments are available, and we merely 
outline the main ideas, 

Consider a continuous lifetime distribution vvith.parametrically specified hazard 
functions 17; (t : 0) l'or i = , , n. In this case, d Hi(1; 0) = hi (t; 0)dt and the 
product integral expression for the likelihood (2.2.14) is proportional to 

—d MO)) 

	

L(0) = 	h (t; O)f Ni (1) [1 — hi 0; 0) dt]Yt 0)0  JJ 
1=1 Roo) 

By (1.2.12) this equals 

ao 
L(0) = 	 oyiNio exp {— 	Yi(t)hi(t; 0) dt1 

	

i=t1 	(o.00) 

Defining the counting proc3ss Nt(t) 	fo  d (Li), we can then write the  log- 
likelihood as 

	

11 	 CO 

e(o) E 
f 

 log 140; 0) d (1) — f 	(Oh; (t; 0) dt 	(2.2.17) 

	

i=1 	 0 

and the score function as 

,1 r  ah, 0; ova° 	 0. 	Bit;  (t ; 0)  E 	d Ni (0 f Yi(t) 	dt U(0) = 
i =1 . 0 	Mt; 0) 	 o 	80 

En f - a log hi°, 0) =  
	[dAll(t) — Yi (t)hi (t; 0)dt], 	(2.2.18) 

a 0 i..1 J0  

assuming that we can differetttiate through the integral sign. It is noted that because 
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E 	— Y (t)hi(t; 0) dt11 -((t)) = 0, 

the score function satisfies Eo{U(0)) = 0, and is therefore an unbiased estimating 
function (Appendix C.2). Moreover, the processes 

(t) = 	Ed Ali (u) — Yi(u)hi(u; 0) du] 
0 

are martingales (see Appendix F.2) and by applying standard results we are able 
to show that the log-likelihood (2.2.17) and score function (2.2.18) give the same 
asymptotic results as standard settings. 

Maximum likelihood large-sample methods will be used throughout the book. 
It should be noted that although some approaches utilize the expected information 
(2.2.16), it is in many settings impossible to calculate this because there is not a 
tractable or sufficiently detailed model of the censoring process. It is appropriate and 
customary in most applications to use the ordinary information matrix (2.2.15) or the 
observed information matrix I( .0) in large-sample methodology. 

Example 2.2.3. Consider once again the exponential distribution of Example 
2.2.1. The observed log-likelihood function is given by (2.2.5) under all of the cen-
soring processes satisfying the conditions of Section 2.2.2: 

“X) = r log X — 

where r = E Si is the number of observed (uncensored) lifetimes. The 1 x 1 infor-
mation matrix is 

—d2 Z 	r 
1(X) = 	- = 

and the expected information matrix is 1(1) = E(r)/X 2 . For Type I or Type 2 
censoring we can evaluate E(r), but for complicated censoring processes in which 
decisions to end follow-up are based on previous lifetimes, or when individuals are 
lost to follow-up by an unknown process, it is not feasible to determine E (r). In this 
case, we would use  1(X);  this turns out here to be the same as if we estimated E(r) 
in I(X) by r. 

2.3 OTHER TYPES OF INCOMPLETE DATA 

2.3.1 Intermittent Observation and Interval Censoring 

Because lifetime data occur over chronological time, a variety of schemes are used to 
obtain data according to prevailing time and resource constraints,. This can produce 
other forms of incompleteness besides right censoring. A common occurrence is for 
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individuals in a study - to be obt erved intermittently, at discrete-time points. We begin 
by considering a framework vhere each individual i — 1 	 n is observed at a 
prespecified set of times 0 = am «to < 	< 	< co. If an individual has 
not failed by time  0i ,jI  (j 	I, .. mi), they are observed next at au, and it is 
determined whether or not  lai] tre occurred in the interval 	au]. The observed 
data then consist of an interval (U1,  1/2] for each individual, with the information that 

<  V,  and the lifetime is said to be interval censored. If failure has not 
occurred by time 	then Vi = oc and Ui = aim , is a right-censoring time for T. 

The observed likelihood function from a sample of N independent individuals 
(ruler this observation scheme is 

L = n i,,,v„_ (U,)1, 	 (2.3.1) 

where Fi (t) is the distributior function for Ti and we assume that Fi (0) = O. An 
easy way to obtain (2,3.1) is to notice that the observation for individual is in effect 
multinomial (I; • . , pi„„, where pu = 17i (aii) — Fj (ai, _I). For parametric 
models, inference based on the likelihood (2.3.1) falls under the standard theory of 
Appendix C. Nonparainetric erlimation is more complicated; some special problems 
are diseug§ed in Chapters 3 and 7, The case where observation times are the same for 
all individuals (i.e., ai f = cr_i) is often referred to as grouped data. 

'rliFFiter-val-censOring fr-amework just described covers many situations; a few 
examples follow, 

Example 2.3.1. Sotnetimos the failure of a piece of material or equipment can 
be determined only by inspection. For example, a lifetime often associated with metal 
components such as airplane bodies, pressure tubes in nuclear reactors, or railway 
track is the time until a define(' type of flaw (e.g., a crack) appears. Components are 
usually examined periodically, so the exact time of appearance is interval censored. 

Example 2.3.2. In many longitudinal studies on humans it is feasible to see 
indiViduals only at rather widely spaced intervals; in longitudinal surveys individuals 
may be seen only every one or two years. The timing of some types of events can be 
determined retrospectively, but some cannot. For example, the determination that a 
child has reached puberty may rely on tests carried out at the observation times, so 
that the age of onset of pubert) is interval censored. 

Example 2.3.3. Current 3tatus Data. This term refers to interval censored 
lifetimes where the interval for an individual is either (0, Ci] or (Ci, co). Such data 
arise when individual î is exan- incd once, at time C1, at which point it is determined 
whether failure has already ()enured (i.e., Ti < C1)  or not (i.e. T,  > CO. In  shelf-
life problems involving food o • drugs, an item may degrade over time, with failure 
being defined in terms of the a nount of degradation, To determine whether an item 
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has failed it may be necessary to destroy the item, for example, to open a sealed 
container or to carry out chemical analysis of the item. Current status data also arise 
in animal carcinogenicity studies in which the time to occurrence of a tumor is of 
interest, but where tumors can be detected only by autopsy when the animal is dead. 
In demography, studies on female fertility in underdeveloped countries often use 
current-status data on items such as the age at which a woman becomes fertile or first 
gives birth, because accurate information about timing of events is hard to determine 
retrospectively. 

The assumption that observation times aii are fixed ahead of time, or even that 
they are determined independently of the process that generates lifetimes, is unsup-
portable in many settings. For example, a decision regarding when to see an individ-
ual next in a clinical study may be based on current information about the individual. 
A more general process analogous to the censoring process in Section 2,2.2 can be 
considered. Suppose that if an individual is alive and uncensored at time ai,j_i, a 
decision about the next observation time au is based on observed failure, covariate, 
and observation time history 7-t(ai,j_i) up to The choice of aisi is, however, 
conditionally independent of failure and covariate information beyond ai,j_i, given 
7-1(ai,j_i). In this case 

	

Pr(ai,j-1 <  T1 	aijr7(ai,j—i),a1,1) — 
1— 

where 7-t(cr1, j...1) is understood to include the information that individual i is alive 
and uncensored at 	Under this observation process the data consist of the 
observation times 0 = aio < 	< at,m, < co, and the information that at,n11-1. < 

< ai,„,,. Note that ai m ,  = Do corresponds to right-censoring of the lifetime at 
time ai,,,„_i • Assuming that the terms Pr(aii17-gai,i_i)), j = 1, do not 
contain information about the lifetime distribution, the observed likelihood function 
for individual i is proportional to 

—1 

	

Pr(Tj > 	 au) Pr(Ti 	ai,n1,17-i(ai,rni-1), a1 ,m1). 
1=1 

Because of (2.3.2), this reduces to the earlier likelihood (2.3.1), where Lfi = 
and Vi = 

The probabilities in (2.3.1) and (2.3.2) are conditional on observed covariate val-
ues, but for convenience this is suppressed in the notation. If covariates are time 
varying, then values are needed over (ai,j_i,aii]; it is often necessary to estimate or 
impute values. 

The condition (2.3.2) requires that the process determining au is unrelated to 
failure information beyond This can be violated if covariates related to both 
the observation time and lifetime processes are not included in the lifetime model. 
Another potential problem is where an individual last seen at Cif _1 is scheduled 

Fi(a) — Fr (ai,j—i)  (2.3,2) 
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for observation at some future time, but is lost to follow-up; this often happens in 

longitudinal surveys and in some clinical studies. The result is that au = co, and the 

concern is whether loss to follow-up between the two scheduled observation times is 

conditionally independent o.' 7.1. This can only be assessed by tracking some of the 

individuals lost to follow-up 

Another form of interval-i.:ensoring arises in connection with life tables, where an 

individual may fail or be censored between specified observation times; it is known 
which oceunied, but not the time of occurrence. This is discussed in Section 3.6. 

2.3.2 Double Censoring 

Other forms of interval censoring can arise, In many applications the lifetime 71 is the 

time between two events, for example, the time between infection with the human 

immunodeficiency virus (HIV) and the diagnosis of AIDS, the time between the 
beginning and end of a period of unemployment, or the time between the  appearance 

of a crack in a metal specinnn and its growth to a critical size. If the timing of the 

initial event is interval censo•xl, then even if the exact time of the failure or censoring 
event is observed, the exact lifetime or censoring time for T is Ichown only to lie in 

an interval. 

Specifically, let Ul* be the time of the initial event and suppose We observe only 
that LI' < U,?< R7 -  under a scheme satisfying the conditions just specified. Let y; 
be an observed censoring or failure time (i.e., time of  the second event), measured 
on the same scale as Uï* The n the failure or censoring time for T; is ti = y; — 
and we know only that y; —  U,? < i < y; — q, This is known as double censoring. 
The likelihood function is not given by (2.3.1) with Ui =y — RI` and 14 = y; 

in spite of the seeming similarity with standard interval-censoring. To see this, 
consider the p.cl.f, g; (u) for tile distribution of U;', given that Ui* RN. If 7'1 is 
independent of ut, the . likelillood contributions are then given by 

RT 
P1. (y6 	e 	RN) =gi(u)f;(y; — u)'51  S; (y; — u) 1-6i du. 	(2.3.3) 

L7 

A difficulty in this case is the necessity to specify g; (u). 

2.3.3 Remarks on Missing Data 

Censoring is an example of imximplete or missing data: the exact values of lifetimes 
are unavailable for certain individuals. As such it may be considered in the context 
of general formulations for incomplete data (e.g., Little and Rubin 1987). A crucial 
issue is whether data are  missing at random in some sense; if they are not, then a 
model that represents the procss by which data are missing is necessary in order to 
obtain appropriate likelihood functions and inference procedures. 

A mechanism that leads te missing data is sometimes completely independent 
of the lifetime process. The missing data are then said to be missing completely at 
random, or MCAR. Type 1 right censoring (Section 2.2.1,1), random independent 
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censoring (Section 2.2.1.2) and interval censoring induced by prescheduled intermit-
tent observation of individuals fall into this category. When data are MCAR we do 
not have to consider a model for the "missingness" process in order to obtain the 
observed likelihood, though it may be challenging to compute the probability distri-
bution of the observed data. 

The MCAR model is too stringent in many settings. A weaker requirement in the 
general theory is that data be missing at random (MAR), which means the proba-
bility that data are missing may depend on data that are observed, but not on data 
that are unobserved. In this case, it also proves possible to avoid specific modeling 
of the missingness process. The general censoring mechanism in Section 2.2.2 and 
the interval-censoring mechanism leading to (2.3.2) both satisfy the MAR condition, 
since censoring at any time is allowed to depend only on events observed in the past. 
Fortunately the observed likelihoods for both the MCAR and MAR censoring pro-
cesses are not hard to obtain and, as we have seen, the observed likelihoods (2.2.3) 
and (2.3.1) are the same for the MCAR and MAR processes, It should be noted, how-
ever, that although we can avoid modeling the censoring process for inference based 
on the observed likelihood, we need a censoring model to evaluate exact frequency 
properties for small samples or for purposes of study design. 

Information on censoring times or covariates may also be missing. A treatment of 
this topic is beyond the scope of this book; a few remarks and references are given 
in the Bibliographic Notes of Chapters 3, 4, and 7. 

2.4 TRUNCATION AND SELECTION EFFECTS 

In Section 2.1 we mentioned that in some studies individuals are not randomly 
selected and followed prospectively from their time origin (t = 0). In this case, 
it is necessary to consider the selection mechanism in writing clown the likelihood 
function for observed data. This section considers some settings that involve selec-
tion effects. 

2.4.1 Delayed Entry and Left Truncation 

Individuals are sometimes selected and followed prospectively until failure or cen-
soring, but their current lifetime at selection is not t = 0, but some value u > 0. 
The definition of a prospective study is that lifetime information after the time of 
selection forms the response. Selection of an individual at time ui thus requires that 

>uj ,  and the observed data for individual i consist of (ui, ti,  8 , xi), where ti > u; 
is a lifetime or censoring time and xi represents covariates. We say that the lifetime 
Ti is left truncated (at ui) in this setting. 

Let S(tlx) be the survivor function for T given x. The crucial issue affecting 
inference is whether the distribution of T given x, u, and the fact that T > u is given 
by the truncated distribution with survivor function S(t lx)/S(u lx) for t > u. More 
specifically, in terms of the hazard function we need 

Pr(T = tIT > t,u,T > u, x) = Pr(T = tIT > t, x). 	(2.4.1) 
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If this is the case and the ccnditions on the censoring process described in Sec-
tion 2.2.2 hold, then the likelil.00d function arising from n individuals with indepen-
dent lifetimes is given by (2.2.14) as 

4 II • 

hot)  15,  rsict i +)1 1-6,  
LS;(11i)j L 	j 

It is not always easy to determine whether (2.4.1) is a plausible assumption, espe-
cially when individuals in a st idy are selected from an ongoing process that defines 
7'; Example 2.4,3 provides an illustration. One setting where (2.4.1) is valid is when 
observation of a process switches on at ui in such a way that ut is a stopping time 
with respect to the lifetime pi ocess (Andersen et al. 1993, Sec. 3.4); this is some-
times referred to as independelt delayed entry. If we broaden the definition of Y1 (t) 
in (2,2.12) and (2.2.14) to 

(i) = (tri < t < t i ), 	 (2.4.3) 

then (2.2, I 2) continues to hold and the product integral expression in (2.2.14) reduces 
directly to (2.4.2). The  concept of independent delayed entry allows Ut to depend  on 
prior lifetime history or on coi anales x included in the lifetime model. 

The following examples provide illustrations of delayed entry. 

Example 2.4.1. A lifctim.  T can be viewed as the time between an initial event 
E1 and a subsequent event E,, for an individual. In many settings the events E 
for different individuals occur at different points in calendar time, and individuals 
are selected for a prospective study by randomly choosing from those who have 
experienced E1 but not E2, For example, El may refer to the onset of some disease 
that is typically fatal, and E2 to death; T is the survival time from disease onset. 

The selection mechanism a id lifetime process are illustrated in Figure 2.2. Indi-
viduals experience El at ealerdar time X and E2 at time X + T;  selection occurs 
at calendar time r from individuals with .X < r and X -I- T > r. The distribution 
of 7' is assumed to depend on y on information observable at r; this could include 
the value oïX,  which would  tien  be included among the covariateS x in S(t Ix), The 
probability of selection could also depend on X or other covariates, provided they 
are included in the model for 7' In this case, the conditions for independent delayed 
entry are met, with ui = r — I, and (2.4.1) holds. 

E21  

— X 	X 	X   calendar time 

+ 

Figure 2.2. Seleci ion conditional on survival to calendar time r. 

(2.4.2) 
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Example 2.4.2. A setup similar to that in the preceding example arose in a study 
on the lifetime of automobile brake pads (Kalbfieisch and Lawless 1992). The pads 
have a nominal lifetime, which is the number of miles or kilometers driven before 
the pads are reduced to a specified minimum thickness. To study the lifetime distri-
bution, a manufacturer selected a random sample of vehicles sold over the preceding 
12 months at a specific group of dealers. Only cars that still had the initial pads were 
selected. For each car the brake pad lifetime ti could have then been observed by 
following the cars prospectively. Instead, to save time the current odometer reading 
ui (in km) and the remaining pad thickness above the minimum were used in con-
junction with the initial pad thickness to estimate the lifetime ti (in km); this was 
treated as the actual lifetime in the analysis. In any case the selection framework is 
similar to that in Figure 2,2, and the lifetime ti is left truncated at tii. 

Table 2.1 gives ui and ti values (in 1000-km units) for the left front brake pads on 
a sample of 98 vehicles. 

Table 2.1. Brake Pad Life (t) and Odometer Readings (u) for 98 Cars 

22.2 38,7 16.5 69.6 18,4 86.7 L0.9 79.5 
23.0 49.2 15.7 74.8 18.2 43.8 25,5 55.0 
24.0 42.4 28,0 32.9 15.9 100.6 12.4 46.8 
28.6 73.8 13.3 51.5 16.4 67.6 39.9 124.5 
21.8 46.7 16.5 31.8 23.6 89.5 17.7 92.5 
17.0 44.1 24.2 77.6 19.2 60.3 26,3 110.0 
26.0 61 ..9 17.6 63.7 23.3 103.6 14.1 101.2 
23,2 39.3 27.8 83.0 20.4 82.6 21,0 59.4 
18.9 49.8 18.3 24.8 20.9 88.0 11.2 27.8 
21,9 46.3 17.7 68.8 28.5 42.4 10.8 33.6 
27.3 56.2 20.0 68.8 23.2 68.9 25.7 69,0 
13.8 50.5 13.2 89.1 17.9 95.7 32.4 75.2 
24,0 54.9 16.9 65.0 46.1 78.1 13.6 58.4 
20,1 54.0 14.9 65.1 39.3 83.6 19.1 105,6 
15.7 49,2 15.5 59.3. 11.8 18.6 16.1 56.2 
26.8 44.8 7.0 53.9 17.7 92.6 53.3 55.9 
27.9 72.2 15.8 79.4 30.9 42.4 57.3 83.8 
15.3 107.8 15.0 47.4 22.4 34.3 36.5 123.5 
28,8 81.6 38.3 61.4 45.0 105.6 19.7 69.0 
16.0 45.2 11.2 72.8 18.2 20,8 20.8 101.9 
23.6 124.6 38.2 54.0 30.2 52.0 30.8 87.6 
53.8 64.0 26.7 37.2 21.8 77.2 20.0 38.8 
21,7 83.0 17.1 44.2 18.2 68.9 39.6 74.7 
28.8 143,6 29.0 50.8 23.0 78.7 
17.0 43.4 18.3 65.5 27.2 165.5 

Note: Units are 1000 km. 
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Example 2.4.3. Cook  et al. (1999) described a clinical trial involving patients 
with chronic bronchitis, for . vhoin periods of exacerbation of symptoms alternated 
with periods of good respiratory health. Persons entering the study had to be under-
going an exacerbation spell a. the time of selection, and were then assigned randomly 
(none of two treatments, A and B. The duration of exacerbation spells was a primary 
response for the -comparison of A and B; let us consider the remaining duration of the 
initial exacerbation spell. Tho setup is on the surface similar to that in Figure 2.2, but 
because patients have  n prior history of exacerbation spells, the selection mechanism 
will tend to pick patients witli longer exacerbation periods, so the study population is 
not representative of the poplation of all patients; it is what we refer to as a length-
biased sample (see Problem 2..7). 

Because of the randomizalon, the study populations assigned to treatments A and 
B are comparable. One satit  factory approach is therefore to compare the distribu-

1 ions of the times I .// from randornization to the end of the initial exacerbation spell. 
Assuming that the duration if; of the spell at the time of randomization is known, 
considering 1/i given U; is eq Avalent to considering T; given U,, where T; = U; V1 
is the total duration of the initial spell. However, it would not be appropriate to treat 

as a truncated response arising from independent delayed entry at LI,. Since treat-
ment is not assigned until time L11, and since the sample selected is not representative 
of the population of all patie its anyway, basing comparisons on the marginal distri-
but ion of V, seems the best a oproach. 

The selection of individua,s in the preceding example was not independent of their 
lifetimes. We consider some other such selection effects in the following section. 

2.4.2 Retrospective Obsei vation and Selection Effects 

In a prospective study of life:Ames, individuals are typically followed from the entry 
time if; to a failure or censoring time > 14. In some studies, the observational plan 
Is retrospective to some elegiae. That is, part or all of the observation period (ai, ti) 
occurs chronologically prior to the selection of the individual. Such plans are attrac-
tive when it is not feasible to follow individuals long enough prospectively to obtain 
desired information, but they frequently impose conditions on the lifetimes of those 
selected. The next two examoles provide illustrations of retrospective Observation. 

Example 2.4.4. Kalbfle - sch and Lawless (1989) analyzed data on persons 
infected with HIV via blood transfusion, who were subsequently diagnosed with 
AIDS. The data were used t.) estimate the distribution of the time T between HIV 
infection and AIDS cliagnosi ;, 

The way the data were ot tamed was retrospective. In particular, the study group 
was assembled in 1987 and  consisted  of individuals who had a diagnosis of AIDS 
prior to July 1, 1986. For eac h person the date of HIV infection could also be ascer-
tained, because the individulls selected were deemed to have contracted the HIV 
through a blood transfusion on a particular date. The condition for being included in 
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the data set was therefore that Ti < vi, where 

= Time between the individual's HIV infection and July 1, 1986. 

This is referred to as right truncation of the lifetime T,, and the likelihood function 
based on n independent individuals is given by 

rrn 	(ti)  
PrOl 	oivi,Ti v = 11 " 

F.(v.). 1=1   

(2.4.4) 

Example 2.4.5. Consider the estimation of distributions for the duration of first 
marriages. Because of the long duration of many marriages, retrospective ascertain-
ment of data is attractive. One study design would be to sample couples married in 
the past, perhaps stratifying on specific time periods. (In any case, the duration of a 
marriage is likely related to the year of marriage, so the latter would be considered 
a covariate.) If couples were sampled from marriage records, without reference to 
whether the marriage was still intact or even if the individuals were still alive, then 
assuming that it was possible to trace the couples and determine the fate of the 
marriages, no selection effect would be present and a likelihood of the form (2.2.14) 
would apply. Tracing couples could be difficult and expensive, however, and an alter-
native plan would be to sample randomly individuals or married couples alive at the 
present time. By determining the previous history of marriage for such individuals, 
data on first marriage duration and related covariates could be obtained. However, 
it is a condition of selection that an individual be alive, and there is an association 
between duration of life and duration of marriage. Consequently we would expect 
that the distribution of marriage durations in the sampled population would not be 
exactly the same as in the population consisting of all couples who got married over 
the period of interest. In order to deal with this situation, we would need to formulate 
a model describing the ways individuals or couples are deleted from the population 
used for selection. Such issues take us into the realm of event history analysis (see 
Chapter 11). 

2.5 INFORMATION AND DESIGN ISSUES 

The planning of studies or experiments requires decisions about numbers of indi-
viduals, the duration of the study, the modes of sample selection and observation, 
and settings for controllable covariates. The decisions are based on time, resource, 
and physical constraints plus an assessment of the information on important param-
eters or hypotheses that the data will provide. This section contains some general 
remarks about information and design; specific applications are considered in subse-
quent chapters. 

Studies are carried out for a variety of reasons, which may include furthering sci-
entific understanding, the development of models for prediction or decision making, 
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and i he improvement of processes or systems. Study objectives can often be linked 
to estimation or hypothesis-te fting problems for specific quantities, which are then 

considered during the planning  process. Thus, suppose there is a parametric lifetime 

distribution /(r;  0) and that s )me parameter * = g(0) is of interest. For example, 

this 'night he a distribution quantile or survival probability. Putting aside questions 
of model adequacy, we considor the precise estimation or testing of 

The sampling properties of !ests or estimation procedures can sometimes be deter-

mined analytically, and in genoral can be examined through simulation. Most of the 

procedures in this book are likelihood-based, as described in Section 2.1, and the dis-

cussion in this section focuses on them. Appendix C summarizes likelihood-based 

inference and important large-sample results that underlie the following discussion. 
Confidence intervals or tests for a scalar * are often based either on (1) the like-

lihood ratio Statistic 

A(*) = 2C* — 2C(i)(0- )), 	 (2.5.1) 

where f(0) is the log-likelihood function, -6 is the m.l.e ,  that maximizes E(0), and 

O('/) is the vector 0 that max' mizes .e(0) under the constraint g(0) = fr,  or (2) the 

standardized quantity 

) = çfr - 	1/ 
	

(2.5.2) 

where iv= g (h) is the  nile,  el* and i/̂v; /2  is its standard error. The latter is usually 

based on 

fit(' = ( 8 171 / 86 ) K(761( 3 lif/a 6.), 	 (2.5.3) 

where ../() is an estimate of the asymptotic covariance matrix for '6, typically either 
1(b) — 1  or 2(b) -1 , where 1(0' and 1(0) are the observed and-expecte.r1 information 
matrices tbr 0,  respectively, discussed in Section 2.2.3 and Appendix C. 

A(*) and Z(*) are approximate pivotal quantities in standard settings, with 
asymptotic 42.11  and N(0, 1) distributions, respectively. Two-sided a confidence 

intervals based on Z are of tho Form z17/111/2 , where z is the .5(1 + a) quantile 
for N(0, I); two-sided a  confidence intervals based on A are obtained as the set of 
values * such that A(*) 5. OE , the a quantile of 4/) . 

The following example illustrates some important points in the simple context of 
an exponential distribution. 

Example  2.5. 1 .  Suppose that in a test environment a piece of equipment has 
an exponentially distributed lifetime T, with p.d.f. (t; 0) = 0 -1  exp(—t/0). From 
(2.2.5), the log-likelihood fumtion for 9 under a variety of prospective observation 
schemes With right-censoring is 

1 " 
E(13) = —r log 0 — — 

0 
(2.5.4) 
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where ti denotes a lifetime or censoring time and r = E 3, is the number of ti that 
are lifetimes. 

The m.l.e. from (2.5,4) isO = E tilr, and the information is 
a 

(9)  = WT.  — 	+ -675 E t. 	 (2.5.5) 

The expected information depends on the censoring process, but it turns out that a 
simple  generaf  expression is available. Since E(delc19) = 0 for standard maximum 
likelihood (Appendix C), it follows from (2.5.4) that E(E ti) = 0 E(r), and from 
(2.5.5) we then get 

E(r) 
1(9) = E{l (0)} = 02 ' (2.5.6) 

A two-sided approximate .95 confidence interval for  9 based on (2.5,2) with 1-'7,9 = 
/ (0) — I = 02/r consists of values  ofO  that satisfy I Z(9)I < 1,96, or 

2 

Z(9) 2  = r (1 — 9 —„) < 3.84. 	 (2.5.7) 
— 

The analogous interval based on (2.5.1) consists of values satisfying 

A (9)  = 2r [— — 1 — log(0/0)1 < 3.84. 	(2.5.8) 

The two intervals can be seen to agree more and more closely as r increases. When 
the intervals are not in close agreement, the one based on (2.5.8) is preferred, as 
discussed iii—ArEffdix C and in Section 4.1.1 In . either case, it is iE I—it—niter of 
uncensored lifetimes r that determines the relative precision with which 9 is esti-
mated—, For example, the relative width of the .95 confidence interval (i.e., the width 
divided by 0) based on (2.5.7) is 3,92r-112 . 

Let us consider design issues, It is possible to design studies where r is fixed; 
Type 2 censored life test plans (Section 2.2.1.3) are of this type. However, the dura-
tion of the study is random when r is fixed, and it is more common to use designs 
for which r is a random variable and the study duration is fixed. For example, if 
we test each of n items over a specified time period (0, C), then Pr(Ti < C) = 
1 — exp(—C18), and r has a binomial distribution with 

E(r)= n(1— e —C /G ). 	 (2.5.9) 

This leads to Type 1 censored data (Section 2.2.1.1). The value of E(r) or, equiva-
lently, the expected information (2.5,6), provides an idea of the precision of estima-
tion  expEeted-from—a—§ffidy-a—d-Eini :le used for planning purposes, though we  also 
need a value for 9 in order to evafiTit2.5.9). 

The expected information and E(r) increase as n or C increases. Suppose that we 
want a .95 confidence interval with a relative width of about 1 when (2.5.7) is used. 
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This requires that 3.92r.= 1, or that r = 16. By choosing n and CO suitably 
large We can make E(r) or tile probability that r > 16 as large as desired. If we want 
to make E(r) = 16, for example, two  among an infinity of choices are_(a) n = 25, 
C/0 = 1, and (b) n = 19, C/O = 2rillustrating_the_U:ade.off between sample size 
and duration of study. In -  ditlier case, we need to provide a value for 19 in order to 
determine C, and 0 is what ve are trying to.estimate! The conventional approach is 
to use d conservatively_ large value of O. 

Ca-d-aations based on ex:)ected information provide a rough idea of_the number 
of individuals at) and length  of study (Ç) needecLto_achieve _the desired precision 
in die estimation of 0. In more complex settings it is difficult to get much insight 
analytically, and a —tiiefill procedure is to simulate data sets under proposed study 
plans and provisional values for 8, This allows a comparison of confidence intervals 
based on alternatives such as (2.5.7) and (2.5.8), and displays the sampling variation 
inherent in the study process 

In studies on lifetimes the censoring process is part of the design. The preceding 
example illustrated the effects of censoring and sample size in a very simple set-
ting. Qualitatively similar eff .3cts occur in other settings and with parametric models 
other than the exponential eistribution. The precision of nonparametric estimates 
also depends on the type and degree of censoring. For the product-limit estimator 
of S(t) introduced in Chapte” 3, for example, the dependence is explicit in variance 
estimates like (3.2.3). Other ,xmstraints on follow-up (e.g., intermittent observation 
that leads to interval censoring), or on the ways in which individuals are selected for 
study. are also part of the desi pi and affect the information about parameters. Finally, 
the study design affects our ability to assess model assumptions. This is an impor-
tant issue, especially when Me results or conclusions from an analysis are highly 
model-dependent. 

Analogous considerations apply in studies where hypothesis tests are a primary 
concern. for example, in  con  'pansons of the efficacy of two medical treatments or 
of the reliability of competin; industrial products. The power, Or ability of tests to 
detect effects of a specified size, depends upon the same factors as precision of esti-
mation. Two other aspects of study design should also be mentioned. The first con-
cerns experiments with contrc liable factors or covariates. In this case, the selection of 
factor levels affects the information about parameters, and principles of experimen-
tal design may be used to construct economic, efficient  designs. Second, adaptive or 
sequential plans are sometimes useful. For example, in a clinical trial to compare two 
treatments, we may wish to terminate the study early if it becomes obvious that one 
treatment is markedly supericy:. This topic is considered briefly in Section 4,1.4. 

BIBLIOGRAPHIC NOTES 

Maximum likelihood essentially dates from Fisher (1922), and contributions from 
many people have brought likelihood methods to their current position. Appendix C 
contains a summary of key theoretical results and important inferential techniques. 



PROBLEMS AND SUPPLEMENTS 	 75 

Sukhatme (1937), Boag (1949), Epstein and Sobel (1953), and others considered 
maximum likelihood in conjunction with censored data. Early discussions of asymp-
totic properties were given by Halperin (1952) and Bartholomew (1957, 1963) for 
the cases of Type 2 and Type 1 censoring, respectively. The more general concept of 
independent censoring and construction of the likelihood functions as described in 
Section 2.2.2 started with Cox (1975), with subsequent contributions by Kalbfleisch 
and MacKay (1978) and Kalbfleisch and Prentice (1980, Sec. 5.2). Other discus-
sions of likelihood construction were given by Efron (1977), Williams and Lagakos 
(1977) and Lagakos (1979). The rigorous development of asymptotic likelihood the-
ory under independent censoring was facilitated by the use of martingale theory (e.g., 
Aalen 1978a, b, Borgan 1984, Arjas 1989); Arjas and Haara (1984, 1992) discuss 
issues associated with observation schemes in both survival and event history anal-
ysis, Andersen et al. (1993, Chs. 2 and 3) is an important source concerning these 
areas. 

Interval censoring was considered by Peto (1973) and by Turnbull (1976), who 
also discussed general forms of truncation. Huang and Wellner (1997) specify dif-
ferent types of interval-censoring. A discussion of the process by which inspection 
times for event history processet determined is given by  Gruger et al. (1991) and 
Farewell et al, (2002). Jewell and van der Laan (1997) and J. Sun (1997) provide 
historical remarks and examples of double censoring. 

Truncation was considered by Turnbull (1976) and Hyde (1977). Kciding (1992) 
_i considered independent truncation mechanisms; Andersen et al. (1993 Secs, 3,3 and 

3.4) give a detailed mathematical discussion  of likelihood  construction For examples 
of left truncation in the social sciences, see Hamerle (1991) and Guo (1993), and in 
medicine, Cnaan and Ryan (1989). 

Design issues are best considered in specific contexts. However, for an early dis-
cussion of "optimal" design in connection with maximum likelihood estimation, see 
Chernoff (1953). 

Bayesian methods are based on the likelihoods described here and prior distri-
butions on unknown parameters. Box and Tiao (1973), Berger (1985), Carlin and 
Louis (1996), and Gelman et al. (1995) discuss Bayesian inference; Berger (2000) 
provides many additional references. Martz and Waller (1982), Crowder et al. (1991, 
Ch. 6), and Meeker and Escobar (1998, Ch. 14) discuss Bayesian methods in reliabil-
ity, and Ibrahim et al. (2001) deal with survival analysis. Gilks et al. (1996) discuss 
applications in biostatisties. It is beyond the scope of this book to describe Bayesian 
methods in detail, but occasional references will be made. 

PROBLEMS AND SUPPLEMENTS 

2.1 Consider experiments with the following two censoring mechanisms. 

(a) A group of n units is observed from time 0; observation stops at the time of 
the rth failure or at time C, whichever occurs first. 
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(b) A group of n units is observed from time 0, but each time a unit fails a new 
unit instantly replace l it in the experiment. The experiment terminates after 
a preassigned time C has elapsed. 

Show by direct calcUlatioli that in each case the likelihood function is of the form 
(2.2.3), assuming that the units have failure times which are with survivor 
function S(t) and p.d.f. (1). 

(Section 2.2) 

2.2 Suppose that the lifetime Ti has hazard function hi (1) and that C1 is a random 
censoring time associated with Tt. Define 

	

P r (I < 	< t AtiTi > t , Ci >  t)  
Mt) = lint 

Ai- 0 	 At 

(a) Show that the independent censoring condition (2.2.11) is equivalent to the 
condition h 	= 4('), assuming that we condition on fixed covariates and 
that there are no titne-varying covariates, 

(b) Suppose that there exists an unobserved covariate Z1 which affects both Ti 
and Ct, as follows: 

	

Pr'(Ti > 1174) = ■ xp(-74 	Pr(Ci slZi) = exp(—Zips), 

and  T,, C; are independent, given Z. Assume further that Z has a gamma 
distribution (1.3.15) with mean 1 and variance 0 -1 . Show that the joint sur-
vivor function for Th  C1  is 

	

1 	1 	— Ç6  
Pr(Ti t, Ci s) (1 + —Ot — ps) 

	

0 	0 

(c) Obtain h 1(0 and X; (t) for the model in part (b), and show that A., (t) < 
hi(t) for finite O. Thus the censoring mechanism is not independent, but it 

	

approaches independence as tk 	oc. 
(Section 2.2.2) 

2.3 The effect of grouping. Consider lifetime data that are grouped or rounded off to 
some degree. In particular. suppose that lifetimes from an exponential distribu- 
tion that are recorded as t actually lie in the interval (t — A/2, t A /2). For 
simplicity, censoring times.recorcled as I will be assumed to be exactly equal to t. 
Consider a censored sample of n observations involving r lifetimes and n  —r  
censoring times. This give': a likelihood function 

n 

corresponding to (2.5.4) in the case where A = O. 
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(a) For A > 0, show that the likelihood function for 0 is 

L1(9)  = (e6,00 _ e --6420) r  exp  

19  = 

(b) Show that the expected information based on L1(0) is 

, 	
92—g 

 E(r) (A) 
11(8) = -- 	— 9 

where g (a) = a2  a 1(1 — e — a)2 . Examine the loss of information entailed 
by grouping, noting that the expected information based on L(0) is E(r)10  2 . 

(Sections 2.3,-2,5) 

2.4 Loss of information from right truncation. Consider the following observational 
schemes associated with a lifetime T having p.d.f. f (t; 0) and survivor function 
S(t; 0): 

1. Type 1 censoring occurs at the prespecified time C, giving the likelihood 
function 

L(0) = 	f (t, ; 0)) S(C; 9)"' 

where ti .....  t are the observed lifetimes. 
2. Only the individuals with Ti < C are known about and observed, giving 

the likelihood function 

Li(0)  

(a) Compare the observed and expected information about  9 in cases 1 and 2. 
(b) Examine the loss of information numerically as a function of CA9 when 

f (t; 8) = 9 -1  exp(—t19 ) is an exponential distribution. 
(Sections 2.4, 2.5; Kalbfleisch and Lawless 1988b) 

2.5 Random truncation models. Suppose that a lifetime Ti has an associated random 
left-truncation time Ui, as in Section 2.4.1. Let Ti have hazard function hi (t) 
and p,d.f.  fi  (t),  where there are only fixed covariates present. 
(a) Show that the condition (2.4.1) holds if Ti and Ui are independent, given the 

covariate values. 
(b) Show that the independence in part (a) can be weakened by showing that 

(2.4,1) holds if the joint p.d.f. of Ti and Ui, given Ui < T,, is of the form 
fi(t)gi(u). 

(c) Extend this treatment to deal with right truncation. 
(Section 2.4.1; Tsai 1990; Wellelc 1990) 

1=1 
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2.6 Random effects and left t .uncation. For delayed entry settings as portrayed in 
Figure 2.2, it may sometimes be the case that Ti is not independent of th = 
r — X1, as implied in Problem 2.5. Consider the case where Ti is independent of 
U,, given an unobserved random effect Zi for individual i. Show that the p.d.f. 
of Ti, given 14 = u and Ti > u, is 

f .1.1(t1z) 	
= u,T; > u)dz, 

f 51(tilz) 

where  fi(1lz)  and S1  (u z)  are the p.d.f. and survivor function of Ti, given Zi = 
z, and g*(ziUi =  u,  Tj> u) is the conditional p.d.f. of Zi, given thé condition-
ing events. In general, this p.d.f. does not equal f (t)13(u), where f (t) and S(t) 
are the p.d,f. and survivoi function for T. Furthermore, the p.d.f. g* cannot in 
general be assumed indep mdent of u. 

(Section 2.4; Lawless and Fong 1999) 

2.7 Sampling renewal proces...es and left truncation. Suppose that we wish to esti-
mate the distribution of time between successive events in a population of 
renewal processes (Cox 1. )62; Ross 1983);If a process is intercepted at time r, 
then Figure 2.2 describes the occurrence times of the two events Eli and E2i 
that bracket r. If the renewal process is in equilibrium, then (see Cox 1962 or 
Ross 1983)   the joint p.d.f. of Eli = r — .X1 and Ti is 

1 
0 < u < t, 

where f; (t) is the p.d.f. for the time Ti between events and  p.,  = E(Ti), which 
it; assumed to exist. 

(a) Show that the marginal distribution of Ti  is ifi(t)lp,i, This is called a length-
biased density. Examine its forms relative to fi (I), when fi(t) is an expo-
nential distribution, aid a Weibull distribution with shape parameter /3. 

(b) Show that the conditi.m (2,4.1) for independent delayed entry holds, 
(c) Consider the case wilere ,fi(t) depends on an unobservable random effect 

so that  gi(tt, t) d  )es  as well. Show that the condition (2.4.1) does not 
now hold in general. investigate the case where fi(rIzi) = Az1 exp(-1zdt) 
is exponential, and ZI has a gamma distribution (1.3.15) with mean 1 and 
variance 

(Section 2.4) 



CHAPTER 3 

Some Nonparametric 
and Graphical Procedures 

3.1 INTRODUCTION 

Graphs and simple data summaries are important for both description and analysis 
of data. They are closely related to nonparametric estimates of distributional charac-
teristics; many graphs are just plots of some estimate. This chapter introduces non-
parametric estimation and procedures for portraying univariate lifetime data. 

Tools such as frequency tables and histograms, empirical distribution functions, 
probability plots, and data density plots are familiar across different branches of 
statistics. For lifetime data, the presence of censoring makes it necessary to modify 
the standard methods. To illustrate, let us consider one of the most elementary pro-
cedures in statistics, the formation of a relative-frequency table. Suppose we have 
a complete (i.e., uncensored) sample of n lifetimes from some population. Divide 
the time axis [0, co) into k+ 1 intervals /j = 	j = 1„k -I- 1, where 
0 = ao < al 	 < aie  < ak+i= co, with ak being the upper limit on observation. 
Let dj be the observed number of lifetimes that lie in  Z.  A frequency table is just a 
list of the intervals and their associated frequencies, dj, or relative frequencies, di In. 
A relative-frequency histogram, consisting of rectangles with bases on [a1_  i,  ai) and 
areas di In (j = 1, , k), is often drawn to portray this. When data are censored, 
however, it is generally not possible to form the frequency table, 'because if a life-
time is censored, we do not know which interval, /j, it lies in. As a result, we cannot 
determine the dj. 

Section 3.6 describes how to deal with frequency tables when data are censored; 
this is referred to as life table methodology. First, however, we develop methods 
for ungrouped data. Section 3.2 discusses nonparametric estimation of distribution, 
survivor, or cumulative hazard functions under right censoring. This also forms the 
basis for descriptive and diagnostic plots', which are presented in Section 3.3. Sec-
tions 3.4 and 3.5 deal with the estimation of hazard functions and with nonParametric 
estimation from some other types of incomplete data. 
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3.2 NONPARA METRIC ESTIMATION OF A SURVIVOR FUNCTION 
AND QUANTILES 

3.2.1 The Product-Limit Estimate 

A useful way of portraying a I andom sample Ij, 	t,, is to graph the empirical sur- 

vivor function or empirical distribution function. This also provides nonparametric 

estimates of the distribution tinder study. If there are no censored observations in a 

sample of size n, the empirical survivor function (ESF) is defined as 

(t) = 
Number of observations > 

t > 0. 	 (3.2.1) 
11 

This is a step function that decreases by 1/n just after each observed lifetime if all 

observations are distinct. More generally, if there are d lifetimes equal to t, the ESF 

drops by din just past t 
When dealing with censored lifetime data, some modification of (3.2.1) is neces-

sary, since the number of lifetimes greater than or equal to t will not generally be 

known exactly. The modification described here is called the product-limit (PL) esti-

mate of the survivor function, or the Kaplan—Meier (KM) estimate, after the authors 

who first discussed its properl'es (Kaplan and Meier, 1958). Let (ti, 8e), i — 1  

represent a censored random sample of lifetimes, in the notation of Section 2.2. Sup-

pose that there are k (k < n) distinct times ti < t2 < < 4 at which deaths 
occur. The possibility of there being more than one death at tj is allowed, and we let 

= E I  (t; 61 = 1) r' present  the number of deaths at tj. In addition to the 

lifetimes II, • tk, there are also censoring times for individuals whose lifetimes are 
not observed. The PL estimatc of S(t) is defined as 

,§(t) = n  "J  	 (3.2.2) 
<t 	ni 

where o f  = E 	>  t)  I; the number of  individuals at risk at tj, that is, the 
number of individuals alive al id uncensored just prior to /J. If a censoring time and 
n lifetime are recorded as equal, we adopt the convention that the censoring time is 

infinitesirhally larger. Thus auy individuals with censoring times recorded as equal 
to ti am included in the set of n t individuals at risk at t, as are individuals who die 

at t.  This convention is cons gent with assumptions about censoring in Chapter 2, 
An o ther point about (3.2.2) cc ncems situations in which the largest observed time in 
the sample is a censoring  tinte. In this case the PL estimate is defined only up to this 
last observation, The reason for this is explained later. 

The estimate (3.2,2). is derived below as a nonparametric maximum likelihood 
estimate (m.i.e.), but intuitivly it can be viewed as arising from the expression 
(1.2.8) for the survivor functiln of a disctete distribution, with the hazard function 
/q t, ) = = I,IT> t)  estimated by d dni. When there is no censoring, 
n = n and 11 .1 = n 	— 4_1 (j — 2 	k), and (3.2.2) reduces tO the Ordinary 

ESF (3.2,1). In both the censcred and uncensored cases ,:S; (t) is a left-continuous step 
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function that equals 1 at t = 0 and drops by a factor (ni - di)/ni immediately after 
each lifetime z»  The estimate does not change at censoring times; the effect of the 
censoring times is, however, felt in the values of n j and hence in the sizes of the 
steps in g(t), 

Before we examine the PL estimate and its properties further, let us use it in an 
example. Numerous software packages provide PL estimates, but for illustration its 
calculation is described. 

Example 3.2.1. Example 1.1.7 gave remission times for two groups of leukemia 
patients, one given the drug 6-MP and the other a placebo. Table 3.1 outlines the cal-
culation of the PL estimates of the survivor functions for remission tune  distributions 
associated with the two groups, and Figure 3.1 shows these on a graph. The PL esti-
mates have :5(0) = 1 and have jumps just after each observed lifetime, so in the table 
we show the values 8"(ti+), The PL estimate is easily calculated recursively, since 
§(t; +) = (n; - d1)/n1  and 

g(ti+)= 
	ni - 	

= 2, 

The PL estimate for the drug 6-MP group is defined only up to t = 35, since the 
last observed time for that sample is a censoring time, C = 35. Standard errors, 
described below, are also shown for each :5(t+). 

The graph is a very useful representation of the survival experience of the two 
groups and suggests the superiority of the drug 6-MP over the placebo in prolong-
ing survival. Formal methods of testing and estimating differences in two or more 
lifetime distributions are discussed in later chapters. 

Table 3.1. Computation of Two PL Estimates 

Drug 6-MP Placebo 

ti  n i  di  g(ii+) se t i  n i  di  :5'. (ti +) se 

6 21 3 .857 .076 1 21 2 .905 .064 
7 17 1 .807 .087 2 19 2 .810 .086 

10 15 1 .753 .096 3 17 1 .762 ,093 
13 12 1 .690 .107 4 16 2 .667 .103 
16  ii  1 .627 .114 5 14 2 .571 .108 
22 7 I .538 .128 8 12 4 .381 .106 
23 6 1 .448 .135 11 8 2 .286 .099 

12 6 2 .190 .086 
15 4 1 .143 .076 
17 3 1 .095 .064 
22 7 I .048 .047 
23 1 1 .0 
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40 
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Figure 3.1. PL (Kaplan—Is. Icier) survit r function estimates for remission duration. 

3.2.1.1 Variance Estimation 
When using PL estimates it is desirable to have an estimate of the valiance of ,§(t). 
Proceeding along lines descrit ed below, we obtain the estimate 

	

(I )1 = 	E 	 
nj(ni — (11)' 

et 
(3.2.3) 

which is often referred to as Greenwood's formula. It is easily shown that when 
there is no censoring, (3.2.3) 11 duces to the usual variance estimate ,§(t)[1 —,§(1)11n. 
Standard mots (SE) for  5 (1) fre given by the square root of (3,2.3). As an illustration 
of (3.2.3), we find an estimate of the variance of  5(15) for the drug 6-MP group in 
Example 3.2. I to be 

1 
1,15)1 	0.6902  ( 	3  

	

21 	
+

(18) 	17(16) 	15(14) 
+ 

12 1(11)) 

0.011z.03, 

which gives an estimated standard deviation of 0.107. This and similar standard 
errors for the Placebo group provide a clearer picture of the significance of the differ- 
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ence in survivor functions in Figure 3.1. Confidence intervals for S(t) are considered 
in Section 3.2.4. 

3.2.1.2 The PL Estimate as an MLE 
The PL estimate can be derived as a nonparametric m.l.e. of the survivor function, 
5(t) .  This is quite straightforward in the discrete-time setting, so' we consider this 
first. 

Assume that independent lifetimes T1 . ..... T have a discrete distribution with 
survivor function S(t) and hazard function h(t), where without loss of generality 
we take t = 0, 1, 2, The key idea in the subsequent development is to consider 
the distribution of T through its hazard function h(t), treating this as the parameter. 
Under the assumptions about censoring in Section 2.2.2, the observed likelihood 
function takes the form (2.2.12), which when hi (t) = h(t), is 

L = 	nh(od Ni ) _ h(t)jYr0)(1—rINI 0)) 
n 

(3.2.4) 
1=11=0 

Recall that with the notation used in (3.2.4), ti represents the lifetime or censoring 
time for individual i,  8,  = I (tt is a lifetime), Yi (t) = / (t1 > t), and  d 1(t) = I (tt = 
t, 81 = 1). We can rewrite (3.2.4) as 

00 

L 	h (t ) 14 [1 — h(t)]' —d r , 	 (3.2.5) 
1=0 

where 

d, = E dNi (t), nt = E 
t.1 	 1=1 

(3.2.6) 

are the observed number of lifetimes equal to t and the number of individuals at risk 
(alive and uncensored) at t, respectively. 

Considering the vector 11 =  (h (0),  h (1), ...) as the parameter in the lifetime dis-
tribution, we have the likelihood L(h) from (3.2.5), and easily find that it is maxi-
mized at r(t)=_.- d in t  (t = 0, 1  r), where r = max(t n t  > 0). The relation- 
ship (1.2.8) then gives the m.l.e. of S(t) for t = 0, 1, 	, r as 

&.(0=n[i_k(s), 
s=0 

=
Id ( d_ 

_ 

s=o 
(3.2.7) 

which we recognize as identical to (3.2.2) in the discrete-time setting. When n, 
equals zero, there are no terms involving h(t), h(t +1), . in (3.2.5), and thus there 



34 	 SOME NONPARAMETRIC AND GRAPHICAL PROCEDURES 

is no information about h(s)  toi  s > r.  If  dr < n r  the estimate S. (r-F) > 0, and the 
estimate is undefined beyond r-1 -; this happens when the largest observed ti is a cen-
soring time. If, however, dr  = then A'(r-F) = 0, and since S(t) is nonincreasing, 
the estimate of so) is 0 for all t > r, 

The variance estimate (3.2.3) can be obtained from standard maximum like-
lihood large-sample theory of Appendix C, if we assume S(t) = 0 for t > 
some value r. The information matrix I (h) is easily seen to have diagonal entries 
/,„(h) = —a 2  log L/ilh(r) 2  = n,./(h(r)[1 — h(r)]} and off-diagonal entries equal 
tu O. Straightforward use of th !. large-sample result Asvar(ii) = gfit) — ', and the 
asymptotic variance formula (B2), then gives 

Asvar{,ç'(/)} = ,..(t) 2 Asvar{log , -.S(t)) 

&'(t) 2  E Asvar{log[l — &(s)J} 
t-1 	1•7\-t 

= 	I;(s)[1—nsii(s)] -1 , 	(3.2.8) 

which is the sanie as (3.2.3). 
The same development goes through when the data are subject to independent left 

truncation ;  as well as right cemoring.  In that.case.(2.2.12) still holds, as discussed 
in Section 2,4, with Yi(t) merely redefined by (2. 4,3), as (t) = gui 	< 
However, from (1.2.18) we see hat  in this case we can estimate only Pr(T > t1T > 

whore  iij, = min(u 	, un ). To estimate the unconditional survivor func- 
tion SUL we must have u m i n 	O. Left-truncated data are discussed more fully in 
Section 3.5.1. 

Continuous time or general distributions can be handled as a limit of the discrete-
time ease, as in the development of (2.2.14). We now think of the cumulative hazard 
function 11(1) as the parameter to be estimated. With dH(t) as the cumulative haz-
ard function increment over O, + di), the likelihood (2.2,14) becomes the product 
integral 

dii ( i ) /N.0)[1— dll (t) ] Y,(0—dN-(1) 	 (3.2.9) 
(0,co) 

where d N 	= Ei  dAri (,) rod Y .(t) = Ei  Yt(t). If we consider (3.2.9) with 
respect to the space of all cumulative hazard functions HO),  it is clear that (3,2.9) is 
maximized for a function with .iumps at each distinct observed lifetime. If not, then 
we would have d H (t) = 0  when  d N .(t) > 0 and the value of L would be zero. It 
follows by direct comparison with the discrete-time case that L is maximized by the 
function 170) with increments 

d N .(t) 
(114 (t) — t > 0, Y,(t) > O. 	 (3.2.10) 

Y.(t) 
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When Y .(t) equals zero,  d1(t) is undefined. By (1.2.16) the m.l.e. of 5(1) in the 
general case is then 

:5(t) = 	[1 —diricio], 	 (3.2.11) 

which is precisely (3.2.2). As in the previous discrete-time development, the esti-
mates (3.2.10) and (3.2.11) continue to hold when there is independent left truncation 
With until., = 0, with Yi (t) defined by (2.4,3). 

The derivation just given glosses over technical issues concerning the parameter 
space, which is a space of functions HU-Ms an interesting feature of nonparametric 
maximum likelihood th-a-iven if we wish fo-Co-nsider (t) everywhere continuous, 
we are forced to-  admit functions with discontinuities in the parameter space, and find 
that the mix. is a discrete distribution. More rigorous discussions are provided by 
Johansen (1978) and references cited in the Bibliographic Notes at the end of the 
chapter. 

We gave a variance estimate (12.3) for the PL estimate and motivated it by using 
standard maximum likelihood large-sample theory in the discrete-time case to get 
(3.2.8). However, nonparametric estimation requires developments beyond the finite 
parameter theory of Appendix C, and so a rigorous treatment of the asymptotic prop-
erties of (t) in the continuous-time case has to be pursued separately. Mathemati-
cally detailed developments are given in several sources; we outline some key ideas 
in Section 3,2.4 and provide references to full discussions at the end of the chapter. 

3.2.2 The Nelson-Aalen Estimate 

The estimate of the cumulative hazard function corresponding to (3.2.10) is given by 
the Riemann-Stieltjes integral (1,2.4) as 

d(u) 

fo 
d N  .(u) 

(3.2.12) 
 Y.(u) 

where we assume that Y.(u) > 0 for 0 < u <  t.  This is sometimes called the 
empirical cumulative hazard function, but is more commonly known as the Nelson-
Aalen (NA) estimate, having been proposed by Nelson (1969) and by Aalen in a 
1972 thesis. In the notation used for the Kaplan-Meier estimate in (3.2.2), 

= E  
nJ 

	 (3.2.13) 

where ti , 	 tk represent the distinct times at which failures are observed. 
Plots of (t) give useful information about the shape of the hazard function; note, 

for example, that (t) is linear if h(t) is constant, and convex if h(t) is monotonic. 
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The maximum likelihood derdopment leading to (3.2.8) also provides an estimate 

of the asymptotic variance for H (r) as 

E  di(nj —41)  GOO)] = 
11.11 	

• 	
(3.2.14) 

j:/j 5t  

An alternative variance estimwe, discussed in Section 3.2.4, is 

Grfi(i),= E 	(3.2.15) 

There is little to recommend one of (3.2.14) or (3.2.15) over the other, though 

(3.2.15) has somewhat smallcr bias in small samples. In large samples the two 

'st  mates tend to be very close. 

Both :§(i) and  11 (t)  are pm parametric m.l.e.'s, and are connected by the general 

relationship (1.2.16) between survivor and cumulative hazard functions. Note that 

)  and MU)  are discrete an 1 do not satisfy the relationship H (t) = —log S(t), 
which holds for continuous di aibutions, An alternative survivor function estimate 

= expl —14 (t),l Is some i mes  suggested for the continuous-time case. Con-

versely, an ahernative estimate for  HO)  would be — log :§(t) .  Most prefer 14 (t).and 

..(t). though br probability plots described in Section 3.3 the alternatives are some-

times used 

Example 3.2.2. (Examp1! 3.2.1 continued.) Table 3.2 shows values of the 

Nclson—Aalen estimate 14(t) IA each distinct failure time, for the Placebo group in 

Example 3.2,1. The values (3.'4.13) are easily calculated from the ni and di given in 

Table 3.1. Standard errors, equnl to the square root  of (3.2.15), are also given. 

Figure 3,2 shows a plot of 14(t). The plot is quite close to linear, suggesting 

that an exponential lifetime distribution with constant hazard function h(t) would be 

consistent with the data. 

Note that H O)  in (3.2.13) is defined so it is right continuous, whereas the product 
limit estimate ,'(/) in (3.2.2) is left continuous. The latter is consistent with the defi-

nition or 5(1), as .P r(T = t),  aid  S(1) is correspondingly obtained in (1.2.16) as the 

product integral of dH  (ii) over the open interval (0, 1). Sometimes 5(t) is defined 

Table 3.2.  Nelson—Aalen Estimate for Placebo Group 

li fi(1.1) se ti 14(0) se 

1 0.095 0.067 11 1,110 0.301 
2 0,201 0.100 12 1.444 0.382 
3 0.259 0,116 15 1,694 0.457 
4 0.384 0.146 17 2.027 0.565 
5 0.527 0.178 22 2.527 0,755 
8 0.860 0,244 23 3.527 1.253 
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Remission time (weeks) 

Figure 3.2. Nelson—Aalen cumulative hazard function estimate for Placebo group. 

as Pr(T > t); if that is the case, then the product integrals in (1.2.16) and in the 
estimate (3.2.11) are over the interval (0, t], and the sums in (3.2.2) and (3.2.3) are 
over all times ti < t. 

3.2.3 Interval Estimation of Survival Probabilities or Quantiles 

Nonparametric methods can also be used to construct confidence intervals for life-
time distribution characteristics. In practice, survival probabilitics S(t) and quantilcs 
t are of the most interest. The confidence intervals below are based on the same 
types of approximate pivotal quantities as for parametric models (see Section 2.5 
and Appendix C). 

3.2.3.1 Confidence Intervals for Survival Probabilities 
Confidence intervals for the survivor function S(t) at a specified value t can be con- 
structed from right-censored data in a variety of ways. The most straightforward 
is to use the fact, discussed in Section 32.4, that if S(t) is the PL estimator, then 

— S(t)) is asymptotically normal under mild conditions. More specifically, 

(t) — S(t) 
Z1 — 

cfs(i) 
(3.2.16) 
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is approximately NW, I), whve iis (t) 2  = Var[g(t)] is the Greenwood variance 

estimate (3,23). We can use 21 as an approximate pivotal quantity and obtain a 
confidence intervals by inverting probability statements of the form Pr(a < Z1 < 
b) = a. The choice b = —a = ;,5(I +a ), where z p  is the pth quantile for the standard 

normal distribution, gives the approximate a confidence interval 

— 	(t) <  5  (1) <  .5̂(1) 	z,5(J +a)ers  (t). 	(3.2.17) 

The distribution of' Z1 may not be well approximated by N(0, I) when the number 

of uncensored lifetimes is small or when SW is close to 0 or 1, and (3.2.17) may 

even include values outside of Cie interval (0, 1). A procedure that gives admissible 
confidence intervals and coverage probabilities closer to the stated nominal value is 
to consider one-to-one functions 1/1(1) = g[S(t)], which take values on (—oo, co). 
The of the transformed plrameter rfr(t) is 171(1) = g[L3'(t)], and its asymptotic 

variance is estimated through the asymptotic variance formula (B4) by 

40' 2  = g'[g (t)]) 2G[S'(t)]. 	 (3.2.18) 

There are several choices of funtion g(s) for which the approximate pivotal quantity 

lif (/) — 	(t)  
Z2 — 	 (3.2.19) 

avf (t) 

is closer to standard normal than Z1,  and gives better perforrnidg confidence 
intervals. Two of these that ale often' used are the logit transformation tif (s) = 
log(( I — s)/s) and the log-log transformation tit (s) = log(— logs). 

Confidence intervals for ifr(t) can be obtained by treating Z2 as standard nor-
mal, and the resulting interval can then be transformed to an interval for S(t). For 
example, with the transformatic n rfr (t) =  log[—  log S(t)], the inverse transformation 
is 5(t) = exp(—e*" ) ) and the interval  1/r e., < 1/r(t) < ifru transforms to 

exp(—e.".) < S(t) < exp(—e). 	 (3.2.20) 

In parametric models it is ofen found that confidence intervals obtained by using 

likelihood ratio statistics have close to nominal coverage in small samples, even when 
intervals obtained from Wald statistics (see Appendix C) like (3.2.16) do not. Inter-

estingly, likelihood ratio metheds can also be applied to the current nonparametric 
setting, as shown originally by Thomas and Grunkemeier (1975). This approach is 
now often referred to as an empirical likelihood procedure (Owen 2001), For the 
discrete-time case, one cânsiders the ratio of the likelihood function (3,2.5) maxi-
mized unconditionally and under Ho S(t) = so; this is appropriate for testing Ho 
versus H1 5(1) sa. From the arguments that follow (3.2.6), the overall maxi-
mized likelihood function  is 

L1 = 	(1  
.i=1 
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where for convenience we define Pi =  t  — 	= 1 — (With with the ti (j = 
1 k) representing the distinct observed failure times. To consider the maximum 
of the likelihood under Ho, note that S(t) = so in (3,15) implies that we must have 
:5'(te+) = .(tt.f.1) = so, where E is such that t E (It, te+1]. This implies that to 
maximize the likelihood subject to S(t) = so it is necessary to maximize 

L = n(i  
i= 1 

subject to the restriction pi 	pe = so. To do this we use a Lagrange multiplier X 
and consider 

t 
( 	

k 
log L + X E log pi — log so = Ed, log(1 — pi) + (ni — di) log pi 

i=i 	 j...-1 

+X  (E log pi — log so) 

Setting derivatives with respect to each of pi, 	, pk equal to zero, we find the 
constrained m.l.e.'s under H0 to be 

/51 = 1 	
di 	

j = 

ni 

where X = X(so) satisfies 

e 

Fl 
 , 

Pi = 17 (1 	+ 	x ) i= 	1=1 
The maximum of the likelihood under Ho 5(t) = so is thus 

L2 = 	_ fii)di 

and the likelihood ratio statistic for testing Ho is 

(3.2.21) 

A = —2(log L2 — log L1) 

= —2 [E(ni — di) log (119 + di log ( 1 	— )] 
J=1  

X 
= 2 E [ni log (1 —

x 
— (fli — di) log (1 + 	)J 	(3.2.22) 

1=1 	
ni 	 n • — d J 
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An a confidence interval 1r  S(t) is given by the set of all so such that A  

This can be obtained by finding the set of all X in (3.2,22) that make A < 	cy  and 

then obtaining the corresponding set of so values from (3.2.21). The sets of X Values 

making A 4).c, are closul intervals [XL, Xu] such that XL < 0 < Xu unless 

,*(t) = 0, in which case 0 = XL < Xu. Because so in (3.2.21) is an increasing 

function of X, the confidence intervals for s = S(t) are thus of the form [sL, su], 

with 0 < < su < 1, unl,!ss &'(t) = 0, in which case SL = 0 < su < 1. Note 

that 

= ri(1 	
+ XL , 

s) 

ni + 
and 	su = H (i 	) 	(3.2.23) 

Nonparametric bootstrap methodology can also be applied to any of the (approx-

imate) pivotal quantities corsiderecl here (see Appendix D.2). Bootstrap samples 

(t7, e1), i =  I,  . , n are genotrated by sampling with replacement from Rti, i = 
.. nj, Each bootstrap sanple produces a value for quantities such as (3.2.16) or 

(3.2.19), as described in Appendix D.2, and a set of B bootstrap samples can be used 

to estimate the distribution 'of the pivotal quantities. Except possibly for quite small 

samples, this doesn't usually improve much on the use of (3.2.19) with a normal 

approximation.  

Example 3.2.3. Exampl ,t 1.1.7 gave remission duration times  (in weeks) for 

two groups of leukemia patients in a clinical trial. The data were discussed in 

Examples 3.2.1 and 3.2.2, where Kaplan—Meier  and Nelson—Aalen estimates were 

shown for the two groups. We now obtain confidence limits for the survival function 

at times 10  and 20 weeks; because there is a failure at 10 weeks and a censoring time 
at 20 weeks in the treatment (drug 6-MP) group, to avoid ambiguity we will consider 

confidence intervals for S(t+) for t = 10, 20, 
Table 3.3 shows approximate .95 confidence intervals obtained by the following 

methods, described earlier: 

Table 3.3. 0.95 Confidence Intervals for S(10-0, 5(20+) 

Group Method SO 0+) S(20+) 

Placebo Z 1 (l) (.17„59) (0, .22) 
Z2(2) (.18, .58) (.016, .26) 
Z2 (3) (.20, .60) (.024, .31) 
LR (.20, .59) (.016, .27) 
Exact (.18..63) (.012, .30) 

Drug 6-MP Z 1 (1) (.56„94) (.40, .85) 
Z2 (2) (.50, .89) (.37, .81) 
Z2(3) (.53, .89) (.39, .82) 
LR (.54, .90) (.40, .82) 
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1. Formula (3.2.17) with a = .95. To illustrate, from Example 3.2.1 we have for 
the Placebo group that 8' (1 0+) =-- .381 and 'Cr., (10+) = .106; then (12.17) 
with z,975 = 1.96 gives the interval (.17, .59). 

2. The approximate pivotal quantity (3.2.19) with *(t) = log[—  log S(t)] treated 
as standard normal. By (3.2.18) the standard error of lir(t) is obtained from 

or" (0 2  
6'0)2  = 	s  „ 

[S(t) log  S(t)12  

and the approximate .95 confidence interval is given by 1:b• (t) ±  1.96,(t). To 
illustrate, in the Placebo group we get (10+) = —.0357 and 4(10+) = 
.288, giving the confidence interval —.601 < (10+) < —.529. By (3.2.20), 
this converts to the interval .18 < S(10+) < .58. 

3. The approximate pivotal (3.2.19) with CO = log[S(t)/(1 — S(t))]. 
4. The empirical likelihood ratio procedure based on (3.2.22) and X6),0 95 = 

.3.84. For S(10+) the set of X values satisfying A < 3.84 is easily found 
by graphing  A(A)  or by iterative calculation to be —4.83 < 	< 10.97. By 
(3.2.23) this gives the confidence interval for S(10+) for the Placebo group, 
for example, as (0.196, 0.593). 

Full results are shown in Table 3.3. A plot of the empirical likelihood ratio statistics 
A (so)for so = S(10+) is shown for the two groups in Figure 3.3. This provides 
a concise picture of the information about so, and in particular shows confidence 
intervals for any nominal coverage probability. 

The Placebo group has no censored observations, and exact confidence limits are 
also provided in this case. In general exact limits can be obtained for S(t) whenever 
there are no censored observations by time t. (The term "exact" here means that an 
exact distribution is used, not that the confidence interval coverage is exactly a.) The 
limits are obtained by inverting the hypothesis test Ho S(t) = so, which is based on 
the fact that the number of lifetimes X exceeding t has a binomial (n, so) distribution 
under Ho. A lower a confidence limit for S(t) is found as the set of all values so such 
that P r (X > xo; so) > 1 — cy, where xo is the observed value of !X. The desired set 
of values is of the form (si„ 1), and it can be shown that 

X0 
SL —  	 (3.2.24) + (n — xo + 1) F(2(n—x0+1).2.ro),ce 

by using the relationship between the binomial and F distribution (e.g., Johnson et 
al. 1995, Chs. 25 and 27). Upper confidence limits can be found in a similar way; the 
upper a limit is 

xo + 1 

(xo + 1) + (n — xo)F(2(n — x0 ),2.r0  +2), I —a 

The sample sizes are small here, and the .95 confidence intervals are correspond-
ingly wide. Except for the interval for S(20+) in the Placebo group that is based 

SU = (3.2.25) 
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S(10+) 

Figure 3,3. Empirical likelihood ratio statistics for SO 0+). 

on Zi, the various intervals agree well, and would not lead to any conflicting con-
clusions, The intervals based on Z2 agree more closely with those based on the LR 
method than do the intervals bv.sed on Z1. 

It is sometimes useful to plct Kaplan-Meier estimates (t) along with bands that 
show "pointwise" confidence intervals for all values of t. Such bawls are parallel 
to the estimate :S (i ), since both the estimate and the confidence limits described in 
this section change values only at observed failure times. The following example 
illustrates this. 

Example 3.2.4. The distribution S(t)  of time to first pulmonary exacerbations 
for patients in a randomized clinical trial was discussed in Example 1.1.8, There 

E
L

R
 S

ta
tis

tic
  



NONPARAMETRIC ESTIMATION OF A SURVIVOR FUNCTION, QUANTILES 	93 

Figure 3.4, KM estimates of S(t) and pointwise confidence limits for time to first exacerbation. 

were two treatment groups: rhDNase and Placebo. Figure 3.4 shows Kaplan—Meier 
estimates for the two groups along with pointwise .95 confidence intervals for S(t), 
obtained using Z2 with the log-log transformation in (2) of Example 12.3, These 
estimates ignore the baseline forced expiratory volume  (fey) covariate, but since the 
treatment assignment is random, they provide  an unbiased view of the lifetime dis-
tributions in the population of patients that the study represents. 

The rhDNase treatment yields a substantially higher probability S(t) of survival 
without an exacerbation, though there is some overlap of .95 confidence intervals 
with those for the Placebo group. Hypothesis tests of the equality of two survivor 
functions are considered in Sections 7.2 and 8.1. 

Plots of Kaplan—Meier estimates implicitly show observed lifetimes, since .§(t) 
drops at each distinct time. Software for Kaplan—Meier estimation usually provides 
the option of showing censoring times in the plots. This has been utilized in Fig-
ure 14, where the symbol + indicates censoring times. 

3.2.3.2 Confidence Intervals for Quantiles 
Estimation of the mean of a distribution is useful in many contexts, but for lifetime 
distributions the quantiles of the distribution are usually of more interest. The 
median, or t,50, is often used as a measure of location or "central tendency." Two 
advantages it has over the mean are that it always exists (assuming S(rx)) < .5), 
whereas the mean may not, and that it is easier to estimate when data are censored. 
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Nonptirametric point estimates of  t 1 , can be defined in various ways, with an essen-
tial complication being that ,§(t) is a step function, so that for some values of p, there 
is an interval of t-values satisfying :§(t) = 1—p. However, for most values of p there 
is one t-value (equal to one of the observed failure times), and it is common to take 
this as the point estimate tp . 

Point estimates of tp  are u -wally of less interest than interval estimates. Approxi-
mate a confidence intervals for t p  arc most easily obtained by inverting the relation-
ship 5(1 p ) = 1 — p between the survivor function and the quantiles of a distribution. 
Thus. if tt  (Data) is n lower confidence limit for tp , we note that 

Pr (ti, (Data 1 < tp ) = Pr(S(IL (Data)) 	1 — p). 

Therefore, if we want a lower a confidence limit for tp  based on observed data, then 
we can obtain this by finding the value such that I —pis a lower a confidence limit 
for S(tL), based on the data. In other words, if sL, (data; t) is a lower a confidence 
limit for 5(t), then the lower a confidence limit for t p  is obtained by finding t such 
that st, (data; t) =  I  — p. 

To illustrate the procedure, suppose we want a confidence interval for t3. if we 
base confidence intervals for S(r) on the approximate pivotal quantity (3.2.16), then 
to get a two-sided .95 confide' ice interval for 1.50, we find the set of t-values satisfying 
—1,96 <Z1< 1.96. where 

Zi — 	. 
f7s(t) 

(3.2.26) 

Because :5(,) is a step functitn, there will not in general be a value of t making ZI 
exactly equal to —1.96 or 1,96, so we take the-failure times at which the value of Zi 
changes from being outside  cf (-1.96, 1.96) to inside (-1.96, 1.96); note that as t 
vtu•ies, Zi changes value only nt the observed failure times. 

There is a convenient gi.ap'iical method for determining an a confidence interval 
for tp . Consider the graph of (t) along with the bands giving pointwise a confidence 
intervals•for 5(1) discussed earlier; these bands are step functions parallel to 
To find confidence limits for tp  we simply find where the bands intersect the line 
5(t) = I — p; this identifies the failure times that specify the confidence interval 
for' t p . To do this we plot the vertical pieces of the step functions for 5(t) and the 
bands ,  as shown in Figure 3 4. In the unlikely event that the line S(t) = 1 — p 
coincides with a horizontal sty of one of the confidence bands, we use the average 
of the failure times at either end of the step as the confidence limit for t„. 

Example 3.2.5. Consider confidence intervals for quantiles in the case of the 
pulmonary exacerbation time data discussed in Example 3,2.4. 

As an illustration, let us cbtain a two-sided .95 confidence interval for the .20 
quanlile. t,2n, for the rhDNase and Placebo groups. Examination of Figure 3.4 
according to the graphical method described earlier (with p = .20) indicates that 
the confidence intervals for  to  are approximately (75, 115) days for the rhDNase 
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population and (50, 80) days for the Placebo population. By examining the pivotal 
quantity (3.2.26) for different t-values, we find the exact intervals io be (73, 112) for 
rhDNase and (49, 79) for Placebo. 

Note that neither estimate of  S(t)  drops much below .60, so that confidence inter- ' 
vals for quantiles such as the median are not available. 

3.2.4 Asymptotic Properties of Estimators 

The PL estimate :SW and Nelson—Aalen estimate h(t) possess desirable large-
sample properties under the assumptions about the censoring process made in 
Section 2.2.2, among them consistency and asymptotic normality. Similar results 
hold under independent delayed entry. In the discrete-time setting described in Sec-
tion 3.2.1, it is relatively easy to derive asymptotic results. Early treatments of the 
continuous-time setting (e.g., Breslow and Crowley 1974) worked from a random 
independent censoring model and a discretization of the time scale, using limiting 
arguments to get continuous-time results. Starting with Aalen (1976, I978a), how-
ever, counting processes and martingale theory were deployed to provide elegant and 
more general treatments. Authoritative and very detailed accounts of the theory are 
given by Fleming and Harrington (1991) and Andersen et al, (1993). In this section 
we outline some of the main ideas; martingales and counting processes are reviewed 
in Appendix F. 

We use terminology and notation introduced in Section 2.2.2. Let S°(t) = 
Pr(Yr(t) > 0) denote the probability an individual is alive and uncensored at time 
t; this probability depends on the lifetime distribution and the censoring process. As 
earlier, Y .(t) = E Y1 (t), and for convenience we also define  J(t) = I (Y .(1) > 0) 
with the understanding that J Y .(t) = 0 when Y .(t) = 0. The counting-process-
martingale development uses the fact that, under the assumptions about the censoring 
process in Section 2.2.2, 

d M (t) = dAlr(t) — Y (t) d H (t) 

are martingale increments satisfying E{d (t)l'H(0) = 0. Looking first at the 
Nelson—Aalen estimator (3.2.12) and defining a process 

H* (t) = f J (u) d H (u), 

we see that for data based on n independent individuals, 

j(u)  it dNi(u) — E (u)dH(u) (t) H* (t) = f 0  -37-0  
r 

f 	d (u). 
0 Y .(u) 1.1  

In (3.2.27) we have for convenience defined d ff(u) = 0 when Y.(u) = 0. 

(3.2.27) 
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The representation (3.2.27) immediately shows that Efff(t) — 	(0) = 0, and 
that 

E (t) — H 	= 	!I* (t)} —  11(t)  

= — f Pr(Y.(u) = 0) dH(u), 	(3.2.28) 

which 	0 as P r(Y.( u) = 0) -4 0 over (0, t]. Furthermore, standard martingale 
calculations give that 

I  17 J (u)  
Vark511:1(t) — 	(t)]) = E fo y ,(0 [1 	H (0] d H (u), (3.2,29) 

where H(t) = 14 (u) — H (u--). This is easily shown directly from (3.2.27) in the 
discrete-time setting: the general case (see Appendix F and Fleming and Harrington 
1991, p. 9211) requires some additional machinery. A  key ingredient  in either devel-
opment is the fact that the dMilu)'s have mean 0 and are orthogonal (uncorrelated) 
for distinct values it, u' 

Under the assumption that Pr (Y/(u) > 0) > 0 for 0 < u < t.  it follows from 
(3.2.28) and (3,2.29) that 

(t) Asvar(V7:[1?'(t) — H (OD 

[1 — AH(u)] 
d H (u). 

(u) 
(3.2.30) 

j—  Central limit theory for martinples shows that n[1(t) — H(t) ] also has a limiting 
normal distribution. Inserting the estimate f:-Y (te) in (3.2.30) and estimating 5 0 (u) by 
Y.(u)/n, we get the variance estimate 

2 	, 
&NA( ) = n  

di (it ./ — dj) 
3 	' 

:rj<r 	n j 
(3.2.31) 

which is the same as (3.2.14). An alternative estimate is frequently used when H(t) 
and S(t) are continuous functions, In that case H (u) = 0 and (3.2.30) can be 
rewritten as 

d 11 (u)  
0 'ti A (t ) — 	so(u),  Jo  

which gives the estimate in (3.2.15), 

NA ( t ) = n (3.2.32) 
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The Kaplan—Meier (PL) estimate ,§(t) can be handled via martingale theory by 
noting that, in general, 

5(t) = 1 — P r (T < t) 
r— 

= 1 — f S (u) d H (u) 
0 

and 

= I — f :5(u)d1i(u). 
Jo 

This gives a representation of :5(i) — S(t) as a stochastic integral of a martingale 
(see Appendix F), to which standard theory can be applied. This leads to a proof of 
asymptotic normality and a result analogous to (3.2,30), 

olm (t) = Asvar{,fre(t) — 5(t)]) 

= 5(0
2 	[—dS(u)] 

0 	5(141-)50 (u) '  
(3.2.33) 

where, because S(u) is defined to be right continuous, dS (u) = S (u+) — S (u) if S(u) 
jumps at u. When S is inserted for S and Y *01 n is inserted for 50 (u) in (3.2.33), 
we get the variance estimate 

&k m  (t) = rz:(t)2 	
di  E 

Lt.;  <, ni(n — c/1) 
(3.2.34) 

This is the same as the Greenwood variance estimate (3.2.3). 
Stronger asymptotic results can also be derived. For example, in the continuous-

time case, if r is a value such that 5 0 (t) > 0 for 0 < t < r, then the random 
processes W72[1.-1(0— H (0], 0 t < r} and {0'6(0 — SW], 0 < t < r ) converge 
weakly to mean zero Gaussian processes with respective covariance functions 

aNA(1,1') = fo  
min(t,e) 

so(u)  d H(u) 
	

(3.2.35) 

and 

0-Km (t, t') = s(t)s(t) 
rain(t,e) — 1 

[ dS(u)]. 	(3.2.36) 

  

S(u+)S°(u) 

The results concerning Gaussian limiting processes enable the construction of 
confidence bands for S(t) or H (t), and estimation of quantities that are functionals 
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of SO). Two such are the mean lifetime, which can be represented as pt. = f  scodi 
(sec Problem 1.1, part (a)), and more generally, j.t = E(min(T, s)}, which is called 
the mean lifetime restricted tr r. This is given by 

t.c r  = f S(t)dt 
0 

(3.2.37) 

and can be estimated by replocing S(I) with the PL estimate :5"(t). The results con-
cerning the limiting Gaussian process for .,/Ti[&(t) — S(t)] allow it to be shown that 

—  t-) is  asymptotically normal, with variance given by 

ft  A  (t) 2 1dS(t)1  

S(t)S°(t) 
(3.2.38) 

where A(1) = fr  S(u) du.  Tie derivation of this result and an estimate of variance 
based on it are discussed in Problem 3.6. 

3,3 DESCRIPTIVE AND MAGNOSTIC PLOTS 

3.3.1 Plots Involving Survt vor or Cumulative Hazard Functions 

Plots of PL or Nelson—Aalen estimates provide good descriptions of univariate life-
time data. They can also be employed to assess the appropriateness of a parametric 
model, as we now discuss. GrAphical assessments are subjective but Useful; they can 
be supplemented with formal goodness-of-fit tests, considered in Chapter 10. 

3.3.1.1 Plots of Survivor Fructions 
Suppose that a parametric incriel has survivor function S(1; 0) and distribution func-
tion F (I; 0), and let  O be an estimate obtained from a specific data set. If the para-
metric family is appropriate, tien S(t; 0) or F(t; 0) should not differ too much from 
nonparametric estimates of  Si)  or F(1). The simplest model assessment procedure 
is simply to plot S(t; b) and  he PL estimate ..."(1) on the same graph; alternatively, 
the corresponding distribulioil functions can be plotted. The sampling variability in 
the two estimates must be kep in mind, and nonparametric confidence limits for SO) 
as described in Section 3.2.3 ore often a useful addition to the plot. 

Example 3.3.1. The dat:1 below were given by Thoman et al, (1969), who 
attributed them to tests on  tut  endurance of deep-groove ball bearings discussed by 
Lieblein and Zelen (1956). Coroni (2002) has noted that they are not the same as the 
original data, which involved some censored observations. However, for illustrative 
purposes we will treat them or  an uncensored sample. The observations are the num-
ber of million revolutions before failure for each of 23 ball bearings; the individual 
bearings were inspected periodically to determine whether "failure" had occurred, 
but we treat the failure times os continuous. The 23 failure times are 
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17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80, 

68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40. 

Figure 3.5 shows plots of the Kaplan—Meier estimate of the survivor function, 
S(t), along with estimates S(t; -6) from Weibull and log-normal distributions that 
were fitted to the data. With the Weibull model in the form (1.3.6), the m.l.e.'s (see 
Section 5,2.1) are  X  = 0.0122,  fi  2.10; the log-normal model (1.3.10) has m.l.e.'s 
(see Section 5.3.1)12 = 4.15, & = 0.522. The plots indicate good agreement between 
the nonparametric  5 (t) and both the Weibull and log-normal models; the log-normal 
fits the data slightly better. 

The plot in Example 3.3.1 indicated how well a parametric model fitted the data. 
It can be supplemented by formal goodness-of-fit tests, which are described in Chap-
ter 10. Other types of plots are also useful, especially ones that extend easily to mod-
els involving fixed or time-varying covariates. The plots that we describe now also 
compare nonparametric and model-based estimates of distributions, but are designed 
to be roughly linear when the parametric model is appropriate. These plots are less 
directly descriptive of the data, but emphasize systematic differences between 5 (t) 
and S(t; 6). 

3.3.1.2 Probability Plots 
One important type of plot is the P-P (probability-probability) plot, which is essen-
tially a plot of points (S(ti; b), S(t)), where t1 < t2 < < tk are the distinct 
times at which failures occur in the data. Thus the model-based and empirical sur-
vivor functions are compared at the failure times, and if the parametric model is 
appropriate the points should lie around a straight line with slope one. A common 
variation of this procedure when SO; .6) is continuous in t is to replace ,AS. (ti) with 

Weibull 
	

Log-normal 

0.0 - 0.0 - 

50 	100 	150 	 0 	50 	100 
	

150 

Figure 3.5. KM and parametric estimates of survival for ball-bearing data. 
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the value 

= 	 (3.3.1) 

since :5(e) is a step function y ith jumps at the tj. This is also a more convenient 

choice for other proceddres, de:;cribed below. 
A very similar procedure is he Q-Q (quantile-quantile) plot of model-based ver-

sus empi rical quantiles. For example, the quantile function (1.3.7) for the Weibull 

model is 

(p; a, p) = 	log(1 — p)i l113  

A plot of the points (t (pi; , 	— 1 	k  where pi is given by ,757 of 

(3.3.1 ), should be roughly linear if the Weibull model is appropriate. 

A technique closely related to P-P and Q-Q plots is used with parametric models 

for which the survivor or distribution function can be "linearized." This means that 

some transform-of S(1; 0) is a. linear, function of t or of some function of t, that is, 

g 115(1 ; 0)] is a linear function 0. 82(t) for some functions gi  and g2. The idea is then' 

to plot g1(.(t)) versus g2(t); if the parametric family is - appropriate the result should 

be roughly linear. This procedure has the advantage of not requiring an estimate of 

the parameter 0. 

Suppose, for example, that the possibility of an underlying exponential distribu-

tion ( 3.2) is being considered. The survivor function satisfies 

log SO) = —Xt , 	 (3.3.2) 

So a plot of log (t) vertus t should be close to a straight line through the origin if 
(3.3.2) is appropriate. No estimate of X is needed for this plot. In fact, a "graphical" 

estimate of X can be obtained when the plot is roughly linear by fitting a straight line 
through the points. 

For the Weibull distribution SW of (1.3.6) satisfies 

log[— log S(t)1 =  fi log e ti log X. 

Thus a plot of log[— log &. (t)] vcrsus loge should be roughly linear if a Weibull model 
is appropriate. In addition, wh m the plot is approximately linear, one can obtain 
graphical estiniates-of X and p ly  fitting a straight line to the plot and calculating the 
slope and intercept: the slope is an estimate of fi  and the intercept on the horizontal 
(log e) axis is an estimate of — log X. 

The linearization procedure is applicable to models in which some transform Y = 
g(T)  of  lifetime, has a location•scale. parameter distribution, as in Section 1.3.6. In 
this case Y has a survivor function of the form (assuming Y is an increasing function 
of T) 
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Pr(Y y) = So (?+:L) 

= Pr(T > t) = 5(1), 

where t = g— I (y) and u(—co < u < co) and b > 0 are parameters. Thus 

1 
[SW] = —y — 

b 	b 
(3.3.3) 

is a linear function of y = g(t), and a plot of So-1 [,3'(t)] versus g(1) should be 
roughly linear if the family of models being considered is appropriate. The Weibull 
and exponential distributions fall into this category. For the Weibull, Y = log T has 
an extreme value distribution (see Section 1.3.2) with So (z) = exp(—e z ), which leads 
to the plot of log[— log S'(t)] versus log t previously suggested. Two approaches are 
possible for the exponential distribution: we can plot log S(t) versus t, as suggested 
by (3.3,2) or, since the exponential is the special case of the Weibull distribution 
with /3 = 1, we can plot log[— log  5 (1)] versus log t. These plots can be considered 
a type of Q-Q plot; note that S6-1 (1 — p) is the pth quantile for the standard variate 
(Y — u)lb. 

The result (3.3.3) holds with y = log t for all log-location-scale models (see Sec-
tion 1,3.6). Besides the Weibull, this covers the log-normal and log-logistic distribu-
tion; the associated distributions of Z =  (Y —u)/b are the extreme value, normal, and 
logistic distributions. The forms of So(z) for all three distributions are given prior to 
(1.3.19) in Section 1.3.6. Graphical estimates of u and b can be obtained from lines 
fitted to plots of So—I  [SK] versus  log 1; is estimated by the slope and u by the y 
(log 1)  intercept. Models for which So  (z) involves extra parameters, such as (1.3.20) 
in Section 1.3.6, can also be checked using this type of plot, provided that we first 
estimate the extra parameters. 

Instead of plotting the step function S6-1 [,§(t ) ] , we normally just plot points cor-
responding to the distinct observed failure times ti < < tk, as described for 
P-P and Q-Q plots. When So (Y) is continuous, it is customary, instead of plotting 
S6-1  [,Ŝ(/ .1)], to plot the points 

56.1 (87», 	= 1, . . , k, 	 (3.3.4) 

where ,3"!' is given by (3.3.1) and yj = log t./ or, more generally, yi = g(tj). 
The preceding procedures are all referred to as probability plots, although (3.3.4) 

is really a quantile plot. Their main use is for informal model assessment, In many 
cases plots indicate reasonable support for a family of models. Graphical estimates of 
parameters are sometimes useful for preliminary analysis or as initial values for max-
imum likelihood computation. A probability plot may conversely suggest a departure 
from an assumed model. Plots are subject to sampling variation, however, and one 
needs a sense of what constitutes normal variation under a given model. The exami-
nation of plots based on simulated data sets is an excellent way to develop this. 
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The following examples illustrate the graphical techniques. 

Example 3.3.2,  In Example. 3.3.1 it was shown that the survivor functions for 
Weibull and  log-normal distributions fitted to ball-bearing failure time data agreed 
closely with the Kaplan-Meier  estimate, or empirical survivor function. An alter-
native way to assess visually the fit of the parametric models is via probability 
plots. Figure 3.6 shows plots b;Ised on (3.3.4), utilizing the fact that the Weibull and 
log-normal models are both log-location-scale distributions. For the Weibull model, 
Y =. log T has an extreme  valu n distribution for which So (z) = exp(-ez) in (3.3,3). 
Therefore ST (p) = log(- log p) and the probability plot consists of the points 

	

log( - log .-.7. ;)) 	..... 23, 

where y = log ti are the log failure times and &'; is given by (3,3.1). On the vertical 
axis of the plots the values (3.3.1) are denoted by.  KM'.  Note that since none of the 
n = 23  lai  hum times is censored, the Kaplan-Meier estimate (3.2,2) gives .§(t+) = 
(n -  1)/n,  so that k.; = 1 - (j .5)1n. 

The log-normal probability ï lot similarly consists of the points (yi , (I),-1  (1— 
 where c(z) is the standard normal cumulative distribution function (c.d.f.) and its 

inverse (1) -1  (p) is the correspolding quantile function. Figure 3,6 shows both plots 
as close to linear, though there is a slight suggestion of a bend in the Weibull plot. 
This corresponds to our obser iation in Example 3.3,1 that the log-normal model 
filled the data slightly better. Simulation experiments with probability plots (see 
Example 3.3,4) show that this degree of nonlinearity is, however, not unusual with 
a correct model and a sample 3ize of n = 23, and formal goodness-of-fit tests in 
Chapter 10 do not reject the We ibull model. 

Graphical estimates of the e).treme value or normal distribution parameters u and 
b can be obtained from the plots. A straight line drawn by eye through the nor- 

Weibull 	 Log-normal 

O 

--r 
—2 

—3 

—4 

• 

3.5 	4.0 	4.5 	5.0 	 3.0 	3.5 	4.0 	4.5 	5.0 
log t 	 log t 

Figure 3.5. Weibull and log-normal probability plots for ball-bearing data. 
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mal probability plot, for example, gave a slope of approximately 1.9 and a y (log t) 
intercept of approximately 4.2. Since (see (3.3.3)) the slope estimates b and the 
intercept estimates u in the normal distribution N (u, 62) for Y, this gives graphical 
estimates u  = 4.2 and i; = 0.53. These are close to the m.l.e.'s that were given in 
Example 3.3.1 as  û  = 4.15 and i; = 0.522. 

Example 3.3.3. Lin et al. (1999) discussed data on patients treated for colon 
cancer (Moertel et al. 1990). Some  of the patients later had a recurrence of the dis-
ease and may subsequently die from it. The patients took part in a  randomized clini-
cal trial in which a drug therapy (levamisole plus flourouracil) was compared with the 
standard treatment, There were 315 and 304 patients in the Control (standard treat-
ment) and Therapy (drug therapy) groups, respectively. Maximum follow-up time 
was over 8 years. 

We consider here the distribution of time T to recurrence of colon cancer, mea-
sured from the time of randomization to treatment. By the end of the study, 177 
Control patients and 119 Therapy patients had experienced a recurrence. Figure 3.7 
shows Kaplan—Meier estimates for the survivor functions (s.f.) S(t) of T in the two 
treatment groups. Both a comparison of the two recurrence time distributions and 
estimation of the individual S(t)'s is of interest. It is clear that the Therapy group 
tends to have longer recurrence times and less recurrence; formal significance tests 
are considered in Example 4.5.1 and in Section 8.1. The Kaplan—Meier estimates 
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suggest that the hazard function for recurrence becomes small for large t .  This may 

indicate that some patients are cured and will not experience any disease recurrence; 
in 'hat case S(1) > 0 fort larg.  If one wished to consider parametric models, then 
distributions such as the Weibu I, log-normal, or log-logistic, for which S(t) 0 as 

CO, would then prcsumabl:1 be unsuitable. Figure 3.8 shows probability plots of 
the data for the Weibull and log-logistic distributions. For the latter the plots consist 
of points (3.3.4) with  y1 = log j and So-1 (p) = log((1 — p)/p). The inadequacy of 
the two models is confirmed. There is a convex pattern in the plots, indicating that 

Welbull, Control 	 Weibull, Therapy 

00 
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34 56 	8 
log t 

Conrol 

2 '3 4 5 6 7 8 
log t 

Log-logistic, Therapy 
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Figure 3.8. Weihull and  to  t-logistic probability plots for cancer recurrence data. 
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survival times in the right tails of the two distributions are considerably larger than 
would be consistent with either parametric family. 

In this setting, a parametric mixture model of the form (1.3.27) would perhaps fit 
the data, and provide an estimate of the probability of long-term nonrecurrence of 
disease. Such models are fitted in Example 4.5.1, and are shown to describe the data 
well. 

Example 3.3.4. Figure 3,9 provides an indication of the variability in probabil-
ity plots. It shows 15 plots, given in rows of live. Row 1 shows Weibull probability 
plots for five pseudorandomly generated Weibull samples of size n = 20; these plots 
consist of the points (3.3.4) with S' 1  (p) = log(— log p), as in Example 3.3.2. The 
five panels in row 2 show similar plots for five pseudorandom Weibull sample,s of 
size 40. The third row of panels shows Weibull probability plots for five pseudoran-
dom samples of size 40 from a log-normal distribution. 

The plots for the samples of size 40 are reasonably consistent in their patterns. 
Those for row 2 are quite close to linear and none suggest any evidence against the 
Weibull model. Those for row 3 exhibit a type of systematic curvature that suggests 
inadequacy of the Weibull model, However, for two of the samples (the first and 
third) the plots are close to linear and do not indicate any problem with the Weibull 
model. The plots in row 1 for the samples of size 20 are much more variable, and 
show that what might appear to be systematic departures from linearity are within 
ordinary sampling variation for the Weibull distribution. 

The message in these plots is consistent with those for probability plots in many 
other settings. Plots based on samples of size less than 20 or so are quite variable 
and should be interpreted cautiously. Plots based on samples of size 40 or 50 are 
more reliable, but may not be very powerful in showing moderate departures from 
an assumed model. Censoring in the data further limits the power of such plots; the 
number of uncensored times is then analogous to the sample sizes in the plots of 
Figure 3.9, 

Finally, to indicate the visual effect of the scales on the x- and y-axes in prob-
ability plots, we give in Figure 3.10 P-P plots of the two samples of size 20 rep-
resented in the first two panels of row 1 in Figure 3.9, The plots are of the points 
((j — .5)/20, fij), j = 1, , 20, where 

fi)  = 1 — exp{—(t(j)/16A, 

with t(I) « t(20) the ordered failure times for the sample, and a, the Weibull 
m.l.e. (see Section 5.2.1). The patterns in Figure 3.10 are similar to those for the first 
two panels in row 1 of Figure 3.9, but the compression of the tails of the distribution 
in the P-P plot alters the visual effect. In particular, the pattern for sample 2 appears 
more severe in the P-P plots than in the quantile plot of Figure 3.9. A point related 
to the scaling of the axes is that the pattern of variation as we move from the left to 
right tail of the distribution varies according to the type of plot. In particular, for P-P 
plots the variation is smaller in the two tails than in the middle of the distribution, 
whereas it is usually more stable for Q-Q plots. 
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Figure 3.9. Weibull probability plots for 15 simulated data sets. 
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Sample 1 	 Sample 2 
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Figure 3.10. Weibull P-P plots for two simulated data sets, 

3.3.1.3 Hazard Plots 
The plotting procedures above were described in terms of survivor functions. They 
can equally well be described in terms of cumulative hazard functions  H(t),  in which 
case they are often termed hazard plots. For the Weibull distribution, for example, 
H (t) = — log S(t) satisfies 

log H (t) = f3 log t /3 log X. 

An alternative to plotting log[— log (0] versus log t would be to plot log fi (t) 
versus log t, where fi(t) is the nonparametric Nelson—Aalen estimate (3.2.13). As 
discussed in Section 3.2.2, ff.  (t) does not equal — log S '(t), so the two plots dif-
fer slightly, primarily for large t. We often just plot points corresponding to the 
observed failure times and, analogous to (3.3.1), replace -H (t') with the value Hf = 
.5H (t —) .5H (ti), bearing in mind that H (t) is right continuous. 

Other plotting procedures can often be developed in ad hoc ways. For example, 
the linear hazard function model where h(t) = a -I- fit has H (t) =  t  + ot 2 /2. 
Thus t —  I H (t) = a + ptI2 is a linear function.of t, so approximately linear plots of 
C I  'H (t ) versus t should result lithe model is reasonable. 

3.3.1.4 Discussion 
Plots comparing empirical and model-based survivor or distribution functions pro-
vide excellent displays and allow visual checks on models. They complement more 
formal methods of estimation and testing that are discussed throughout the book. 

In cases where probability plots indicate a departure from some parametric model 
(manifested through nonlinearity in the plot) it is usually possible to see whether 
the lack of fit is primarily in the tails of the distribution or whether it is in the over-
all shape. In the latter case, a plot of either the Nelson—Aalen estimate H (t) or of 

log S(t) véi .sts t is often useful in shoWing. the shape of hazard function needed to 

0.5 

0.0 

• • 
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model the data. Nonparametric estimates of h(t), described in Section 3.4, can also 

be considered. 
The, use of simulation is recommended  for acquiring a sense of the variability in 

plotting procedures, thus avoidilg overinterpretation of features seen in plots. Shn-

Lila( ion bands or "envelopes" (A Iinson 1985) are useful with probability plots for a 

given data set. An awareness of the differing variability across values of t or log t is 

also important; variance estimates derived from those for the Kaplan—Meier estimate 

) (sec. (3.2.3)) provide guidarce, as do pointwise nonparametric confidence limits 

for S(/) or functions of 5(i). S multaneous confidence bands for S(1) can also be 
constructed (e.g., Nair 1981, 191.4), but they are rather complex and, given the infor-

mal nature of visual assessmen , do not offer much practical advantage for model 

checking over the pointwise lim ts, 

Finally, we have graphed estimates and presented probability plots in terms of sur-

vivor functions throughout this :ection. In some applications we may wish to graph 

estimates of distribution functions, f7(0 =  I  —S (i ); this is of course immediate, and 

since Vail fr(t)] = Varf. ,(i)1, all of the methods previously considered extend easily 

to estimation of F(t). 

3.3.2 Classic Probability Plo's 

Historically, probability plotting procedures for uncensored or Type 2 censored uni-
variate data were developed in considerable detail and used extensively for analysis 

in times when computational pc wer was limited (e.g., Barnett 1975; Nelson 1982), 
We give a brief description of this classic methodology. 

Probability plots in their mot t common classic form are used with location-scale 
parameter models. Suppose tha X is a random variable with distribution function 
of the form Fhl(x —,,)/hl,  where b is a scale parameter and u a location parameter 
(b > —oc < u < oc). Let x(1) < -17(2) < < x( n ) be the ordered observations 
in a random sample of size  n  horn  the distributiOn of X. A classic probability plot 
is a plot of the xu) against quantities m = F0—I  (a1), where ai is an expected value 

related to Fol (xu) — li the stated model is reasonable, the plot of the points 

(x ( e ) , r) should be roughly lirmar. In fact, the points should lie fairly near the line 
= ii + bur, and thus estimates of u and b can be obtained from the plot. 
The (Ir are referred to as the plotting positions. The two most popular choices 

arc ar 	.5)/n  and af 	/(n -I- 1). The former is motivated by the fact that. 
the empirical distribution funci . on changes from (1 — 1)/n to i I n at x(r), so that 
one can think of x0) as corresponding to something between the (i — 1)/n and iln 
quantiles. Taking (i — .5)/n, wlich is midway between these two values, and then 
equating X(j) and the (i —.5)1 n cuantile of the distribution, we get FoRxm —u)lb] = 
(i — .5)/n = al. The second ch.fice mentioned, al = I/ (11 + 1), is motivated by the 
tact that lit Pot (4)— u)/b]) = , /(n +1); this follows from the fact that the variables 
Fol (X; — 	are Uniform(0, 1). Still another choice is ar = E([(4) — 
provided that these quantities are available for the distribution in question. For the 
extreme value.distribution these were given by White (1969), and for the normal . 
distribution by Sarhan and Greelberg (1962), among others, 
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To facilitate probability plots, special probability graph papers were constructed 
for the more common distributions. These graph papers had a scale based on values 
of FcT I  (a), but were labeled with an a-scale, so that to effectively plot the points 
[x(i), F0-1  (ai)], one needed only plot the points (x(t), ai). This saved the trouble of 
computing F6-1  (a). Probability papers for the extreme value and normal distributions 
were particularly useful in early life distribution work; see Nelson (1982). Modern 
computer graphics can now of course generate these plots. 

The classic probability plots are described in terms of the distribution function 
Fo(z) rather than the s.f. So(z) = 1 - Fo(z). However, it is easy to see that when the 
data are uncensored or 'Type 2 censored, the probability plot of the points (3.3.4) is 
precisely the same as a classic probability plot with positions ai = (i -  .5)/n.  To see 
this note that in (3.3.4) we then have xj = x(j) and, as remarked in Example 3.3.2, 

= 1 - (j -  .5)/n.  Since S0-1 (1 p) = F6-1  (p) for 0 < p <  I,  the stated result 
holds. 

Historically, there was also considerable discussion about the pros and cons of 
different plotting positions (e.g., Barnett 1975), some of it directed at the estimation 
of u and b. There is no generally superior choice of position, and except for very 
small samples, the choice has little discernible effect on diagnostic plots. The most 
common practice is to use the positions ai = (i - .5)/n, which corresponds to using 
(3.3.1) for general probability plots. We use these positions for plots droughout the 
book. 

3.4 ESTIMATION OF HAZARD OR DENSITY FUNCTIONS 

3.4.1 General Remarks 

Plots of the Kaplan-Meier and Nelson-Aalen estimates of  S(t)  and H (t) provide 
some indication of the shapes of the p.d.f. f (t) = (t) and hazard function 
h (t) = H'(:), It is sometimes desirable to plot nonparametric estimates f (t ) and 
kt), which give more direct impressions of the density and hazard functions. A 
comprehensive treatment of this area is beyond the scope of the book; some general 
discussion and an illustrative example is provided here. Precise nonparametric esti-
mation of density and hazard functions is inherently difficult, since they represent 
rates of change in probabilities. Nonparametric estimates give an impression of the 
shape of f (t) or h (t), but it is usually unwise to infer too much about local curvature. 
The estimates of densities or hazard functions are generally based on smoothing, and 
various approaches have been considered. These include kernel density estimation 
(e.g., Tanner and Wong 1983; Ramlau-Hansen 1983), penalized nonparametric max-
imum likelihood (e.g., O'Sullivan 1988; Green and Silverman 1994), local likelihood 
(e.g., Hastie and Tibshirani 1990; Loader 1999), and adaptive regression splines fit-
ted by maximum likelihood (e.g., Kooperberg and Stone 1992; Rosenberg 1995). 
Additional references to methodology and to software are provided in the Biblio-
graphic Notes and Computational Notes at the end of the chapter. 
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These and other approaches effectively take local averages (perhaps weighted) 
of observations, discrete estimates, or functions thereof. This involves choices that 
affect the degree of smoothing. For example, kernel-density estimates of a hazard 
function h(t) based on a censoi ed random sarnple are often of the form 

kf - 

fi(()== - 	
( 

b 	
J)ktt) 

b . 	 ' 
1= 1  

(3.4.1) 

where, in the notation of Section 3.2,  t « tZ are the distinct observed failure 
times in the sample, ii(t7) = dan; is the increment in the Nelson—Aalen estimate 
(3.2,13) at t b > 0 is'a specified bandwidth or window parameter, and w(u) is d 
fully specified p.d.f, that equals 0 outside the interval [—I, 1], (This estimate needs a 
little modification for t outside tie range (b,17, — h), but for simplicity of discussion 
we ignore this.) The estimate (3.4.1) at t is d weighted average of values kip for 

such that It —tI<  b The smoothness of Ti(t) depends on the shape of w(u) 
iind on b; the bandwidth b is ni we important, with larger values incorporating more 
observatiens 1 iri the local avei age at /, thereby giving a smoother /3(0, 

The amount of smoothing f ready affects estimates f(t) or h(t) and the visual 
impression created by a plot, but the degree of smoothing to use for a given data set 
is rather arbitrary. A low degree of smoothing tends to yield "bumpy" estimates with 
considerable variation in local curvature, and such estimates are usually implausi-
ble. On the other hand, a high dilgrec of smoothing, giving a smoother estimate, may 
miss interesting features sugges4ed by the data. Software implementations often offer 
automatic selection of bandwidt or analogous smoothing parameters, but it is usu-
ally better to base decisions about smoothing on subjective notions about the shape 
of the underlying [(t) or h(t). and to examine estimates With varying degfees of 
smoothness. 

There are other difficulties with nonparametric estimation of  [(t)  or h(t). Esti-
ation is imprecise in the tail! of the distribution, and estimates of S(t) or H(t) 

implied by co or /30.) may not agree well with the Kaplan—Meier or Nelson—Aalen 
estimates. In ,finite samples, est'mators (1) or Ti(t) can be quite biased, since they 
in effect estimate Some weighted average of [(t)  or h(t). For example, with b fixed 
(3.4.1) does not estimate h (1) consistently for large samples, but rather 

= fc° w  t — 
h (u) du 

b 	 b 

Finally, in order to adapt to the vailable data, it may be necessary to vary the degree 
of smoothing for different !,  

The next section consider S sqme simple procedures for the estimation of hazard 
or density functions,  and an illwarative example. 
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3.4.2 Some Simple Procedures and an Example 

Nonparametric estimation of f(t) or h(t) requires a reasonably large number of fail-
ure times. A simple and effective approach is to break the time axis into intervals, 
estimate the hazard or density function at the midpoint of each (finite) interval, and 
then smooth the estimates. Such procedures are sometimes criticized because of the 
need to choose intervals and because estimates can sometimes be sensitive to the 
choice. However, experience suggests that such methods are effective for practical 
sample sizes, and one can examine estimates for different choices of intervals. 

Consider the standard censored random sample of lifetimes, (te, Si), i = 1„ n. 
Let ao = 0 < al < 	<  a 4  =  co  partition the time axis, and denote intervals 

= (ai_ , ai]  for ]  =  1, 	k + 1. Let di and wi be the number of failure times 
and censoring times, respectively, that fall into I»  and let ni be the number of ti (i.e., 
failure or censoring times) that exceed ai_i :For j = 1, . . . , k let t„,i = .5(ai_l 
denote the midpoint of /i and Ai =  a,,  — ai — 1 denote the interval widths. For some 
purposes, such as the consideration of frequency properties of estimates, the intervals 
should in principle be specified independently of the data, but for purposes of data 
description and visual examination there is little harm in choosing intervals with an 
eye on the observed data. The number of intervals can depend on the number of 
failure times, but it is preferable for each interval to contain at least several times. 

In what follows, we focus on estimation of the hazard function h(t) for the under-
lying distribution. There are various ways in which one can estimate h(tmi) for 
j = 1, . . . , k: we mention three. The first is via 

h(tno   N A (aj) — 	A (af —1) 

Ai 

where tiNA (t) is the Nelson—Aalen estimate (3.2.13). The estimate (3.4.2) is simple 
and effective when h(t) is close to linear over (ai_i, ai]. A second estimate, which 
is obtained as an m.l.e. under the assumption that h(t) is constant over each interval 
j = 1, . , k is (see Problem 3.8) 

— 

E ( ti _ai _ i ) 
te E/j  

(3.4.3) 

Finally, in some settings we may know the n /, di, and w / values but not the exact 
failure or censoring times; this is the life table setting 'discussed in Section 3.6, 
where estimation of parameters qi = Pr(T < ailT > ai_i) is considered. A 
good estimate when censoring times tend to be uniformly distributed across  lj  is 
"di = — ,5wi), and Problem 3.15 indicates that a reasonable estimate of 
h(tmi) when h(t) does not vary too much over ././ is 

— log(1 — 
fl Om,/ — 	j = 1, . . . , , 	(3.4.4) 

Ai 

(3.4.2) 
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A plot of the points (rm j, 13 , Ni)) gives a rough idea of the features of h(t). If 

desired, standard errors hr con fit fence limits can be shown at each t mi; standard errors 

arc readily obtained for each of (3.4.2)—(3.4.4), or for functions such as log h (tmj), 
which are preferable for constructing confidence intervals. For example, for (3.4.2) it 

follows from the development o 'the variance estimate (3.2.32) for the Nelson—Aalen 

estimator that a variance estimwe is 

(tmt).1 = /TT 	n(te)2 "V 4E1 .1 

(3.4.5) 

where n (te) denotes the number of individuals at risk (i.e., alive and uncensored) just 

prior to 4. The /30„,i) may be smoothed using some type of scatterplot smoother 

(e.g., Hastie ancl Tibshirani 199(1, Ch, 2) or a nonparametric regression fit applied to 

the points (t„,i, [1 (t,,O)); this all( ws a smooth estimate  h(t)  to be obtained. 

Estimates of f (t) can be obmined from estimates of h(t) and S(t), via  f0)  = 
h(t)S(t). Note that a smooth estimate Tt(t) produces a corresponding smooth esti-

mate 8 (1) = exp[— Li  li (i.r) du] though as we discuss below, these estimates are in 

some cases not very good. Et is nisi) possible to estimate f (t) directly. A reasonable 

estimate of .f (t,,,i) when f(1)  is roughly linear over 1i is 

:§Km(('j—t) — S'Km(aj )  

Ai 

and an ad hoc approach to obtair ing a smooth estimate f (t) is to smooth these values 

and then resettle the estimate so it integrates to one. 

Example 3.4.1. The data hclow show the number of cycles to failure for a group 

of 60 electrical appliances in a life test. The failure times have been ordered for 
convenience. 

I 4 34 59 61 69 80 123 142 165 210 
38 t 464 479 556 574 839 917 969 991 1064 

1088 1091 1174 1270 1275 1355 1397 1477 1578 1649 
702 1893 1932 2001 2161 2292 2326 2337 2628 2785 

2811 2886 2993 3122 3248 3715 3790 3857 3912 4100 
410 (,  4116 4315 4510 4584 5267 5299 5583 6065 9701 

There arc a .substantial number )f small failure times, and the data suggest that the 
haiard function h(t) may be relt%tively high for small times, 'We will investigate this 
by considering nonparametric estimates of h(t). 

Figure  3,11 shows a Nelson- Aalen plot of the data. An initial steep increase in 

/4At i t (t) is suggested; but given its scale and short duration, this does not stand out 
dramatically, We investigate h0) by grouping the data as shown in Table 3.4, and 
estimating the 'hazard function fit the midpoints of the intervals represented in the 
table.. The table' shows the values of ni, di, Ai, NJ, and the estimate /3(t,) given 
by (3.4.2). The intervals were selected so as to have 5-10 failures in each (except for 
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0 	21: 1100 	4000 	6000 	81:1100 	10000 
t (cycles) 

Figure 3.11. Nelson—Aalen cit.f. estimate for appliance faihne times. 

Table 3.4. Grouped Appliance Failure Data and Hazard Function Estimates 

1.1  nj  d  trnJ  1,000 ho„,,) 1,000 se(h(t„,j )) 

0-100 60 6 100 ' 50 1.044 0.430 
100-500 54 7 400 300 0.344 0,131 

500-1,000 47 6 500 750 0.270 0.112 
1,000-1,500 41 9 500 1,250 0.489 0,166 
1,500-2,000 32 5 500 1,750 0,334 0.152 
2,000-3,000 27 10 1,000 2,500 0,452 0,148 
3,000-4,000 17 6 1,000 3,500 0.420 0.179 
4,000-5,000  II 6 1,000 4,500 0.737 0,330 
5,000-6,000 5 3 1,000 5,500 0.783 0,548 
6,000-10,000 2 2 4,000 8,000 0.375 — 

the last two shown); the final interval (10,000, co) has no failures and is not shown. 
Standard errors for the tz(t, ni)'s are also given, and we note they are rather large; 
standard errors for estimates (3.4.3) or (3.4.4) are slightly smaller!than these. The 
discussion of shape for h(t) that follows is therefore necessarily tentative. 

Figure 3.12 show the hazard values /A20„,j) and sonie smooth estimates ii(t) 
obtained from the points (r„,j , fi(t,„»). The first is a cubic smoothing spline (Green 
and Silverman 1994), fitted using weights based on the variance estimates for the log 
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Figure 3.12. Slow h etitiMIIIC of h(t) for appli nee failure time. 

/3(t„,i) 's; these variance estiniatcs are given by (3.4.5) divided by /3(t,,,i) 2 . The S-Plus 
2000 function smooth.spline WC!) automatic selection of smoothing parameter was 
used to obtain the estimate; offer scatterplot smoothers tend to give results similar 
to this. Such procedures ate nct able to accommodate the large estimate ktn,i) at 
the first interval's midpoint. A procedure that is better able  to capture this behavior 
is to fit a cubic regression splire. This is a function /3(0 that is smooth and piece-
wise cubic between cut points, which are called knots; such models are discussed 
in Section 42.3. Figure 3.12 shows a "natural" cubic spline with internal knots at 
t = IOU, 300 and 2500, and bomdary knots at t = 50 and 5500; the natural spline 
is piecewisc cubic everywhere between  the two boundary knots and linear outside 
them. The estimate portrayed in Figure 3.12 was obtained very simply by a weighted 
least-square lit to the data (yi, Ai) with yi = fi.(t„0„ej = t, and the same weights 
used for the smoothing spline fit. This procedure approximates the estimates /3(t,q) 
considerably better, 

The regression spline is essentially a parametric model, and the knot positions 
used here were chosen so as to capture features in the /30110's shown in Figure 3,12. 
Adaptive, regression spline procedures can also handle this quite well. Figure 3.12 
include:: a third estimate /-t(t) ob.ained by using the logSpline software of KoOperberg 
and Stone (1992), by way of illustration. This approach uses a selection procedure 
In' the number of knots, and ut lizes the ungrouped data, It agrees rather well with 
the regression spline estimate obtained from the grouped data. Kernel smoothing 
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Figure 3.13. Smooth estimates and KM estimates of  S(i)  for appliance failure time. 

methods based on the ungrouped data (e.g., Tanner and Wong 1983) can also be 
applied. 

- Estimates 1t(t) that do not mimic the fi(tn,i) values fairly closely can yield esti-
mates 

3 (t ) = exp [— f ii(u) du] 
L ' 

of the s.f. that do not agree well with the Kaplan—Meier estimate. Figure 3.13 shows 
the Kaplan—Meier estimate 3 (z ) and smooth estimates :5" (t) derived from the esti-
mates of h(t) in Figure 3.12. The smooth estimates mostly lie within pointwise non-
parametric confidence bands for S(t) obtained from the Kaplan—Meier estimate, but 
the regression spline estimates are considerably closer to 3 (t ). 

We conclude by mentioning that in Example 4.4.2 a mixture of two Weibull dis-
tributions is fitted to the data in this example. 

3.5 METHODS FOR TRUNCATED AND INTERVAL CENSORED DATA 

As described in Sections 2.3 and 2.4, lifetimes Ti are often subject to left or right 
truncation, and to interval censoring. This section discusses nonparametric estimates 
of S(t) in these cases, 
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3.5.1 Left-Truncated Data 

Settings in which left-truncated lifetimes arise were desclibed in Section 2.4. Follow-

ing the  notation there, We assume that for each of n independent individuals a triple 

(tti, it, St) is observed, where ut is the left truncation time, ti > It; is a lifetime or 

censoring time, and 5; = 1(0) if ti is a lifetime (censoring time). it is assumed further 

that truncation is "independent: so that (14.1) holds. Our objective is nonparamet-
ric estimation of S(t) = Pr(T; > t), but as will become apparent, it is possible to 

estimate only 

S(t) 
— Pr(T > tIT  ?L  Urnin),  

= SL(t; Urnin) 	t 	min, 

where u m i n  = min (u  t  „ 	u„). 

	

The likelihood function bas , :d on (tit, t1, Se), t = I , 	n is given by (2.4.2). 
As noted in Section 3.2,1, estimation of the hazard function in the discrete-time 

setting is essentially the same as when there is no truncation. The likelihood can 

be written in the same form (3.2.4) if we define n, = E r(ui  < t < te), and the 

m.l.e, of the hazard function at time t is then 1(1) = /n i , provided ni > 0. There 
however, an important difference with the untruncated case. Since n, = 0 for 

< it„„,„ (3.2.4) has no infornation about h(t) for t < timin , Consequently, we 

cannot estimate SW unless tt m i i  = 0 (see (1.2.16)), but only St (t; Umm) of (3.5.1). 
By ( 1.2.1 8) the estimate is 

t-- 

:5'1.(f; umin) = 	[1 —13(e)]. 	 (3.5.2) 

In the continuous-time setting we get the estimate 

= 	
(

1 — 	, 	 (3.5.3) 
ni 

where PI' <t  « t" are he distinct observed failures times, d  = E r(r, = 

	

= I), and nj = El (at <t 	tt). The Greenwood-type variance estimate 

S(Umin) 
(3.5.1) 

Ça—rl:t..(t; ttinin)1 = 	ttmin) 2  
di  I (ni > 

ni(ni — di) 
(3.5.4) 

is obtained by the same approadf as in Section 3.2.1. For reasons discussed in the 
following, it is necessary to include the factor I (ni > di) in (3.5.4) and to define 
0/0 as 0, 
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Other issues arise with left-truncated data. The ni are not monotone decreasing 
as they are for untruncated data, and it is possible to have times t between tt,,,h, 
and max(ti) for which nt  = E r (u, < t < tt) = O. Strictly speaking, the likelihood 
function has no information about h(t) or d H (t) at such points, but it is conventional 
to ignore this and define  d (i) = 0, thus allowing estimation of SO; u mi n ). It is 
also possible to have di = n for any j = 1, . . . , k; with untruncated data this can 
occur only at t, the largest failure time. But if di = ni, then el/4 (ti) = 1, and in 
(3.5.3) we have ,§L(t; u min ) = 0 for all t > q. If this occurs for ty small (it is even 
possible to have di =  ni),  then this estimate is usually quite implausible, and is not 
very useful. 

This pathological behavior of (3.5.3) is not uncommon when few ui are close to O. 
Often the best option is to recognize that the data have little information about H (t) 
close to t = 0, and to select a new left truncation time u* > Umifl,  retaining only 
individuals for whom  uj> u* We can then estimate d H (t) for t > u* and SL(t; u*) 
nonparametrically; under the independent truncation assumption, this selection of 
individuals does not introduce any bias. 

Other estimates than (3.5.3) are sometimes suggested. One approach is to adopt 
a flexible parametric model such as a regression spline for h(t), or to smooth the 
estimates dfl(t*) = dJJ  in,  as discussed in Section 3.4. Another is to estimate 
1(1 ; Umin) through the cumulative hazard function. Defining 

HL (t ; umin) = f t  d H (u), 	 (3.5.5) 
Urnin 

we have from the maximum likelihood development the Nelson—Aalen estimate 

fh(t; umin) = E 

with associated variance estimate 

fa-i(fiL(t; Umin)) = 2_, --y• 
i:t1  11 i 

An alternative estimate for St, (t; umin) in the continuous-time case may be based on 
the fact that SL (t; u m in) = exp[—HL(t; u mi n)] for continuous models, suggesting 

(t; umin) = exp[- 1(t;  umin)] , 	 (3.5.8) 

This estimate does not drop to zero when dj = nj. Other alternative estimators 
that have been proposed compensate for a lack of information through additional 
assumptions. Neither they nor (3.5.8) are satisfactory in some situations, however, 
and it is best to adopt the more severe lower limit u* > u m i n  discussed earlier. 

(3.5.6) 

(3.5.7) 
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Confidence intervals for .5/ (1; u mi n ) or SL, (1; u*) can be obtained by using any 
of the approaches in Section 3.2, merely replacing SO) and related estimates by 
Si. (t; // m i n ) and related estimates. 

Probability plots to check parametric models cannot readily be linearized in 
the case of truncated data. However, nonparametric and parametric estimates of 
SL (t;  irmin) or lit (t 1 umin) are easily compared by plotting them on the same graph. 
It is also possible to base probability plots on suitably defined residuals. Both 
approaches are considered in the following example. 

Example 3.5.1. Example 2.4.2 presented a set of data on the lifetimes of the 
brake pads on 98 automobiles. The lifetimes were actually estimated, and were sub-
ject to left truncation because of the way the automobiles in the sample were selected. 
We ignore the effect of estima :ion of lifetimes in this example. Table 2.1 shows the 
(estimated) lifetimes ti and truncation times tr/ (in thousands of km driven) for the 98 
vehicles, Since  Ui = 7.0 we ran estimate SL (t ; 7.0) nonparametrically, Figure 3.14 
shows the estimate (3.5.3) alo  mg with a parametric estimate based on a log-normal 
distribution (1.3,10) for the 1 i aimes 7.1; the m.l.c.'s for this model are fi = 4.109, 

= 0.421. It is reasonable tc assume that S(7.0) is effectively one (i.e., no brake 
pads wear out before 7000 km ltiven), so St (1; 7,0) can be assumed to estimate SO) 
here. Figure 3.14 is labeled to .eflect this. 

1.0 

S(t) O.5 - 

— Nonparametric 
Lognormal Model 

0.0 - 

410 	 80 	 1 120 	 1 160 

t (km +1000) 

Figure 3,14. Nonparamet-ic and log-normal estimates of SO) for brake-pad life. 
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The log-normal model apparently fits the data well, but let us !consider a prob-
ability plot anyway, to illustrate how left truncation can be handled. The simplest 
approach is to employ a P-P plot by defining uniform residuals for  a parametric 
model as 

ei = 
S(ti; 6)  
S(ui; b) 

i = 1, 	,n. 

Since S(Ti; 0)1 S(ui; CO is Uniform (0, 1), given ui, if the model S(t; B) is correct, 
we plot as a model check the points (e ( ), (i — .5)/n), where eu) is the ith smallest 
among (ei ..... en ). The eu) can be thought of as theoretical approximate U(0, 1) 
quantiles and the values (i — .5)/n as sample uniform quantiles. Figure 3,15 shows 
the P-P plot with "6 = Pr) for the log-normal model; there is no evidence to 
contradict the model. 

Example 3.5.2. To illustrate the pathological behavior that can occur for a non-
parametric estimate of S(t) based on truncated data, let us consider the data in 
Table 3.5. These consist of left truncation times, ui, and lifetimes, ti, for 18 brake 
pads similar to those in Example 3.5.1. In this case, the smallest lifetime is t1 = 24.5, 
with corresponding tti = 19.6. However, since all of the other truncation times ui 
exceed 24.5, there is only this single unit at risk at t = 24.5, so in (3.5.3) we have 

0:0 
	

0.5 
	

1: 0 

U(0,1) quantile 

Figure 3.15. Log-normal P-P plot for truncated brake-pad life data. 
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Table 3.5. Bra lao-Fad Life (1) and Odometer Readings 
(u) for 118 Cars 

IA" I I 

I 9.6 	24.5 	44.6 	46.9 
30.7 	53.8 	48.8 	61.4 	47,8 
37,8 	58.4 	45.9 	64,2 
34,4 	89.5 	28.2 	45.6 
37,4 	75.6 	48.3 	81,9 
41.1 	56.0 	42.5 	86.3 

°Units are 1000 km. 

	

26.2 	59.3 
97,8 

	

48.2 	86.2 

	

27.9 	40.8 

	

33,7 	93.8 

	

37.6 	77.7 

, and the estimate of SL (I;  19.6) is 

11 	19.6 5, t 5_ 24.5 
50; 19.6; = 

0 t > 24.5 

This is an unacceptable estimate. An alternative ad hoc approach, previously dis-
cussed, is to drop  the first observation in Table 3.5 and to use the remaining 17 to 
estimate Sr, (t ; 26.2). The estiinata (3.5.3) for this is sensible, and if we were willing 
to estimate 5(26,2) from other information (its value is certainly close to one), then 
the unconditional 0*. SW can al ;o be estimated. Note that in this setting the value 

= 24.5 is Unusually low, and  though we may not wish to consider it an extreme 
outlier, estimating (t) with and without it included makes good sense, 

3.5.2 Right-Truncated Data 

Lifetimes Ti may also be subject to right truncation, as described in Example 2.4.4. In 
this case vi is a truncation time sueh that individual i is observed only if Ti < , Data 
on n individuals consist of inderymdent pairs (ti, 14), where ti < vi is the observed 
Retinae; little additional complication is created if we allow some lifetimes to be 
left-censored, but this occurs rarely in practice, so we disregard it  for now. We also 
assume that truncation is  indeperdent, so that Pr(T < tit), T < v) =. F F (v), 
where F(t) = Pr(T < t) is the marginal distribution function of T 

With right-truncated data It is simplest to work with the distribution function of T 
Our objective, is to estimate F (t nonparametrically, but it is clear that all we can 
estimate is 

F(t) 
P r (T < t IT < vmax ), 

FR (t ; thrum) 	t 	Vmax, 

where va,„ x  = max(v; , 	 va ). This is analogous to our being able to estimate 
only (3.5,1) in the case of left truilcation, In fact, there is a close connection with the 
development in Section 15. I , because if we reverse the time axis, then left truncation 

(vmax) 
(3.5.9) 



V-a-.11 R (t; V max)} .= PRO; Vmax) 2  E ni (ni — ) 
> di) 

(3.5,11) 
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becomes right-truncation and right censoring becomes left censoring. It follows by 
analogy with (3.5.3) that the nonparametric Kaplan—Meier estimate of F (t; umax ) 
should be 

d • 
PR(t; vmax) = 	( i — -1) , n J  

(3.5.10) 

where ti" « are the distinct observed failure times, di = E I (tt = t;) and 

ni = E [(ti < 	< vi), The Greenwood variance estimate for R (t ; max) is, by 
analogy with (3.5.4), 

where we interpret 0/0 as 0. 
A direct derivation of (3.5.10) and (3.5.11) along the lines of the discrete-time 

development of Section 3.2 is instructive, We define the "reverse time hazard" func-
tion hRT(t) = .f(t)/F(t), where t = 0, 1, and note that for any (t, y) with 
0 < t < y, 

F(t) 	11 

F(v) 

f (t) 
= hRT(t)  fl  [l —hRT(t)i• F(v) t=t4-1 

The likelihood function from n independent pairs (4, vt) is then 

L(1127') = F(vi) 1=1 

= 	hRr (4) ri  1 — h ( e)]  
1=1 

Umox 

= fihRroyi, [1—h,r(ort-di, 
iI  

(3.5,12) 

(3.5.13) 

(3.5.14) 

where di  = E / (ti = t), n t  = E uti :5. t 	vi), and btu' 	(h (1). 
hRT(v max)). Maximization of (3,5.14) gives fin' (1) = dtint, provided n t  > 0, and 
so (3.5.10) follows from (3.5.12). The variance estimate (3.5.11) follows from max-
imum likelihood large-sample theory, exactly as in Section 3.2. Rigorous treatments 
of the estimates in the continuous-time setting can also be given. 
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The same remarks concernim; t -values where n t  = 0 hold here as in Section 3.5.1. 
Also, the same pathological be avior as in the case of left truncation can appear in 
(3.5.10). In particular, if at t i* WI t have di = nj, then PR (t ; V max) = 0 for all t < ty. 
This phenomenon tends to bcct r when the vi are sparse near v max , and one of the 
approaches discussed for left-truncated data should then be considered. In particular, 
since the data are uninformative about d HRT(1) near vmax, it may be wisest to adopt 
a smaller right-truncation limit a*, and to focus on F(t)/ F(v*) = F R (t ; 0). 

In terms of hazard functions, we are able to estimate nonparametrically 

HR (I; 	= f 	dHET ( 4), 

the Nelson—Aalen estimate bein3 

di  

	

fin (t ; vmax) = 	—. 	 (3.5.15) 
*.t* j > 

For model checking, plots of PR (t; u m.) or  HR (t; val.( ) along with parametric esti-
mates are useful, 

Example 3.5.3. Kalbfleiseb and Lawless (1989) discussed data on the induc-
tion or latency time for the Acluired Immune Deficiency Syndrome, or AIDS. A 
diagnosis of AIDS follows infilction with the human immunodeficiency virus, or 
HIV. Brookmeyer and Gail (1991) provide considerable medical and statistical back-
ground on HIV and AIDS but, briefly, AIDS is a condition in humans attributable to 
a breakdown of the body's inin une system, and the HIV is a virus that is believed 
to cause AIDS, The time betwecn infection with the HIV and the diagnosis of AIDS 
in an individual is called the induction time. It is highly variable, and can exceed 20 
years; some infected individuals may indeed never be diagnosed with AIDS. 

The definition of AIDS has changed since the first cases in North America were 
diagnosed in the early 1980s, and treatments have been developed that cari delay the 
onset of AIDS. However, consicerable effort was expended in the 1980s on estimat-
ing the incluction-:time distribution for various types of individuals. This  was made 
difficult by the fact that for most persons infected with the HIV, the time of infection 
was unknown. Kalbfleisch and Lawless (1989) considered data that were obtained 
from persons diagnosed with AIDS and whose HIV infection came from a blood 
transfusion on a known date.  Therefore  an induction time ti and an infection time 

were available for each indiv dual. The data were derived from AIDS cases diag-
nosed prior to July 1, 1986, however, so this created a right-truncation time In for 
each individual, 

We set up notation  for the data as follows. We take as the time origin January 
1. 1978, which is assumed to bc  the earliest an HIV infection via blood transfusion 
cou cl  occur in North America. Let r represent the time (say in days) from January 1, 
1978 to July 1, 1986, let xi repesent the time of HIV infection for  individual !,  and 
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let ti represent the AIDS induction time. Then, because only persons diagnosed with 
AIDS by time r are included in the data set, it must be the case that ti < vi, where 
vi = r — xi, so the induction times are right truncated, as noted in Example 2.4.4. 

Kalbfleisch and Lawless (1989) presented data on 295 individuals whose AIDS 
cases were reported to the Centers for Disease Control in Atlanta, Georgia. Here 
we consider a subset of 124 persons who were infected by December 31, 1985 and 
whose ages were between 5 and 59 years at the time of HIV infection. The data 
are given in Appendix G. Times were recorded in months, ignoring for convenience 
the fact that months vary in length, and infections were assumed to occiir at the 
midpoints of months, In the notation of (3.5.9) and•(3.5.10), v max  = 99.5 months 
and the observed induction times t  « tit range from 4 months to 89 months. 
Figure 3.16 shows the nonparametric estimate (3.5.10) of the distribution function 
for induction time T,  conditional on T < 99.5 months. Confidence limits are not 
shown, but we note that standard errors for 'PR (t; 99.5) based on (3.5.11) are rather 
large, except for small t; for t > 42 months, the standard errors exceed .10. 

The unconditional induction probability F (t) is inestimable from the truncated 
data, but an estimate could be obtained for t < 99.5 months if there were an estimate 
from other sources of F(99.5). A parametric model fitted to the data here would 
also provide an estimate of  F(t). This is considered in Example 4.3.3, where it is 
found that the truncation so limits the information about the parameters that precise 
estimation is impossible. 

Figure 3.16. Estimate of conditional c.d,f. for AIDS induction time. 
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3.5.3 laterval-Censored Data 

In Section 2.3 we discussed inte wal-censored data in which the responses are inde-
pendent pairs (ui,  vi).  i = 1„ n, it being known that ui < < . (An exactly 
known lifetime is given by takirg u/ = 14—) When the individual lifetimes Ti are 
identically distributed with c.d.f. F(t), the likelihood function (2.3.1) becomes 

If 

L n[F(ui) — F(ui)]. 
i.t 

(3.5,16) 

This depends on F(t) only throrgh values at the observation times (ui, ui). To con- 
sider this in a slightly different form, let 0 = so < si < 	< 	< sk =  oc  
denote the distinct values in the set )0,  oc,  ui, vi i = 1, 	, n), with the conven- 
tion that an exact observation I is regarded as (t—, t]. Let pi = F(si) — 
and define cto = / (si_ 1, si] C (14, vi]). Then (3,5.16) can be rewritten as 

L(I 1) = rni [Ek aii„] 
1=1 J=t 

and to obtain ft  we must apparer tly maximize L(p) subject to the constraints pi > 
and E pi  = I. Some of the /3i in the maximizer of (3.5.17) may equal O. In fact, 
it can be shown (Turnbull 1976) that 13, must be 0 if si_i and si do not correspond 
to some ui and up, respectively. However, other 13i may also be zero, Various algo-
rithms for maximizing (3.5.16) or (3.5.17) have been proposed. References are given 
in the Bibliographic Notes at the end of the chapter, and the Computational Notes 
discuss software. 

Note that the maximizer of (3.5.17) assigns probabilities 	only to intervals 
Thus, if Pi 	O.  th  c distribution of the probability mass between si_i 

and si is unspecified. It is customary when plotting and summarizing the estimates 
Ê(t) or 	to show them as constant over intervals where Pi = 0, and unspecified 
over intervals (9_1, si] for wWch 	> 0, except at si. Some software packages, 
however, extend horizontal piecQ,s of S. (t) to produce a step function, 

Example 3.5.4. Consider ;. simple artificial example in  which there are five 
observations: (0, 4], (3, 6], (8, 10], (9, co], and [7,, 7]. Rewriting the final, exact 
observation as (7., 7] we Obtain the intervals (si_i , si] for j =  1,...,  9, where 
(sd,. , s9) = (0, 3, 4, 6, 7—, 7, 8, 9, 10, co). The likelihood function (3.5,17).is. 
thus 

L(pi, . • p9) = (pl + p2)(p2+ p3)(P7 + P8)(P8 P9)P5, 

but by the result that /3i = 0,.unless 	is some left endpoint ui and si is some right 
endpoint vi', we have that only 132,  /35, 138 may be nonzero. Maximizing L = p3:p5pi 
subject to p2 p5 pg = 1, w?, obtain 12  =  P8  = .4, P5 = .2. 

(3.5,17) 
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Table 3.6. Nonparametrie Estimate from Interval-
Censored Data 

Interval 	 §(t) 

(0,3] 	 1.0 
(3, 4] 	 Indeterminate 
(4,7] 	 0.6 
(7, 9] 	 0.4 

(9, 10] 	 Indeterminate 
(10, co] 	 0.0 

The estimate S'(t) is shown in Table 3.6 and Figure 117. Since the estimate 
assigns probability only to the intervals (3, 4], [7, 7] and (9, 10], :5(t)'s value is inde-
terminate except at the endpoints of those intervals. 

Asymptotic theory and confidence-interval estimation are problematic in general, 
though standard results can be obtained if we assume that the set of interval endpoints 
si ..... sk is finite and fixed as n oo. Variance estimates and confidence inter-
vals can then be based on the inverse of the observed information matrix obtained 
from (3.537). When confidence intervals are important an alternative approach is to 

0 	 2 	 4 

Time 

Figure 3.17. Nonparametric estimate of S(t) from interval-censored data. 

8 10 
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abandon nonparainetric estimation and use a flexible parametric model, for which 
standard maximum likelihoxl methods apply. Parametric models are considered in 
Chapters 4 mid 5. 

Current status data, intraluceci in Example 3.2.3, involve the most severe form of 
interval censoring. The interval within which Ti is known to lie is either (0, Ci] or 

, co); such observations arise when each individual I is seen only at time Ci, at 
which point it is determined whether failure has already occurred (i.e., Ti < Ci) or 
not (Ti > Ci). By the preceding arguments, the nonparametric m.l.e. of F(t) or SW 
is defined at t = 0, t = oc, and the distinct points si < s2 < < which 
are contained in (C1  C.O. The estimate in other words assigns probabilities /3i 
to the intervals (s J-1 , sil, j = I,...,  k, where so = 0 and sk = co, Interestingly, 
there is a clOsal form for  Ê(t) in this case (e.g., Huang and Wellner 1997, p. 127); 
for j = I , . , . , k — 1 

	

( u 
	u 

P(si) = max min Ede / E n e  , 

	

n5-I u?" )  e=1, 	e=t, 

	

where d,  = E I(7] < 	= se )  and ne = 	E (C1 = se), 

(3.5.18) 

Example 3.5.5. Nelson (1982) and Meeker and Escobar (1998) give data from 
a study on the time T to the initiation (appearance) of cracks in metal turbine wheels. 
The data in Table 3.7 arc a si ghtly modified version of the Nelson data, in which each 
of 432 Wheels was examined once to determine whether a crack had yet appeared. 
Thus, for example;  53 wheels were inspected at time 10 (1000 hours), and four had 

. 7] < 10, and 49 had Ti > 
Table 3.8 shows the nonparametric m.l.e. for F(t), obtained from (3.5.18) 

or, equivalently, maximizat .  on of (3.5,17). The values of  F(t) are shown at the 

Table 3.7. Current Status Data on Time to Crack 
Initiation 

Inspection 

Timed 
Number of 

Wheels Cracked 
Number of Wheels 

Not Cracked 

4 0 39 
10 4 49 
14 2 31 
18 7 66 
2/ 5 25 
26 9 30 
30 9 33 
34 6 7 
38 22 12 
42 21 .19 
46 21 15 

"In 100 hour uni 5. 
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'able 3.8. Nonparametric Estimate of F(i) for Wheel-
Crack Initiation 

Interval 

(si_i, sil /3/ fr(sj ) se(fr(si)) 

(0, 4) .000 0.000 .000 
(4, 10.1 ,070 .070 .027 
(10, 14] .000 .070 .027 
(14,18] .026 .096 .034 
(18,22] .071 .167 .068 
(22,26] .056 .222 .046 
(26, 30] .000 .222 .046 
(30,34] .239 .462 .138 
(34, 38] .120 ,58I .057 
(38,42] .000 .581 .057 
(42,46] .002 .583 .082 
(46, co] .417 1.000 .000 

values si, which represent the distinct endpoints for the intervals of the form (0, Ci] 
or (CI, co) within which values of Ti lie; the estimate is indeterminate between 
successive si. Note that four of the /if equal zero. Standard errors are also shown for 
each fr(si); these are obtained from the asymptotic covariance matrix of the interval 
probabilities pi  based on the likelihood (3.5.17), with pi, p3, p7, and pi() set equal 

Figure 3.18. Nonparametric estimates  of c.d.f. and .95 confidence limits for time to crack i itiation. 
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to O. The asymptotic covariance matrix is determined from standard likelihood the-
ory as  1(Y, where 1(p) = (-(92  log Liapap'). This approach is ad hoc and these 
standard errors and approximate .95 confidence intervals ft(si) ± 1.96se(P(si)) 

for F(si) should be treated cautiously. Figure 3,18 shows the estimates fr(si) and 

approximate .95 confidence , ntervals; the confidence intervals are rather wide. 

In some settings where Cie lifetime T represents the time between two events, 

it may happen that the times of both events are censored. This was referred to as 

double Censoring in Section 2.3.2, where it was noted that the likelihood function 

(2.3.3) depends not just on the distribution of T, but on the distribution of the "initial" 

event  finies. Nonparametric ,Istimation of F(t) is possible in this setting (e.g., J. Sun 

1997) and in more complicated settings that also involve truncation. The information 

about F(i) is generally vet . / limited, however, and fully nonparametric estimates 

often have few points of irrm.ase and are highly variable. A generally preferable 
approach is to use a weakly Parametric model such as described in Section 3,4. The 

piecewise exponential (Section 1.3.8) is easy to use when estimates of F(t) are the 

main priori ty . (e.g., Lindsey mid Ryan 1998). Joly et al. (1998) consider spline-based 

methods. 

3.6 LIFE TABLES 

The life table is one of the c-  iciest and most widely used methods of portraying life-
time data. The cohort life tale discussed here has been employed at least since the 
beginning of the twentieth c ,  mtury; population life tables used by demographers and 
actuaries have been around considerably longer. 

The life table is primarily a device for portraying lifetime data for a sample or 
cohort of individuals; in which lifetimes and censoring times are grouped into inter-

vals. In the situations eonsi lered in this book the cohort is usually assumed to be 
.andom sample from som population, and then the life table also provides esti-

mates of the lifetime distribution in the population, The life table is more complex 
than ordinary interval censoring, since for some individuals it is known that their 

lifetimes were censored, but the censoring time is known only to lie in some interval. 

There is a standard type of life table methodology, which we will describe first. 

This is followed by some urderlying theory and discussion of other approaches. 

3.6.1 Standard Life Uhl! Methods 

Suppose the time axis is divi led into /c+1 intervals If = [ai—j, (21),  f  =  1..... 
with (to = 0, ak = 4, and al +1 = co, where L is an upper limit on observation, The 
definition of the 1 .1 as open on the right and closed on the left is customary in life 
table methodology. For each member of a random sample of n individuals from some 
population, suppose that on 'observes either a lifetime T or a censoring time C. The 
data are, however, grouped so that it is only known in which intervals particular 
individuals died or were censored, and not the exact lifetimes and censoring times. 
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The data therefore consist of the numbers of lifetimes and censoring times falling into 
each of the k +1 intervals. In the case of the last interval, /k-1-1, it can be considered 
that only lifetimes are in the interval, since all individuals not dead by time L must 
die sometime in /k+ i . We now define the following quantities: 

= Number of individuals at risk (i.e., alive and not censored) 
at time ai_i 

Di = Number of deaths in (i.e., number of lifetimes observed to fall into) 
=[aj_i,aj) 

Wi = Number of withdrawals in (i.e., number of censoring.times observed 
to fall into) /i = [ai—i, ai). 

The terms "at risk," "deaths," and "withdrawals" are commonly used with life tables, 
though sometimes other terms are used, such as number of censoring times in  lj  
instead of number of withdrawals in . The number of individuals known to be alive 
at the start of /i is Ni, and thus N1 = n and 

	

NJ = Ni-i - DJ-1 - 	j = 2„ k 1. 

Let the distribution of lifetimes for the population under study have survivor func-
tion SW, and define the following quantities: 

Pi = S(ai) 

Pi = Pr (an individual survives beyond iii  they survive beyond /i_ ) 

Pi 
(16.1) 

Pi_ 

Lb =1- PI 

	

= P7' (an individual dies in  l.j1  they survive beyond 	i)• 

In (3.6.1) j ranges over 1, 	, k +1, with P0 = 1. Note also that Pk+I = 0, tik+1 = 
1, and that 

Pi  = PI P2 	Pi 	j = 	,k 	I. 	 (3.6.2) 

This result, which is analogous to (1.2.8) for discrete lifetime distributions, gives 
the probability of surviving past /i as the product of conditional probabilities of 
surviving past intervals up to /i, and is the basis for life table methodology. Life table 
analysis involves estimating the qi and pi of (3:6.1), and then via (3.62) the Pi. It 
is a precursor of, and the inspiration for, the product-limit estimator of Section 3.2. 
The term life table refers to the format in which the estimates are portrayed. 

The standard procedure is as follows: if a particular interval fi has no withdrawals 
in it (i.e., Wi = 0), then a sensible estimate of qi is 4i = Di /Ni, since qi is the con- 
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ditional probability of an indiv , dual dying in Ij, given that they are alive at the start 
of /J. If', however, the interval has Wi > 0 withdrawals, Di/NJ might be expected 
to .  underestimate co, since solve of the individuals censored  in /./ might have died 
before the end of /J, had they not been censored first. It is therefore desirable to 
make some adjustment for the .:.ensored individuals. The most commonly used pro-
cedure is to estimate ql by the to-called standard life table estimate, which is 

D ,  
= 	 = 	 (3.6.3) 

NJ — Wi/2 

The expression (3.6.3) assume!. that Nj > 0; when N1  = 0, there is no information 
about qi for i >j.  The denotni tator N  = Ni — .51V1 can be thought of as an effec-
tive number of individuals at r'sk for the interval If;  this supposes that, in a sense, 
awlthdrawn individual is at ri k for half the interval. This adjustment is somewhat 
arbitrary, but sensible in many situations, Its appropriateness depends on the failure 
and censoring-time process, of course. In some instances other estimates of qj may 
be preferable. For example, if all withdrawals in /./ occurred right at the end of I» the 
estimate 4/ = DJ/NJ would b3 appropriate, whereas if all withdrawals occurred at 
the beginn.ing of /J, (21 = DJ/( W./ — WO would be appropriate. Still other estimates 
arc useful on certain occasions we return to this point in Section 16.2, The present 
section focuses on the standard life table estimate. 

	

Once estimates ijj and /1 ./ 	1 — 4./ have been calculated, Pj can, by virtue of 
(3.6.2). be estimated by 

	

13) = 	k + 1. 

The hile  table itself is a display of the data and the estimates .1  and /3J. It generally 
includes columns giving, for well interval, the values of  N1,  Dj, W1, j , and  P. 
Additional columns are smell nes included, giving quantities such as Nji , /5/, and, 
occasionally, estimates of other characteristics of the underlying distribution. The 
general format is exemplified in Table 3.9. 

Example 3.6.1. Berkson Pnd Gage (1950) gave data describing the survival 
times from surgdry of a group of 374 patients who underwent operations in connec-
tion with a type of malignant disease. From these data the life table given in Table 3.9 
has been formed. The intervals /./ used in the table were chosen for convenience. 

The estimates 4 i , fii , and Pj are subject to sampling variation. tinder suitable 
assumptions It is possible to drive estimates of their variances. Details related to 
this are discussed in Section 3.6.2; here we present the commonly used estimates, 
wind) Were suggested by Greenwood (1926). In this case 4./PJ/N.; estimates the 
variance of cb (or 13 .1), the /3 ./ ale asymptotically uncorrelated, and an approximation 
to the variance of i3J = 5, /3.; is then derived using Theorem BI (Appendix B), 
giving 
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Table 3.9. Life Table Computed from Data in Berloon and Gage (1950) 

131 

Interval (0 
in Years DJ  wj  Nj  N' i  di Pi fii  

[0, 1) 90 0 374 374. 0.241 0.759 .759 
[1, 2) 76 0 284 284, 0,268 0.732 .556 
[2,3)  51 0 208 208. 0.245 0.755 .420 
[3,4)  25 12 157 151. 0.166 0.834 .350 
[4,5)  20 5 120 117.5 0.170 0.836 .291 
[5,6)  7 9 95 90.5 0.077 0.923 .268 
[6, 7) 4 9 79 74.5 0.054 0,946 .254 
[7,8)  I 3 66 64.5 0.016 0.984 .250 
[8,9)  3 5 62 59.5 0.050 0.950 .237 
[9, 10) 2 5 54 51.5 0.039 0.961 .228 
[10.)  47 0 47 47. 1.000 0.000 0 

.1 	ti 
Var(P1) = 	 . (3.6.4) 

In Example 3.6.1, estimates of quantities such as 5-year survival probabilities would 
be of interest. In the example this is P5 = .291; the estimated variance of P5 given 
by (3.6.4) is .0242 . 

The estimates Pi and variance estimates (3.6.4) have the same form as the 
Kaplan—Meier estimate (3.2.2) and the variance estimate (3.2.3), with N; taking 
the place of ni. Indeed, the Kaplan—Meier (or PL) estimate and (3.2.3) were first 
obtained by considering the life table estimates P1 in the limit where k becomes 
large and interval lengths approach 0. Confidence intervals for Pi = S(a i) call be 
based on the procedures described for S(t) in Section 12.3, the simplest 'approach 
being to treat Zi = — P)/Var(P) 1 /2  as a standard normal pivotal quantity. 

It can be noted that (3.6.4) gives the usual binomial estimate for the variance of 
Pi in the case in which there is no censoring, just as (3.2.3) does. To see this, note 
that when there are no withdrawals, N[ = Ni = nfii_i and Niiii = njj = n . 

Therefore (3.6.4) equals 

pz /3 ?,  
I 
  _ 	\---‘ 

nPi 	n 1=1 	n
i=l 	rl 	P,_1  

(3.6.5) 

which is the usual estimate of Var(i31) =  P1(1  — Pi)/n. 
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In (brining a life table,  th t re is no need to make the intervals of equal length, 
though it may be convenient to do so. The number of intervals used depends on the 
amount of data available and on the aims of the analysis. Certain statistical prop-
erties of the estimates are euh inced when the number of intervals is fairly large, as 
described in the next section. On the other hand, if an easily comprehended summary 
or the data is wanted, it may b sensible to have as few as 8-10 intervals, 

Life tables are primarily tned with large bodies of data or when lifetimes and 
censoring times are available c lily in grouped form. If exact times are available, then 
even with large data sets it is cften preferable to summarize data or estimate survival 
probabilities using PL estimau s, An important point, discussed in the next section, is 
that the validity of life table methods depends on individuals who are censored in an 
interval having the same lifetine distribution over the interval as those who are not, 
This is related to earlier discu isions concerning interval censoring in Section 2.3.1, 
and is a concern in some setth gs. 

Let us now consider some underlying theory for life tables. 

3.6:2 Theory for Life Tat* Methodology 

The theoretical analysis of life methodology requires assumptions about the censor-
ing process. The situation is analogous to that for interval censoring, discussed in 
Section 2.3.1, With life tables, however, the intervals are usually fixed, but censor-
ing times occurring within intervals is the norm. This makes the censoring process 
nonignorable, except in very special circumstances. 

Let us start by considering the special case where all censoring or withdrawals 
occur at the  ends of interval 7i; this also includes the case where there are no 
withdrawals at all, The obse .ved data from a cohort of n individuals consist of 

D1, W1,...,  Dk, MI with Di  4-1 = Nk+I = n D1—  W1  —• • • —  W. This is formally 
the same as the seltip-for right censoring in a discrete-time model, discussed in Sec-
tion 2.2,2, and as in (2.2.9) wc. have the decomposition of Pr (Di , W1, • • • , Dk, Wk) 

fl  Pr(D117-1(D)Pr(W1lD1,1-t(j)), 	 (3.6.6) 
1=1 

where HU) = (D1, W1, 	9j_ , W.1_1), with 7-t (1) empty. To proceed further we 
assume that for j = 1, 

Pr(D /11-(.(j)) 	Binomial(Arj, qi). 	 (3.6,7) 

This is analogous to assumption (2.3.2) plus independence of individuals in the 
case of interval censoring,  nid  it says that the distribution of D1, conditional on 
the deaths and withdrawals up to is precisely as if there were no censoring 
process. The assumption (3.6.7) thus says that the censoring process is independent 
and 'hence. ignorable. It is not reasonable when withdrawals can occur anywhere in 
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= (aj_i,aj], as we discuss below, but is reasonable under the special scheme 
being considered here. 

Maximum likelihood proceeds as for discrete-time models in Section 2.2.2. 
If the terms Pr(WilDj,?-i(j)) do not include information about the parameters 
qj , , qk, then they can be dropped from the likelihood given by (3.6.6) and (3.6.7) 
to give 

(Nij \ Di 	Ni—D i  L(91, 	qk) = 	D. 	(1 q (3.6.8) 

The m.l.e.'s are easily found to be 4.1 =D; INi , and the information matrix / (q) is 
diagonal with entries 

	

1(q)jj = 2  + 	= I, 

The expected information matrix can be obtained by using conditional expectation, 

1(q)jj = EAT 1 E{I(q)jj1Ni) 

E(Ni)  
(3.6.9) 

qi(1 — qi) •  

Either 1(4)'  or I(4) -1  with E(Ni) estimated by Ni gives an estimate of the 
asymptotic covariate matrix for 4 as diagonal with entries 

Asvar( -41) = 4i (1-4-1)  
NJ 	• 	

(3.6.10) 

Since Pi = (1 — q; ) 	(1 — qj), we get 

Asvar(i3i) = /57 	
Ni (1 — 41) 
	 (3.6.11) 

by straightforward application of the formula (B2) in Appendix B. This is the same 
as (3,6.4) in this case. 

	

Asymptotics assume that E(Nf) 	co as n —> co for j = 1, 	, k, Some small- 
sample calculations are possible, given the withdrawal mechanism; we note only that 
E(4i) = qj if Pr(N) > 0) = 1, which follows from the fact that E(ijilNi) = qj 
if Ni > 0, and that the  qj  are uncorrelated. The latter follows from the fact that if 
j > E, 

E[(4e— qe)(4j— qj)] = E{(4 e— qe)E{(4j — qi)I7i(j))1= 0. 

Consider now the general case, where withdrawals may occur throughout the 
intervals /j. In this case, withdrawals operate as a competing risk for death, as 



G (X)IdS(-01 = 
4_1 

a1  
S (X)ICIG (x) I, 

a./ 
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described in Section 1.5, and it is not possible to avoid modeling the withdrawals pro-
cess. The standard life table methods of Section 3.6.1 were developed heuristically, 
so it is of interest to ex nnine their properties under plausible models, In addition, 
modeling may be used to suggest alternative procedures. 

Assume that the underlying distribution of lifetime, T, is continuous with sf., 
SO), and hazard function, h(t). If an individual is alive and uncensored at 	we 
assume that the hazard function for death that operates over 	a JJ is h(t). This 
assumption is unverifiable using only data D1,141.1 (j = 1, 	k) and must be based 
on background knowledge about the censoring process. Even with this assumption, 
(3.6.7) does not hold, however, since an individual may be censored in  I before they 
can be observed to die. lie can view this as a competing failure-modes problem (Sec-
tion 1,5), where there is a mode-specific hazard function, hw(t), for withdrawal, as 
in (1.5,2). We make the additional assumption that the death and censoring processes 
operate independently o /er  I»  given survival to ai _1, so that h(t) is the hazard func-
tion for mode death. 

Breslow and Crowley (1974) investigated the standard life table methodology 
under such a random censorship model. They considered the special case that each 
individual i =  I,. 	o has a random censoring or withdrawal time,  C,, with 

G(1), wiih  T,, 	r,„ CI, . . , C, mutually independent. We will outline their 
results, 

Let rr /2 be the probability an individual is observed to die in /f and let rr!'li  be the 
probability they arc obsttrved to be withdrawn, For example, 

ir = Pr (in individual dies in/tand is observed to do so) 

= Pr( Ti <a. T, < 

G(.01c1S(.01, 

We find in general that for j = I, 

= 

where for generality we use Riemann—Stielties integrals. Since D = 	W1, 
Dk, WAY is multinomial, it follows that as .tz 	co, the distribution of  n. /2 (D — 

WIT) converges to a multivariate normal distribution with mean 0 and covariance 
matrix 	= diag(n ip, 	..... rrti+i ) — irn! (e.g., Bishop et al., 1975, p. 470). The 
standard life table esthn ties 	= Di /(Nf — .51,171) are smooth functions, and hence 
the distribution of ,f(T(ii — qn also converges to a multivariate normal distribution 
with mean 0 and covarance matrix Ea , say, where = 	, .4k) and q* = 

. . . ,  q)  is the prob Ability limit for ei in large samples. Since 
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Di/n  
4. 1  Niln—Wil2n' 

it follows that 

D rr. _ 	 _ W/  

J 	.1 

where rry = E(Niln)=G(ai_i)S(ai_i).Thus 

jai 
= 

ai—i 

1 f ai 
G(x)IdS(x)I) I (G(ai—i)S(ai—i) — 	a j_i  S (x ) I d G (x ) I ) 

(3.6.12) 

In general ql does not equal 

S(ai_i)— 5(a 1 ) 
qi  = 	S(ai_j) 

so the standard life table estimate (3.6.3) is not a consistent estimate of qi and 
=  I j is not a consistent estimate of Pi = pi pi. An important practical 

question is whether the asymptotic bias in the estimates is sufficiently small to render 
this inconsistency relatively harmless. It appears that this is in fact the case in many 
situations, as we shall see momentarily. 

The entries in the asymptotic covariance matrix Eq  of el can be determined by 
a straightforward application of the multivariate delta formula (B 5). Using this (also 
see Problem 3.16), we find that E, is a diagonal matrix, and hence '4 j  and 4e  (,1 t) 
are asymptotically uncorrelated, just as in the model with censoring only at interval 
endpoints. The asymptotic variance of fri(qj —q7) turns out to be 

Asvar [.\5(4i — qp] 	
— qy 2 f(r7 .— n-jw  14)1(751.v  — n- 14' /2)] 

' 	• 	(3.6.13) 
7r7 — rriw  /2 

The life table estimate of Var(iii) used in (3.6.4) is 

(41) 	qj --qi 	
N' 

(3.6.14) 

and is based on the heuristic replacement of Ni with N 	(3.6.10). If qj and c/7 
are not too different, this tends to overestimate the true variance somewhat, since 
N' In converges in probability to the denominator of (3.6.13), and the term in square 
brackets in (3.6.13) is less than unity. If qi is small, the second terms in (3.6.13) and 
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(3.6. 14) are small relative to the first and the agreement between the two formulas is 
improved.  

The limiting distribution  cf  the 	— Pi) is multivariate normal, with means, 
variances,  and covariances that can be determined by (B5). Let f. = 	..... Pk ) and 

= (pih, . „ 	 where P7 = 	pii; the limiting distribution of Vii(15  — P*) 
is multivariate normal with it;ean 0 and a Covariance matrix whose 	e) term is, for 

< e, 

pt;i:  E./ Vati.„/F(iji — q7)] 
	q02 	' 

i=1 
(3.6.15) 

Putting = e, using (3.6.14 , and replacing Pik and qr with f'; and 4i, we get from 
(3.6.15) the estimate 

i 
= 

	

j  1=1 (1 	4i)21V; 

1 	̂ 
= fa 	qi 

1=1 

which is Greenwood's formi Oa (3.6.4). 
Broadly speaking, the standard life table estimates are acceptable under random 

independent censorship provided that censoring is fairly evenly distributed across 
individual intervals and not no heavy. It helps if the intervals are not too wide, It is 
nevertheless wise to remember that estimates of survival probabilities are generally 
biased :  as is the variance esti -nate (3.6.4). Alternative variance estimates can be based 
on (3.6.13), with 41. Ni/n, and Wan estimating q, n'7.  and 77, respectively. 

The guidelines suggestec by the random-censorship model given earlier should 
also be reasonable under broader conditions in which censoring within an interval, 

is independent of lifetimos, conditional on being alive and uncensored at the start 
of Ij. If  censoring  and failure are not more or less uniform over the interval I»  an 
estimator other than (3.6.3) 'nay be preferred; examples are when withdrawals occur. 
mainly at the beginning or the end of an interval. If we have some idea of the shapes 
of the hazard functions for death and censoring in I» then this may provide some 
guidance, following essentiolly the same analysis as for the random censoring model. 
Chapter 9 on competing risl s contains further information. 

BIBLIOGRAPHIC NOTES 

The PL estimate &'(t) of a 3urvivor function from right-censored data was consid-
ered in the actuarial literature in the early 1900s,. but the modern treatment began 
with Kaplan and Meier (1958). They obtained g(t) as a nonparametric m.l.e, and 
gave several fundamental results, Large-sample properties were considered by Efron 
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(1967), Breslow and Crowley (1974), Meier (1975), Peterson (1977), and Winter et 
al. (1978), and discussions of g(t) as an m.l.e,  were given by Aalen and Johansen 
(1978), Johansen (1978), and Scholz (1980). 

The Nelson-Aalen estimate 11(t) was introduced independently by Nelson (1969) 
and Altschuler (1970), the latter for the competing risks setting, Aalen (1976, 
1978a,b) introduced the estimate for intensity functions in Markov counting pro-
cess models and began the modern study of H(t) and  5 (t) by martingale methods. 
Watson and Leadbetter (1964a,b) considered an earlier version of "hazard analysis." 

The early work on  5 (1) and ii(t) provided methods of confidence interval esti-
mation based on asymptotic standard errors; methods based on (3.2.19) have been 
used for a long time, and empirical studies have been carried out by Link (1984), Bie 
et al. (1987), Klein (1991), and others. The idea of using the likelihood ratio statistic 
(3.2.22) to obtain confidence intervals for S(t) is due to Thomas and Grunkemeier 
(1975); see also Matthews (1988). Brookmeyer and Crowley (1982) discussed the 
method of obtaining confidence intervals for quantiles given in Section 3.2.3. Nair 
(1984) and Hollander and Pena (1989) review the construction of confidence bands 
for S(t). Estimation of mean lifetimes from censored data is considered by Yang 
(1977), Susarla and van Ryzin (1980), and Gill (1983). The use of the nonparametric 
bootstrap for right-censored data was introduced by Efron (1981), and this provides 
an alternative way to obtain confidence intervals; Davison and Hinkley (1997, Ch. 
3) and Strawderman and Wells (1997) review this area. Bayesian nonparametric esti-
mation of survivor and cumulative hazard functions has been considered by Susarla 
and van Ryzin (1976), Kalbfleisch (1978), Ferguson and Phadia (1979), and Hjort 
(1990b). 

There is by now a large literature on theory associated with the Kaplan-Meier and 
Nelson-Aalen estimators. Detailed reviews and references are provided by Fleming 
and Harrington (1991) and Andersen et al. (1993). 

Probability plots of censored lifetime data were once widely used for estimation 
as well as for description and model checking; Barnett (1975), Nelson (1982) and 
D'Agostino and Stephens (1986, Ch. 2, p. 11) discuss classic probability plots. Cox 
(1978) and Cleveland (1985) consider some general aspects of graphical methods. 
Gentleman and Crowley (1991) discuss various aspects of graphics with censored 
data. 

Nonparametric estimation of hazard functions using smoothing methodology was 
introduced by Watson and Leadbetter (1964a,b) and Rice and Rosenblatt (1976). 
They used kernel smoothers, and this work was subsequently extended to handle 
censoring by Ramlau-Hansen (1983), Tanner and Wong (1983, 1984, 1987) and Yan-
dell (1983). Andersen et al. (1993, pp. 324-326) survey more recent worlc on kernel 
methods, Penalized maximum likelihood methods featured in Section 3.4 were intro-
duced by Anderson and Senthilselvan (1980); see also O'Sullivan (1988). Regression 
spline methods are considered by Kooperberg and Stone (1992), Abrahamowicz et 
al. (1992), and Rosenberg (1995). Efron (1988) and Muller et al. (1997) look at 
smooth hazard estimates from grouped data. Bacchetti (1990) and Tutz and Pritscher 
(1996) use penalized likelihood and kernel estimation, respectively, for estimation of 
discrete-time hazard functions. 
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Kaplan and Meier (1958) discussed the extension of the PL estimate to handle 
left truncation, and Lynden-Bell (1971) discussed right-truncation. Theoretical prop-
erties were studied subsequently by Woodroofe (1.985), Wang et al, (1986), and Kei-
ding and Gill (1990). Tsai (19(.1)) and Kalbfleisch and Lawless (1991) discussed tests 
for the independent truncation assumption. Efron and Petrosian (1999) consider data 
that are simultaneously left and right truncated. Nonparametric estimation of the 
survival function from interval-censored data was considered by Peto (1973) and 
Tunibull (1976), who consick red both truncation and interval censoring (see also 
Frydrnan 1994). Groeneboom and Wellner (1992), Gentleman and Geyer (1994), 
Biihning et al. (1996), and Wellner and Zhan (1997) discuss computational pro-
cedures and properties of the nonparametric estimator. Huang and Wellner (1997) 
review the area, and Lindsey and Ryan (1998) discuss practical matters, including 
regression modeling. The special case of current-status data has received consid-
erable additional attention. Jewell and Shiboski (1990), Diamond and McDonald 
((992), Keitling (1991), and Croeneboom and Warier (1992) discuss examples and 
numerous results; Jewell and van der Laon (1997) review this topic. Problems involv-
ing double censoring have been considered by J. Sun (1995, 1997), Jewell and van 
der Loan (1997), and others. Alternatives to strict nonparametric estimation are often 
attractive with interval censori - ig. Approaches such as those mentioned in Section 3.4 
have been considered by Tanner and Wong (1987), Bacchetti (1990), Keiding et 
al, ((996)„loly et al. (1998), Lindsey and Ryan (1998), Kooperberg and Clarkson 
( 1997). Betensky et al. (1999) and Duchesne and Stafford (2002). 

In some applications censoring tinies may be missing for some or all individuals 
whose lifetimes are censored, 'n which case there may also be supplementary follow-
up of certain individuals. Suzvki (1985ab, 1995), Kalbfleisch and Lawless (1988ab), 
Hu and Lawless (1996), and Ho et al, (1998) discuss this area. See also Problem 3.11. 

The life table methods of 3ection 3.6.1 date from the 1600s, with considerable 
theoretical development in the 1900s (see, e.g., Namboodiri and Suchindran 1987). 
The variance estimate (3.6,4) for estimators of survival was given by Greenwood 
((926), Theoretical studies ini:lude those of Littell (1952), Kuzma (1967), Breslow 
and Crowley ((974). and Drolotte (1975). Alternative estimators, designed to reflect 
specific types of withdrawal pitterns within life table intervals have been considered 
by Sachet .  (1956), Elveback (1958), Chiang (1960a,b), and many others. Compar-
isons of methods . (e,g„ Eland:-Johnson 1977, Johnson 1977) suggest there is little 
difference among the various estimators unless withdrawals are rather heavy. Elandt-
Johnson and Johnson (1980) provide a detailed treatment and references on life table 
methodology, 

COMPUTATIONAL NOTES 

Several packages provide inferences and plots based on the Kaplan—Meier and 
Nelson—Aalen estimates; in S , Plus see function survfit and in SAS, the LIFETEST 
procedure. S-Plus function kaplanMeier handles interval-censored data, though the 
S-Plus 2000 version occasionally returns a point that is not the m.l.e.; this occurs 



PROBLEMS AND SUPPLEMENTS 	 139 

with the data in Example 3.5.5, Plots of ,'s (t) are also portrayed as step functions, 
without an indication that the estimate is undefined over certain intervals. Left trun-
cation is not handled by the S-Plus 2000 functions mentioned, but function coxph can 
be coerced to handle this. Themeau and Grambsch (2000, Ch. 2 and Appendix A) 
and Venables and Ripley (1999, Ch. 12) provide useful information on S-Plus capa-
bilities; the former also discusses survival methods in SAS, Collett (1994, Ch. 11) 
provides a review of software for survival analysis. 

Software for obtaining smooth estimates of hazard or density functions from cen-
sored data is available on Web sites such as statlib. In addition, S-Plus  has  a variety 
of smoothers and spline functions that can be adapted as in Section 3.4. 

PROBLEMS AND SUPPLEMENTS 

3.1 The data below are remission times, in weeks, for a group of 30 patients with 
leukemia who received similar treatment. Asterisks denote censoring times. 

1, 1, 2, 4, 4, 6, 6, 6, 7, 8, 9, 9, 10, 12, 13, 14, 18, 19, 24, 26, 29, 31*, 42, 45*, 

50*, 57, 60, 71*, 85*, 91. 

(a) Obtain and plot the Kaplan-Meier estimate S'(t) of the survivor function 
for remission time. 

(b) Obtain approximate .95 confidence intervals for the median remission time 
and for the probability that remission lasts over 26 weeks. 

(c) Plot log(- log .3. (t)) and  log  »(t) on the same graph, where /'. (t) is the 
Nelson-Aalen estimate. Is there much difference? 

(Section 3,2) 

3.2 The data below show survival times (in months) of patients with Hodgkin's dis-
ease who were treated with nitrogen mustards (Bartolucci and Dickey, 1977). 
Group A patients received little or no prior therapy, whereas Group B patients 
received heavy prior therapy. Starred observations are censoring times, 

Group A 	1.25, 1.41, 4.98, 5.25, 5.38, 6.92, 8,89, 10.98, 11.18, 13.11, 13.21, 
16.33, 19.77, 21.08, 21.84*, 22.07, 31.38*, 32.62*, 37.18*, 42.92, 

Group B 	1,05, 2,92, 3,61, 4,20, 4.49, 6.72, 7.31, 9.08, 9,11,  14.49*,  16.85, 
18.82*, 26.59*, 30.26*, 41.34* 

(a) Obtain and compare Kaplan-Meier estimates for the two groups. Does 
there appear to be a difference in the 1-year survival probability for the 
two types of patients? Give confidence limits for S(I) and for the median 
survival time 1,50 for each group. 

(b) Use plots of the Nelson-Aalen estimate fi(t) to examine and compare the 
two life distributions, 
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(c) Do any parametric models whereby one might compare the two distribu-
tions suggest themselves? 

(Sections 3.2, 3.3) 

3.3 Precision of nonpamntetri estimation. Consider the random censorship model 
and the asymptotic variance formula (3.2.33). Use this to examine the asymp-
totic variance v„(t) 2  of .1i46. (t) — S(1))/S(t)J when S(t) = exp( —t) and the 
censoring time C is uniform on (1, 3). Plot  v(t) vs. t for 0 < t < 3. 

(Section 3,2) 

3.4 Consider the data given in Example 1.1.5 of Chapter 1 concerning the failure 
times of electrical insulathn specimens subjected to a constant voltage stress. 
Make Weibull probability plots of the data for the experiments run at 28, 30, 
and 32 kV, respectively. 

(a) Does the suggestion o a Weibull failure time distribution for each situation 
with the shape paratmters, but not the scale parameters, having the same 
value in the three cases seem plausible? 

(b) Compute graphical estimates of parameters in the Weibull models and 
compare the estimated s.f, from these with the empirical s.f.'s (PL esti-
mates). 

(Section 3.3) 

3.5 Pike (1966) gave results of a laboratory experiment in which 19 female rats 
were painted with the ca-cinogen DMBA. The number of days T until the 
appearance of a carcinotr a was of interest, and the data gave the following 
limes (asterisks denote cettsoring limes): 

143, 164, 188, 188, 190, 192, 206, 209, 213, 216, 220, 227, 230, 234, 246, 

265, 304, 216*, 244* 

(a) it was thought that circinomas could not appear before some threshold' 
tinte y > 0, so a Weibull model for T' 	T — y was considered. Give 
two Weibull probabiliv plots, using (1) the raw data (t- values),  and (2) the 
values t' = r — 100. Ts there any strong indicatitai that T —100 is closer to 
Weibuil-d1Stributed than is T? 

(b) Obtain a nonparametric .95 confidence interval fen.  the median time to car-
cinoma, &50. Commelt on the advantages and disadvantages of this esti-
mate over one based tin a Weibull model. 

(Sections 3.2, 3.3) 

3.6 Mean lifetime, Consider the mean lifetime /.4 restricted to r, defined by 
(3.2.37) in Section 3.2.4,.vnd the associated estimate 

(a) Using the. results in &talon 3.2.4, show heuristically that 	— p.,) is 
asymptotically normal with variance given by (3.2,38). 
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(b) Use the result of part (a) to motivate the variance estimate 

Azd 
Var(.2,) = 

n • (n • — d •)' 
Pli<r  J J 

where 

= (t1+1 — 1i)8Vj+t) + (t/-1-2 — t]-1-1) ,§(ti+2) + 	+ (r — 

with lm  being the largest observed lifetime less than or  equal to r. 

(c) In the special case in which there is no censoring possible, let r --> oc and 
show that A. = fico  reduces to ï  = E ti/ii and that (3.2.38) reduces to 
o2  = Var(ti), where it is assumed that Var(ti) exists, 

(Section 3.2; Kaplan and Meier, 1958) 

3.7 Mean residual lifetime. Recall the definition of the mean residual life function 
rn(t), given in Problem 1.1, Its estimation is of interest in areas such as demog-
raphy and insurance. 

(a) Show that if E(T) = m(0) exists, then it equals foce  S(1) di,  and that ni(t) 
exists for t > 0 if m(0) exists. 

(b) Assume that S(t) = 0 for t > M, where M is some upper limit on lifetime. 
Describe a procedure for nonparametric estimation of  m(i), for a specified 
value t > O. Use the results of Problem 3,6 and Section 3.2.4 to provide 
confidence intervals. For convenience, assume that if the largest time in 
your sample is a censoring time, then it is always greater than M. 

(Section 3.2) 

3.8 Pieceivise exponential models. Consider the piecewise exponential model spec-
ified by (1.3.25) in Section 1.3.8. 

(a) Write down the likelihood function for the parameters Xi 	, X,, based 
on a sample of failure times and censoring times obtained under an inde-
pendent censoring mechanism. Estimate h(t) and S(t), showing that the 
estimate of A, is given by (3.4.3). What does the estimate of S(t) tend to 
as m increases and the laj — ai_il in (1.3.25) become small? 

(b) Apply this to the data in Problem 3.1 using intervals of length Sin (1.3.25), 
except with the last interval being [80,  oc). Compare S. (t) graphically with 
the Kaplan—Meier estimate. Repeat the procedure using intervals of length 
1 up to t = 80. 

(Sections 3.2, 14) 

3.9 Let X(i) be the ith-order statistic in a random sample of size n from a continu-
ous distribution with p.d.f. f (x) and let x p  denote the pth quantile of the dis-
tribution (0 < p < 1). Let n co and i oc in such a way that i / n p. 
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Show that in large sample; Xo) can be considered to be approximately nor-

mally distributed with mean x 1,  and variance 

p(1 — p)/ [IV (x p ) 2] 

What are the implications )f this with regard to variation in classic probability 

plots? 
(Section 3.3, Appendix B) 

3.10 For the pulmonary exacer)ation data of Example 3.2.4, apply the methods of 
Section 3.4 to obtain nonparametric estimates of the hazard functions for the 

two treatment groups, ignoring the lev covariate. See Appendix G to obtain the 

data.. 
(Section 3.4) 

3.11 Ailissing censoring times. 'n some applications the censoring times Ci for cen-

sored units are missing. That is, we observe Ti =  ii if 8i = 1, but, tt(= CO is 
missing if Si = O. Suppot:e that the independent random censorship model of 

Section 2.2,Ib holds, so that the likelihood function takes the form 

II  

(3.7.1) 
1=i 

(a) Assuming that the s f. G(c) for the Ci is known, consider the discrete- 

me framework whe -e T and C can take on values 1, 2, 3, .... Let cmax  = 
sup {c G(c) > 0) be finite. Show that (3.7.1) is maximized for If (t), t = 
I , 	,f (t) >. 0) by 

• (t):= 	 nG(t)' 
(3.7.2) 

where d,  = E 	= t,(1; = 1). This also maximizes (3.7.1) subject to 
(1) .5 I, if 22,ci4 1(1) :5_ 1 . 

(b) Motivate (3,7,2) as 1. moment estimator by considering E(dr ). Obtain the 
variance of P0). . ("(1) 	f0)  by noting that (d1, 	, clt ) follows 

multi nomial distriltution, 

(Section 3.2, Hu et al. 1998) 

3.12 For the left-truncated data in Table 3.5, estimate and plot the conditional sur-
vivor function SUIT > '.6.2) by chopping  the first pair (u , ti) = (19,6, 24.5) 
from the data. 

(Section 3.5,1) 

3.13 Finkelstein (1986) and Undsey and Ryan (1998) discussed interVal-censored 
data from a study of patimis with breast cancer. The response variable of inter-
est was the time, T. to c osmetic deterioration of the breast, and whether there 
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Table 3.10. Interval Censored Times to Cosmetic Deterioration 

143 

Radiotherapy Radiotherapy and Chemotherapy 

(45, oo] (25, 37] (37, oo] (8,12] (0, 51 (30, 34] 
(6,10] . (46,00] (0,5] (0,22] (5,81 (13,00] 
(0,7] (26,40] (18,00] (24,31] (12,20] (10,17] 
(46, oo] (46,  oc]  (24, co] (17, 27) (11,  oc]  (8, 21] 
(46, co] (27, 34] (36, co] (17, 23] (33, 40] (4, 9] 
(7, 16]  (36,44] (5, 11]  (24,30] (31, oc] (11, oc] 
(17, oc] (46,  oc]  (19,35] (16,24] (13,39] (14,19] 
(7, 14] (36,48] (17, 25] (13,  oc]  (19, 321 (4, 8] 
(37, 44] (37, oc]  (24, co] (11, 13] (34, co] (34, col 
(0,8] (40, co] (32, co] (16, 20] (13,  oc]  (30, 36] 
(4,11]  (17,25] (33, co] (18,25] (16,241 (18,24] 
(15,  oc]  (46,  oc]  (19, 26] (17, 261 (35,  oc]  (16,60) 
(11, 15] (11, 18] (37,  oc]  (32,  oc]  (15, 22] (35, 391 
(22,  oc]  (38,00] (34, co] (23,  oc]  (11, 17] (21,  oc)  
(46, co] (5, 12] (36, co]  (44,48] (22, 32] (11, 201 
(46,  oc]  (14, 17] (10, 35] (48, co] 

was a difference in the distribution of T for women who received radiation 
therapy alone versus a combination of radiation and chemotherapy. The data 
are shown in Table 3.10 for the two groups. 

Obtain and compare nonparametric estimates of the survivor function S(t) for 
each group. 

(Section 3.5.3) 

3.14 The following data are survival times for 121 breast cancer patients treated 
over the period 1929-1938, quoted in Boag (1949), Times are in months, and 
asterisks denote censoring times. 

0.3 0.3* 4.0* 5.0 5,6 6.2 6.3 6,6 6.8 
7.4* 7.5 8.4 8,4 10.3 11.0 11.8 12,2 12.3 

13.5 14.4 14.4 14.8 15.5* 15.7 16.2 16.3 16.5 
16.8 17.2 17,3 17.5 17.9 19.8 20,4 20.9 21.0 
21,0 21,1 23.0 23.4* 23.6 24,0 24,0 27.9 28.2 
29.1 30 31 31 32 35 35 37* 37* 
37* 38 38* 38* 39* 39* 40 40* 40* 
41 41 41* 42 43* 43* 43* 44 45* 
45* 46* 46* 47* 48 49* 51 51  51* 
52 54 55* 56 57* 58* 59* 60 60' 
60* 61* 62* 65* 65* 67* 67* 68* 69* 
78 80 83* 88* 89 90 93* 96* 103'" 

105* 109* 109* 111* 115* 117* 125* 126 127'" 
129* 129* 139* 154* 
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(a) Cold.'late the Kaplan—Meier estimate of the survivor function. Estimate l-

and 5-year survival probabilities and give a standard error for these esti-

mates. 

(b) Group the data into a lita table with 1-year intervals. Compare the 1- and 
5-year survival probability estimates with those obtained in part (a). 

(c) In the data given by Borg the individuals with censored survival times are 
actually known to fall into one of three groups: 

(i) Individuals free from signs or symptoms of breast cancer, but who 
died from some otl -  er cause. 

(ii) Individuals free from signs or symptoms of breast cancer and still 

alive at the time tilt: data were collected. 

(iii) Individuals still alive at the time the data were collected, but who were 
suffering a persistence or recurrence of the cancer that was unlikely 

to yield to further t .eatment. 

How ;night you take thi ; information into account in analyzing the data? 

(Section 3.2, 3.6) 

3.15 Sometimes it is desired to ':stimate the hazard function from life table data. 
With the notation of Section  3.6.1, let  tm j = (a 	-I- )/2 be the midpoint of 
the ,jth interval and Ai=ai—  at 	width (j = 1, 	, k), Two estimates 

that have been suggested for 1/ (tm..i)  are 

	

6f(1 	fif) 

— log r3f 
f12(tp 	— 	 

(Kimball 1960: Gehan 1969) 

(Sadler 1956). 

(a) Motivate these choices of estimates, Compare the estimates by expanding 
them in powers of 

(b) Give variance estimate; for the two estimates. 

(e) Suggest estimates and Issociated variance estimates for the density func-
tion f (60) ut  t.= tn(i. 

(Section 3.6) 

3.16 Using (B2) and (B5) of Apgendix B, derive expressions (3.6.13) for the asymp-
totic variance of the .1(éjf — rt1) and show that they are asymptotically uncor-
related. 

(Section 3.6) 

3.17 Examine the asymptotic birs in the standard life table estimate of a) by consid-
ering the random-censoring model leading to (3.6.12) when the lifetime distri-
bution is exponential and  tie censoring time distribution is (I) exponential and 

. (2) uniform over laf_i , af), respectively. 

(Section 3, ) 
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3.18 Thompson (1977) suggested a pseudolilcelihood function for the qi and pi for 
the case of life table data. With the notation of Section 3.6, this is 

D 
L(q) = 	q 

i 
 (1 — qi) Ni —DJ — •5w.1  

1=1 

(a) Show that maximization of L(q) gives the standard life table estimates 
(3.6.3). 

(b) Show that L(q) can be written in the form 

k+1 

n[S(ai-1) — S(ai)] Di (3.7.4) 
1=1 

where Wk+i = Wk+2 = O. 
(c) Compare (3.7.4) and the likelihood function based on an independent ran-

dom censorship model as in Section 3.6.2, where the survivor function for 
censoring times is linear over (0, ak), with the censoring survival probabil-
ity G ((tic ) much larger than S(ak). 

(Section 3.6) 

(3.7.3) 





CHAPTER 4 

Inference Procedures for 
Parametric Models 

Likelihood methods for lifetime data were introduced in Chapter 2, and some pro-
cedures are summarized in Appendix C. This chapter provides detailed illustrations 
of the methodology, while dealing with several important lifetime distributions and 
different types of data. In most cases exact distribution theory for testing and esti-
mation is not available, and we resort to approximations, based mainly on maximum 
likelihood large-sample theory. 

The exponential distribution occupies an important historical position in lifetime 
distribution work, and Section 4.1 is devoted to it. Exact distributional results can be 
obtained for certain tests and estimation procedures, and these are presented along 
with large-sample methods. Section 4,2 provides shorter treatments of the gamma, 
inverse Gaussian, and other models. Sections 4.3 to 4.5 consider more complex set-
tings involving interval censoring, threshold parameters, and mixture models. In 
addition to giving procedures for specific models, we show how parametric likeli-
hood methods can be applied generally. 

The most widely used parametric lifetime distribution models are those of log-
location-scale type (Section 1.3.6). Likelihood methods for log-location-scale mod-
els, including the Weibull, log-normal and log-logistic distributions, are discussed in 
Chapter 5. 

4.1 INFERENCE PROCEDURES FOR EXPONENTIAL DISTRIBUTIONS 

The exponential distribution was the first lifetime model for which statistical meth-
ods were extensively developed. The existence of exact tests and confidence intervals 
for certain types of life test experiments was a major factor in the popularity of the 
model. It is recognized, however, that the applicability of the exponential distribution 
is limited to settings where the hazard function is close to constant, and that proce-
dures based on the exponential tend to be nonrobust. It is thus important that the 
adequacy of the model in any setting be checked. The following three subsections 
discuss estimation and hypothesis tests, and Section 4,1,4 considers the planning of 
studies. Goodness-of-fit tests are discussed in Chapter 10. 

147 
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4.1.1 Methods Based on Large Sample Theory 

We consider the exponential dish ibution in the form (1.3.3) with density function 

J . 1 1; 0) = 07 1  exp(—t/0). Linde' right-censoring processes that satisfy the condi-

tions of Section 2.2.2, the log-likolihood function obtained from the general likeli-

hood (2.2.3). is 

11 

e(())  r  —r log 0 — — 
e i=1 

where r = E Si is the number of uncensored lifetimes and ti is a lifetime or censor-

ing time. The likelihood equation de/d0 = 0 gives 

(4,1.2) 
i=1 

assuming r > 0. If r = 0, the log 'likelihood £ (9)  is bounded but monotone increas-

ing as 0 co, so does not yield a finite maximum likelihood estimate (m.l.e.). 
hi general both E I; and r are random variables, and the exact distributions  of 

6 and other quantities considered in the following paragraphs are mathematically 

intractable. 
Maximum likelihood methodo!ogy is easily applied. As discussed in Example 2.5,1, 

the observed information —d2 ( /c'0 2  is 

—r 2 n  
1 (P)  = -67  + 67E4 

i =1 
(4.1.3) 

and / (i.j) = r/(5 2 , Several procedures can be used to make inferences about 0 (see 

Appendix C). The most straightforward is based on the asymptotic normal approxi-

mation 

Z — 	
ô
.

— 

1(0) -1 /2  
— N(0, 1), 	 (4.1.4) 

taking Z as a pivotal quantity. For example, this gives Ô ± 1.96/ (6) -1 / 2  as an approx-
imate .95 confidence interval for 0. Asymptotic likelihood theory indicates that 1 (9) 
in (4,1,4) can be replaced with (0), with the expected information 1(0) given by 
(2.5.6), or with 1(6). As discussed in Example 2.5.1, calculation of 1(0) requires an 
explicit model for the censoring process, and can be complicated. The use of 1 ( 9) 
or 1(0) in (4.1.4) also makes the inversion of intervals such as —1.96 < Z < 1,96 
to get confidence Intervals for 0 more complicated, so in practice (4.1.4) is typically 
used. 

The approximation (4,1.4) is not very accurate in small samples. This is associ-
ated with the fact that g(û) tends to be asymmetric and not closely approximable by 

(4.1,1) 
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a quadratic when the number of uncensored observations is small. Alternative pro-
cedures that are more accurate are available; we mention two approaches that can be 
recommended. 

Method 2: Sprott (1973) and others have shown that if the parameterization 0 = 
0 -1 /3  is used, the log-likelihood ei (0) = e(0- 3 ) is typically close to quadratic, and 
the approximation 

—  Z — 	 N(0, 1) 	 (4.1.5) 

is quite accurate, even for small samples. It is easily found that /I () = 9r/ 2 . 
Confidence intervals or tests for 0 can be based on (4.1.5), and converted to intervals 
or tests for  6 as desired. 

Method 3: The likelihood ratio statistic 

A (9)  = 2e(d) — 209) 	 (4.1.6) 

is approximately 41  in large-samples when 0 is the true parameter value, and can be 
used as an approximate pivotal quantity for testing or estimation of O. Approximate 
two-sided a confidence intervals are obtained as the set of  6 values for which A (0) < 

2  One-sided intervals or tests are usually obtained by treating 

Z = [sign(9 — 0)]A(0) 112  

as N(0, 1), as described in Appendix C. Refinements that improve the accuracy of 
these methods are available, but do not make much difference except in very small 
samples. 

Tests or confidence intervals for monotone functions of  6 such as S(t; 0) = 
exp(—t16) or h(t; 0) =  6 — I are easily obtained. For example, if Data = ((ti, 8e), i = 
1, , n) and 

L(Data)  <6  < U(Data) 

is (approximately) an a confidence interval for 0, then 

expr—to/L(Data)] S(t; 0) 5_ exp[—to/ U(Data)] 

is (approximately) an a confidence interval for S(t; 0), 

Example 4.1.1. (Example 1.1.6 revisited). The data in Example 1.1.6 con-
cerned the lifetimes of 10 pieces of equipment. The observation scheme gives the 
following values for ti and Si (i = 1, , 10): 

ti 2 72 51 60 33 27 14 24 4 21 
31 : 1 0 1 0 1 1  1 1 1 0 
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We find r = 7,  Ô  = 44.0 (days), / (0) = 7/44.02 , and  1(Ô ) -112  = 16,6. Using 

(4,1.4), we obtain a two-sided .95 confidence interval for 0 as 6 ± 1.96 1 (0) -1 /2 , or 

11.5 < 0 < 76.5. 
The sample size is small ald it is illustrative to compare this result with ones 

based on alternative methods 2 and 3, as follows. 

2. We find 0 = 	/3  = 0.2833, 11(0) = 9,/2  = 784.96, and /1(0) -1 /2  = 
0.0357. An approximate .95 confidence interval for 0 is .0 ± 1.9611(0) -1 /2 , 
which gives .2133 < 	.3533. Converting this to an interval for 0 = 
we get 22.7 < < 103.0. 

3. The likelihood ratio stati ;tic (4.1.6) reduces here to 

A(') = 2r {(0/0) — 1 — log(0/0)), 

Since P,' (x 	< 3,84) 	.95, a two-sided approximate .95 confidence interval 

is found, as the set of 0 values giving A(0) < 3,84. This yields 22,8 < 0 < 

102,5. 

Methods 2 and 3  agite  we II, but the interval based on (4.1.4) is rather differ-

ent. Figure 4.1 shows confidence intervals, and the degree of agreement, for the 
three methods. Two-sided confidence intervals for each method are based on find-
ing 0 values that satisfy some thing of the form W(0) < xh a . The 147 (0)'s are, 
respectively, 

Figure 4.1. Likelihood n tio statistic W3(û)  and approximations WI (9), W2 (0), 
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1411 (9). -e) 2 1 (Ô ) for (4.1.4) 

W2 (9) = ( - 1 13  -0 -113 ) 2 11( -113 ) for (4.1.5) 

W3(0) = 2E(0') -  2e(0) for (4.1.6). 

Figure 4.1 shows Wi (0) for j = 1, 2, 3. The likelihood ratio statistic W3(0) is very 
asymmetric; the quadratic W1 (0) does not approximate it well, but W2(0) does. As 
a result, confidence intervals based on methods 2 and 3 will agree closely, but differ 
from those based on (4.1.4). 

Plots like Figure 4.1 are useful for comparing alternative large-sample methods. 
They also show confidence intervals with any given confidence coefficient; these 
are sometimes referred to as confidence distributions. For example, two-sided .90, 
.95, and .99 intervals consist of  6 satisfying W(0)  < 2.706,  W(6)  < 1841, and 
W(6)  < 6.635, respectively. 

Example 4.1.2. A Small Simulation Study. To indicate the extent to which 
the large-sample methods give appropriate coverage properties in small samples, 
some results of a small simulation study are presented in Table 4.1. Confidence 
intervals were obtained using (4,1.4), (4,1.5), and (4,1.6) in several censored data 
settings; results are shown for lower a confidence limits on  6 .  Two sample sizes 
n = 10 and 20, and three single Type 1 censoring patterns are represented. In each 
case all individuals had the same censoring time C, with C selected to give values 
Q' = exp(-C/0) of .10, .25, and .50. Thus, Q' is the effective censoring fraction, 
since each lifetime has a probability Q' of being censored. 

There were 2000 samples generated for each (Q; n) combination, The simulations 
used 6  = 1, but the results shown are valid whatever the value of 0, since censoring 
times are chosen to be fixed multiples of  6 .  Table 4.1 shows the observed coverage 
proportions for confidence intervals with nominal coverage probabilities .90 and .95. 
The methods based on (4.1.5) and (4.1.6) give close to the nominal coverage, espe-
cially for n = 20, but (4.1.4) produces confidence limits that are too low, yielding 
coverage probabilities that are too high. 

Table 4.1. Proportion of the Time (out of 2000 trials) That Approximate One-Sided .90, 
.95 Confidence Intervals Contained 0 

Method 

Q' = .10 Q ' = .25 Q' = .50 

.90 	.95 .90 .95 .90 .95 

10 

20 

(4.1.4) 
(4.1.5) 
(4.1.6) 
(4.1.4) 
(4.1.5) 
(4.1.6) 

	

.928 	1.000 

	

.913 	.960 

	

.910 	.960 

	

.952 	.993 

	

.908 	.951 

	

.907 	.950 

.996 

.908 

.905 

.961 
.903 
.901 

1.000 
.951 
.944 
.995 
.951 
.949 

1.000 
.893 
.891 
.981 
.892 
.893 

1.000 
.950 
.945 

1.000 
,949 
.949 
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The approximate methods bas'xf on (4.1.5) and (4,1.0 are satisfactory for the sit-
uations represented in the table. Nimulations for problems in which censoring times 
are unequal gave similarly good tesults. When the methods are used to obtain upper 

confidence limits, coverage probnbilities are not quite as close to the nominal values 
as l'or the lower limits, but are still broadly acceptable. In many applications lower 

confidence limits are called for, so it is important that these turn out to be particularly 
accurate. 

4.1.2 Exact Methods for Certiin Life Tests 

For certain special types of life te its it:is possible to obtain exact confidence intervals 

and hypothesis tests; these are described briefly. 

4.1.2.1 Type 2 Censored Test Flans 
In a Type 2 censored plan (Section  2.2.1.3)  the life test is terminated when the rth 
failure occurs, where r (I < r < n.) is prespecified. The data consist of the r smallest 

order statistics 1(1 )  « to.), and under an exponential model the joint distribution 
of to 	. 	to.) is, from (2.2,6), 

n! n 	e —tio /e 

the same form 

t e --10.0 ir 

as (4.1.1), with 

(4.1,7) 

ti replaced by 

(n — r)! 

The log-likelihood function is of 

T = E1(;)  + (n — r)1(, .), 
i=1 

and 5= T/r, In life tests T is sometimes called the "total time on test" statistic, 
since it is the total of the obsei ved lifetimes or censoring times across the ri test 
units. As we now show, the distribution of T is easily found. Make the change of 
variables 

• = 
Wj = 	— -1- I )(i(t) — 1(1-1)) 

	
(4.1.8) 

Since 

T = E t(I) (n —  1 )1(r) = E 
i= 1 

and the Jacobian is 

acw , 	Wr) 	n! 
auo , ..... too - (n — r)!' 
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the joint probability density function (p.d.f.) of WI, 	Wr  is found from (4.1.7) to 
be 

1 	r 

or 
i=1 

We have proved the following result: 

"WI > O. 

THEOREM 4,1.1. Let t(i)„ t(r) be the first r ordered observations of a ran-
dom sample of size n from the exponential distribution (1,3.3). Then the quantities 
WI .....Wr  given by (4.1,8) are independent and identically distributed, also with 
p,d.f, (1.3.3). 

Since T = 	Wi, we also immediately have from Section 1.3.5 the following 
result. 

COROLLARY 4.1.1. Under the conditions of Theorem 4.1.1, 

T = Et(0 + (n — r)t(r) 
i=1 

has a distribution given by 2T 1 9 42r) . 

Tests and confidence intervals for 0 are easily obtained using the pivotal quantity 
2T19. For example, to obtain a two-sided 1 — a confidence interval for 0, we take 

Pr (4 	
2 

20 	
2T 

	

,a/2 5 -71- 	X(20,1—a/2) = 1  

where 420.p  is the pth quantile of 420 . Then 

2T 	 2T 
	< < 	 

	

X(20,1—ce/2 	420,42 

is the 1 — a confidence interval for O. 

Example 4.1.3. The first 8 observations in a random sample of 12 lifetimes from 
an assumed exponential distribution are, in hours 

31, 58, 157, 185, 300, 470, 497, 673. 

Hence n = 12, r = 8, and T = 5063. The m.l.e. for  û is 0 = 5063/8 = 632.9 
hours. To obtain, for example, a two-sided .95 confidence interval for 0, we find 
from the x 2  distribution that Pr (6.91 <  2T/0  < 28.8) = Pr (6.91 < 416)  < 
28.8) = .95, which gives (2T/28.8, 2T/6.91) as a .95 confidence interval for  O.  For 
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the sample observed, T = 5063, and the realized .95 confidence interval for 0 is 
therefore (351.6, 1465,4). 

4.1.2,2 Testing with  Replacement 
When life tests of equipment are conducted using a physical layout that can accom-
modate some maximum number of items, it may be feasible to replace failed items 
immediately with new ones. This is referred to as testing with replacement, and the 
test is typically terminated after a fixed length of time (Type 1) or a fixed number of 
failures (Type 2). 

For either Type 1 or Type 2 testing with replacement, the censoring mechanism 
satisfies the conditions of Section 2.2.2, and the log-likelihood function under an 
exponential lifetime distributiol for the units is given by (4.1.1). However, direct 
derivations of L(0) indicate that  exact inference procedures are available. The key 
point is that the obServed  failure times in the experiment are the times of occurrence 
of events in a homogeneous Poixson process with intensity n10 (e.g., Cox and Lewis 
1966,   Ch. 2). With Type I testing the total time on test, T = E ti, is fixed at the value 
n  L.  where Lo is the length of the test, and the number of failures r = E (5; has a 
Poisson distribution with mean equal to nL0/9. The Poisson probability function 
gives the likelihood 

L ( ) e-n 1409 (11L0My  

r ! 

OC  

which is of the general form arising from (2.2.3). Confidence intervals or tests for 
0 can in this case be obtained using standard methods for the Poisson distribution 
(e.g., Cox and Lewis 1966, Ch. 2). Since r, or equivalently, 8  = TIr is a minimal 
sufficient statistic for 0, We can formulate procedures in terms of  8 if we wish. 

With Type 2 testing the number of failures, r, is fixed and the duration, Lo, of the 
test is a random variable. Became Lo is the time to the rth event in a Poisson process 
with intensity n1O, we have n L0/9 Ga(r) or, equivalently, 2nLo/0 = 2418 — 
x (2, ri  (Cox and Lewis 1966), Th!. gamma p.d.f. (1.3.19) produces a log-likelihood of 

the form (4.1.1), Lo (or l'9. ) is a . ninimal sufficient statistic, and confidence intervals 
or tests can be based on the pivotal quantity 2r6/61 : The procedures are formally the 
same as for the case of Type 2 testing without replacement (i.e., the case of ordinary 
Type 2 censoring), discussed ewlier. 

4.1.3 Comparison of Distributions 

The comparison of two or mote lifetime distributions is often an important goal. 
When the distributions are all exponential, this amounts to a comparison of their 
means. Tests and confidence int.!.rvals for comparison are considered in this section, 
based on independent, samples fmm the distributions in question. 
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4.1.3.1 Likelihood Ratio Tests 
The standard m-sample problem is to test equality of m distributions, which here is 
equivalent to testing the hypothesis 

Ho : 01 = = 	= ern• 

Based on independent censored samples from the m distributions, the combined like-
lihood function is 

L(01, 	, 0m ) = 
In 

1  —T /o 	 (4.1.9) 

where the data from distribution i (i 	1, . , m) consist of ((tip Sii), 
1, 	, nib and 

	

ni 	 ni 
ri == Et,, 

	

.1=1 	 j=1 

are the observed number of failures and total time on test (or fj risk) for the ith 
distribution. 

The likelihood ratio statistic for testing Ho is 

A 	U(ê1, • • • 7 §M) 	2 (6.1 I • • • 1 6..in1) I 	 (4.1.10) 

where £(01, 	, 0,n ) = log  L(01, 	 en,) and the 6, and ai are the unrestricted 
m.l.e.'s and the m.l.e.'s under the hypothesis H0, respectively. The unrestricted 
m.l.e,'s are 6;  = 	ri, from previous results. Under Ho the ei are equal, and it is 
easily seen that (4.1.9) is maximized at ( *di , 	, 4-m ) = (a, 	, a), where 

m 	j in 

§=Eri E ri. 
1=1 	1=1 

These results give (4.1.10) as 

rn 	 In 

A = (2E ri) 100 —2Eri log 'di. 
r=i 

(4.1.11) 

(4.1.12) 

Asymptotically A has a 4: _ i)  distribution if Ho is true, and the x 2  approximation 
is suitable for computing significance levels if the ri are not too small. 

In the case where the censoring is of Type 2 for each of the m samples, a refine-
ment to the )( 2  approximation improves its accuracy. The idea is to treat Ai  = CA 
as x (2,7,_ /), where 

C -1 = 1 +
6(m — 
	 Er7I+r-i , 

1) 
(4.1.13) 
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and r = Er/ . This was first suggested by Bartlett (1937) in connection with tests 
l'or variance estimates. Chao and Claser (1978) and Dyer and Keating (1980) provide 
additional results and references for the case of Type 2 censoring, 

Example 4.1.4. As a numerical illustration, suppose that four independent sam-
ples of size 10 each had 7 failures, and gave m.l.e.'s under the exponential model as 
01 = 106, 52 =, 80, 63 = 140, 5.1 = 158. To test Ho 91 = 02 = 03 = 04 using 
(4,1,12), we find = E /28 = 121, and an observed value of.A = 1.87. The 
significance level (p,Nalue) for the test is, using the )( 2  approximation, 

Pr (43) 	1.87) = .60, 

thus providing no evidence against Ho. If the censoring in each sample Were of 
Type 2, the refined approximatioi using (4.1.13) would give C = 0.971 and the 
p-value Pr [43)  > (0.971)(1.87)", = .61; there is no effect on the conclusions, 

4.1.3,2  confidence Intervals fot' 01/ 02 
Confidence intervals for 01/02 prc vide a natural comparison of two exponential dis-
tributions and supplement a test of 01 = 02. A very simple procedure is to note 
from (4. I .4) that 5; (i = 1,2) can be treated as approximately N(0i,e7ri-1 ) in large 
samples, so that log 6;  is approximately N(log O,, rd).  Thus 

log(51/52) — log(01/02) 
Z — 	 (4.1.14) 

is approximately N(0, f)  and can be used as a pivotal quantity to get confidence 
intervals for log(01/02) and thus 61/02.. 

Confidence intervals can also le found by inverting the likelihood ratio test for a 
hypothesis of the form Ho 0; = a92, where a > 0 is a constant. The m.l.e.'s of 01 
and 02 under Ho are found by ma:;imizing L(a02, 02) given by (4,1.9), and are 

+ a T2 
= c1612 — 	 

r; 	r2 

The likelihood ratio statistic for testing Ho is then 

A = 2C(61 . , 52) — M51, 52) 

= 2r; Ic.g(51/51) -I- 2/-2 log(5202). (4,1.15) 

An a confidence interval for 01/02 consists of the set of values a for which Ho is 
not contradicted (or rejected) at ft e I — a level of significance. If the approximation 
A — 4i )  is used, this entails fincFrig all values of a for which A 

If the samples from the two cbtributions are Type 2 censored, then an exact pro-
cedure is available, since 21.;61/0; (i =  1,2)  are independent 42,1)  variables. Thus 

(Ii_ l  +rj'' ) l12  
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6192/(6291) has an F(2)- 1 ,2,2 ) distribution and can be used as a pivotal quantity for 
01/82. 

The x 2  approximation for (4.1.15) is slightly more accurate than the normal 
approximation for (4,1,14) with quite small samples, but (4.1.14) is a little easier 
to use. Unless the ri are very small, the two methods tend to agree well.  

Example 4.1.5. Suppose that in a small clinical trial to compare the duration 
of remission achieved by two drugs used in the treatment of leukemia, two groups 
of 20 patients produced ri = 10, Ti = 700 (di = 70 weeks) and r2 = 10, 
T2 = 540 (62 = 54 weeks) under a Type 1 censoring scheme and assumed expo-
nential duration distributions. Let us obtain (approximate) .95 confidence intervals 
for 91/02. 

The two-sided .95 confidence interval for log(91/02) based on (4.1.14) is given 
by log(61/62) ± 1.96(rr' r 2— ) 1 /2 . This yields —0.6170 < log(01/92) < 1.1360, 
which converts to the confidence interval 0.54 < 91/92 < 3.11. The approach based 
on the likelihood ratio statistic (4.1.15) requires that we find values of a (= 01/02) 
such that 

A = 20 log(0.5 + 0.386a) + 20 log(0.5 + 0.648/a) 

is less than 41) 95  = 3.841. It is readily found that 0.51 < a < 3.15; this confidence 
interval agrees Closely with the previous one, 

4.1.4 Planning Experiments or Life Tests 

Section 2.5 discussed some general issues concerning the planning of studies on 
lifetime distributions, with emphasis on the estimation of specific parameters. 
Example 2.5.1  considered  estimation of the mean 19 of an exponential distribu-
tion, based on large-sample methods. Analogous results can be obtained for other 
procedures described in Sections 4.1.1-4.1.3; we provide two brief examples. 

Example 4.1.6. In the case of a Type 2 censored life test (Section 4.1,2) the 
distribution of 2410 is exactly 420 , and gives exact confidence intervals for 9. The 
ratio of upper to lower confidence limits (UCL/LCL) for  O is a function of r, and r 
can be chosen to make the ratio acceptably small. For example, for a two-sided .90 
confidence interval the ratio is 

2 UCL  

LC L 	420,.o5' 

and r = 10 and r = 20 give ratios 2.89 and 2.10, respectively. Note that in choosing 
r, we leave open the choice of sample size n. This may be selected to control the 
duration of the life test; a larger value of n will lead to shorter durations. This point 
is discussed in subsection 4.1.4.1. 
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Example 4.1.7. Suppose tl at we wish to estimate the ratio 01/92 of mean life-

times for two exponential distributions, based on studies that involve Type 1 censor-

ing, The approximate pivotal quantity (4.1.14) gives two-sided a confidence intervals 
l'or log(01/01) of the form 

log(Ôi/ti2) 	zi—co(rr i 	r2-1 ) 1 /2 , 	 (4,1.16) 

where z , , is the pth quantile for a N(0, 1) variable, The precision can be adjusted 

by controlling  E(r 1 ) and E(ri' l ) or, equivalently to the first-order level of approx- 
imation represented by (4.1.16), by controlling E(ri) and E(r2). For example, for 

.95 confidence interval the width (UCL—LCL) of (4.1.16) is 3.92(ri-1  + 1:2-1 ) 1 /2 , 
and  experiments with ri = r2 =. 10 and ri = r2 = 20, respectively, give UCL—LCL 
= 1.753 and 1.24. The ratio of upper to lower confidence limits for 01 /02 is therefore 

exp(UCL—LCL), or 5,77 and 3.45 for ri = r2 = 10 and ri = r2 = 20, respectively. 

In some applications the objective is to carry out a formal test in which a specified 

mill hypothesis 110 is lobe accepted or rejected. For example, in industrial or military 
applications tests are used to cle , :ide whether a batch of items is acceptable or not. In 
clinical trials or comparative lite tests the objective is to make a decision concern-

ing the  distributions  of two or more lifetime variables. The Neyman—Pearson theory 
of hypothesis testing provides t framework for decision making; the following two 
subsections outline the main idcas. 

4.1.43 Tests for a Single Distribution 
Any hypothesis concerning an exponential distribution can be expressed in terms of 
the mean 0. The most common problem involves testing a specific value 00 against 
values less than 00, that is, 

H0  6  = 00 vs. Ht:  0 < 00, 	 (4.1,17) 

where H0 and Hi are referred to as the null and alternative hypotheses. A formal 
hypothesis test is a decision rue  for either accepting 1/0 or rejecting it in favor of 
F11, on the basis of observed cla'.a. The size of the test is 

Pr(reject H0; e = 90, 

and the power function is defincti by 

P(91) = Pr(reject Ha; 9 = 

Tests are generally designed so that the size (i.e., P(90))  and the power PM) at 
some value 01 < 00  are specified values. 

Let  Us examine the construction of a test of (4,1,17) for the case of Type 2 cen-
sored data, it is plausible and easily seen from general results on formal testing 
(e.g., Cox and Hinkley 1974; Epstein and Sobel 1953) that for a given r and n the 
most powerful tests are to accept Ho iff Ô > C, where C is a specified value. Since 
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2ré /61  — 420  under Type 2 censoring (Section 4.1.2), the power function is then 

P(9) = Pr(.0 < C; 9 = 01) 

2 	2rC 
= Pr (X(2r) —07 (4.1,18) 

For any r we get a size a test by choosing C = Ca 0 = - 042,.), a /2r. The power P(01) 
of the test can be increased for 01 < Bo by increasing r: note that 

	

241 	2rC,,) 
PA) = Pr (—„ < —„ 

Pr 

 (

2  2r Cc, 
X(20 797) 

So to make P(01) = 1 — 0, we need 

2r Ca 	2  
= X(26, 1 —fi 0 f 

or 

,2 
A.(2,-,ci 	91 (4.1.19) 

0 

Hence, to make P(91) equal to 1 — fi, we must choose r such that (4.1.19) is sat-
isfied. There will not generally be an integral r value that exactly satisfies (4.1.19). 
However, it can be seen that for a < .5 and p < .5 the quotient on the left-hand 
side of (4.1.19) is an increasing function of r and approaches one from below as 
r —> oc.  Since 91/00 < 1, there is a smallest-value ro of  ,r such that the left-hand 
side is > 01/9o, and then, for any r > ro, P(01) > 1— p. The choice r = ro therefore 
gives a test with the desired size and (approximately) the desired power at 9  = ei . 
The larger 1 — /3 is, the larger ro will be. The entire power function for the test can 
be calculated from (4.1.18). 

It will be observed that no particular value of n is indicated by the preceding 
arguments.  Two tests with the same value of r but different values of n have identical 
power functions. However, although n does not enter into the power calculations, it 
is an important factor, since the larger n is, the less the time generally required to 
complete the test. One aspect of this is given in the following result. 

LEMMA 4.1.1. Let t(r) be the rth smallest observation in a random sample of 
size n from the exponential distribution with mean O. Then 

1 
Ect(, ) , =  9 E 	 

n — i +1 .  1=1 

(4.1.20) 



Iv) = 

and hence the stated result follows 

141 1 	WI W. + 	 n — I 	n — r + I 
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Pronf By Theorem 4.1.1, W1 = n1m and Wi = (it — i 	1)0(j) — 	0), i = 
2, 	arc independent random variables all having the same exponential distri- 
bution as the original observations. Thus E.(11/i) = 0,  i  =  I. 	But 4,1 can be 
written as 

Example 4.1.8. A particular ;lectronic device has a lifetime distribution ade-
quately modeled by an exponential distribution. In setting up a screening procedure 
for consignments of these devices, it is decided to institute a Type 2 censored life test 
plan, with 00 = 1000 hours, At = 400 hours, a = .05, and fi = .10. In other words, 
the test is to have only a 5% chariot of rejecting a distribution with mean 1000 hours, 
but a 90% chance of rejecting one with mean 400 hours. 

The smallest integer r such that the left side of (4.1.19) exceeds 01/00 = 0.4 
is r =  Il,  which gives x 2),.05h (2221, .90 = 2., 	 12.338/30.813 = .4004. Then C,05 = (z  
000(12.338)/22 = 561. The plan therefore stipulates that we use a Type 2 censored 

life test with r =  I l and reject Ho if .4 < 561, 
To show the effect of n, the tc tal number of items on test, we can use (4.1.20) 

to calculate expected durations of the test. One finds, for example, that for n = 
[I, 13, 15, and 20, E(to 0) = 3,0; 0, 1.680, 1.230, and .770, respectively, A decision 
as to how large n should be can he based on considerations involving the costs of 
testing, the amount of time avnili ble for the test, and the possibility of departures 
from the  exponential  model. 

Formal tests can be developed for other types of life test. It is readily shown 
(see Problem 4.4) that for tests with replacement of failed items as  in Section 4.1.2, 
the results (4.1.18) and (4.1,19) hold; the expected durations of the tests are, 
however, smaller than for tests without replacement, For Type 1 censored life tests, 
and others for which large-samplc methods are used, approximations or simulation 
must be used to assess power and decide on test parameters. The following example 
illustrates how this can be done. 

Example 4.1.9. Consider a trst of (4.1.17) based on large-sample methods. The 
normal approximation (4.1,5), based on the parameter 4, = 0 -1 / 3 , is considerably 
more fleelll'ElLe in small samples titan the analogous approximation (4.1.4) based on 
A itself, We can replace If (0) in (4.1,5) with 11(0) = 9E(r)/0 2  to the saine level of 
approximation, so we consider dirt approximation 

Z = 3[E(r)] 1 /2  ( çA; — 1) -- N.(0, I), 	 (4.1.21) 

Tests of (4.1.17) are of the form: reject Ho iff < C, or equivalently, reject if if 
sib > Ca'. By (4.1.21) we find that the power function in terms of 0 is approximately 
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P(01) = Pr (0. 	C *  ;  t  = 0i) 

= Pr {Z 3[E (r)J i 12  ( L"'  — 1 )1 01 
(4.1.22) 

For a test with size P(00) = a and power P(01) = I — at a specified value /fii , we 
therefore require 

3[E(r)]112  ( C*  — 1) = 
00 
C* 

3[E(r)]112 	— 1) = Np, 
01 

where NI, is the pth quantile for the distribution N(0,1). For given a, 13, 00, and i 
we can choose C* and E(r) to satisfy (approximately) these equalities. 

If the primary purpose of an experiment is to provide a decision in favor of Ho 
or Hi, then sequential procedures can often be valuable. Discussion of sequential 
methods is beyond the scope of this book, but the basic idea is that the life test is 
monitored over time, so that the decision to accept or reject Ho can be made as soon 
as there is sufficient evidence to reach such a decision. 

Epstein and Sobel (1955) presented a test in which the decision made at time t 
essentially depends on the inequality 

(t) ) r(f)  B < 	exp Rei-1  — 	T(t)]  <A, 
\ 

(4.1.23) 

where r(t) is the number of failures observed by time t and T(t) is the total time 
on test up to time 1, that is, the total lifetime lived by all items, failed and unfailed, 
*up to time t. At time t experimentation continues as long as (4.1.23) is satisfied; on 
the other hand, if the function in the middle of (4.1.23) is < B, Ho is rejected, and 
if it is > A, Ho is accepted. A slight modification consists of truncating the tests to 
avoid very long test times. The constants B and A are selected to give the test size 
a and desired power 1 — p at 19 = ; it turns out that to a close approximation 
A = (1 — f3)/a and B =  9/(1 - a). Epstein and Sobel (1955) give approximate 
formulas for calculating the power function and other characteristics of this test when 
testing is with or without replacement. 

The main advantage of a sequential plan is that the time needed to reach a decision 
about Ho versus H1 can be substantially reduced from that required by a similar non-
sequential plan. If, however, one is not just interested in a decision rule, but also in 
estimation, sequential procedures create complications, though it is possible to obtain 
conservative confidence limits from them (e.g., Bryant and Schmee, 1979). Another 
qualification of the sequential tests is that their properties depend rather heavily on 
the exponentiality of the underlying lifetime distribution, and so the possibility of 
departures from the model needs to be considered. 

References to related work are given in the Bibliographic Notes at chapter's end. 
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4.1.4.2 Tests for Comparing Two Distriltutions 
Many clinical trials or life tests are designed to compare two lifetime distributions. In 
the very special case where the two distributions are exponential, the test is usually 
either 

Ho 91 = 02 vs.  Il  91 	02, 

orft test with a one-sided alternalive Hi 01 > 02 or Hi 01 < 02. 
As in  Example 4.1.9, the crucial factor in the power  of  a test of Ho is the expected 

number of observed failures during the study. An expression analogous to (4.1.22) 
can be obtained, leading to a determination of approximate study requirements, as 
follows. 

Suppose independent censored random samples ( .», Sit), = 1, „ nj (j = 
1,2)  are obtained in a study o:i lifetime distributions 1 and 2. Let ri = ES» 
denote the number of failures in the two samples j = 1, 2. From Section 4.1.1 and 
Example 2.5.1, the expected information about 0j is Ii(0i) = E(ri)l9  and this 
leads to the asymptotic approximation 

log (;./ — Clog Oh E(9) —I ), 	j = 1, 2. 	(4.1.24) 

Let S = log(01/02), so that a test of Ho el = 02 is equivalent to a test of  S = O. 
Consider the approximate pivotal quantity 

log(61/42) — 8 
Z — (4.1.25) 

[E(ri) — I 	E (1-2) L1 ]' 

noting that if S is the true value and E(ri) and E(r2) are computed using 5, then Z 
is asymptotically N(0, 1) as sample size increases. To test Ho S = 0 we use the 
statistic given by Z with S= O. 

Let P(Si)  be the power Nfld.:on of a specific test of Ho 8 = 0, 

POI ) = Pr(reject Ho; 8 = 

For a two-skied test with specifiGd size  P(0) = a, the approximate normal rejection 
region is given by I ZI > — 1:, based on Z in (4.1.25) with 3 = 0, Suppose now 
that the power P (S I) for some specified p i  is to be equal to 1 — fi. Now 

P(51) = Pr fIZI > — 1\10,12; = 6 i 1  

= Pr fl log(61/632)1 > — V 1/2  Arco; 6  =Si}  

where V = E(r1) — I 	E(r2) --  Assume that V under 8  = 0 and 3 = Si are 
essentially the same, so that Z is approximately N(81,  V) when S = S. This yields 
the approximation 

POO = Pr(ZI < N 2  --  si  V" 2 )  + Pr(ZI > —NŒ/2  —Si  V-1/2), 
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where Zi — N(0, I). Suppose without loss of generality that 8 1 > 0; then Pr (Zi < 
Na12 — = 0 and to make  P(S1) = 1— 0, we need approximately —NŒ12 — 

Si V -1 /2  = Nfi, or 

V = 8?/(NŒ12 Ni3) 2 	 (4.1.26) 

If the study is to be designed so that  E(ri) = E(r2) = E (r /2), then V = 4/r and 
(4.1.26) gives 

E(r) = 4(N,„12+ N p)2  /8? 	 (4.1.27) 

as the required expected total number of failures. More generally, if E (ri) = rI E(r) 
and E(r2) = n2E(r) with 7ri 	7r2 = 1, then (4.1 .26) gives 

E(r) = (Nce12+ N,9) 2/n17r28?. 	 (4.1.28) 

The expected number of failures depends on the study design which, as discussed 
previously, involves the choices of sample size and duration of follow-up. In addition, 
it depends upon the unknown parameters 01 and 02, and so in order to select a design 
to meet stated power objectives it is necessary to use provisional values of el and 02. 
If individuals have fixed censoring times C.» (j = 1, 2) for individuals i =  1,  n 
from distributions 1 and 2, then 

	

2 	ri) 

E(r) = EE ( 1-e-ci" ) . 
j=1 1=1 

In special settings such as clinical trials, guidelines for study design have been given, 
allowing for factors such as staggered entry of individuals to the study, losses to 
follow-up during the study, and the lengths of time available for the accrual of sub-
jects and their follow-up (e.g., Rubinstein et al. 1981; Lachin and Foulkes 1986). 

Example 4.1.10. Suppose that a two-sided test of H 01 = 02 is wanted with 
size a = .05 and power 1 — p = .90 when 01/02 = 2, that is, when Si = log 2 = 
.693. By (4.1.28) we then require 

	

E(r) = E (ri) 	E (r2) = 27.06/7rirr2, 	 (4.1.29) 

where  irj = E(r i)/ E(r). Suppose further that in the study n/2 individuals from 
each of distributions 1 and 2 are to be followed for the same length of time C; then 

	

E(ri) = -t2!- — 	 j = 1, 2. 	 (4.1.30) 

If assumed values for 01 and 02 = .501 are considered, then values for n and C, 
which satisfy (4.1.30), can be found. For example, suppose that 9 1 '= 1 and that it is 
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possible to run the study with a maximum follow-up time of C =  I. Then (4.1.29) 
and (4,1.30) imply that rri = .422 = 1 — 7r7, and 

7 	27.06 
—(1 — e —e --) — 	 
2 	 7 1 7r2 

giving n = 148,2. Thus an estimated minimum of 149 individuals is required 

to achieve the desired power of .90 at 81 = log 2. It would he sensible in prac-

tice to assume a conservatively high value for Oh because if 01 is larger than 

assumed then the values of E(ri) and E(r2) will be smaller, giving less power 

than desired, 

4.2 INFERENCE PROCEDUITS FOR SOME OTHER MODELS 

In this.section we provide brief dit eussions of two other distributions that are  some-

limes used as lifetime model:  the gamma and inverse Gaussian distributions. In 

addition we illustrate how maximim likelihood inference and model checking can 
be implemented for general univat late models, given right-censored data. 

4.2.1 The Gamma Distribution 

The two-parameter gamma distribution, discussed in Section 1.3.5, has p.d.f. of the 

Form 

(I; a, k) = 
k — I 1 	( 

)
exp(—tla) t > 0 

where of > 0 and k > 0 are scale and shape parameters, respectively. The survivor 

function is 

SO; , k) = 1 — (k, Oa) 

where / (k, x) is the scaled incomplete gamma integral (1.3.16). 
With uncensored data, some inference procedures have fairly simple exact forms, 

as discussed in a number of books on mathematical statistics (e.g., Cox and Hinkley 

1974). We outline a few results, then consider censored data. 

4.11.1 Uncensored Data 
The log-likelihoodTunction for k f  rid  a from a complete random sample ri„ . „ tu  is 

ak, a)= E.log f (6; a, k) 
i= 

= —nk log 	n log No n(k — 1) log  1-  la, 	(4.2.1) 
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where 

tz n 	)1/rt 

= Eti ln 	and 	= (nti 
1.1 

are the arithmetic and geometric means. Setting  0t/0a and aeok equal to 0 and 
rearranging slightly, we get the likelihood equations 

ka =7, 	logic  — 1//(k) = log(7/7), 	 (4.2.2) 

where Vi(k) = ri (k)/ r(k) is the digamma function (see Appendix B). The m.l.e.'s 
ee and fc are easily found by solving (4.2.2); note that the second equation can be 
solved to obtain IC, and then a = 1/k. Alternatively, we can maximize (4.2.1) using 
some other approach, as discussed in Section 4.2.1.2 and Appendix D. 

The statistics 7 and  I are jointly sufficient for a and k, and provide exact tests 
and confidence intervals that have certain optimality properties. In particular, scale-
invariant tests of 

Ho k = ko vs. Hi k > ko 

can be based on W = FIT, whose distribution does not depend on a (e.g., Cox and 
Hinkley 1974, Sec, 5.3). It can be shown that large values of W provide evidence 
against 1/0, so that the p-value (significance level) associated with an observed value 
wobs Of W  is  Pr(W > wobs; k = ko). A 1 — p UCL for k is correspondingly 
the largest value /co that gives a significance level of p or greater. Engelhardt and 
Bain (1978a) discuss approximations to the distribution of W that are helpful. A 
simple alternative for computing significance levels is to use simulation to estimate 
'Pr(W > wou; k = ko), To do this we merely need to generate samples from the 
gamma distribution with a = 1 and k = ico, and compute w = 7/7. By repeating this 
sufficiently many times we can estimate the probability that W > wob,, as precisely 
as desired. 

Uniformly most powerful unbiased tests for a can also be obtained; they are based 
on the conditional distribution of W given I, Engelhardt and Bain (1977, 1978a) 
discuss approximations for obtaining p-values or confidence intervals for a. 

The parameters k and a are usually of less direct interest than distribution 
quantiles or survival probabilities. An alternative for making inferences about k, 
a or other characteristics of the gamma distribution is to use maximum likeli-
hood methods. Although these involve large-sample approximations, they are easily 
implemented, are adaptable to arbitrary functions of k and a, and can deal with 
censored data. Moreover, their accuracy can be improved, if necessary in small 
samples, through parametric bootstrap simulations or second-order corrections  (see  
Appendix C). We now consider likelihood methods for either censored or uncen-
sored data. Example 4.2,1 compares likelihood inferences and the exact procedures 
of this section for some uncensored data. 
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4.2.1.2 Likelihood Methods for Censored or Uncensored Data 

The likelihood function for a pos:;ibly censored random sample (t,, 	i — I 	 
as  described  in Section 2.2, is pen by (2.2.3) and the expressions for the gamma 
p.d.f, and survivor function (s.f.) as 

n 
 LL(/c, a) = 	
[ark) 	

[I- !(k,  ti / a)] 1-6 / 
a 

with / (k,  a) given by (1.3.16). The corresponding log-likelihood function is 

e(k, a) = —rk log a — r log r (k ) + (k — 1)E 5 j log ti —  
1=1 	 i=i 

(I — (51) log[1 — (k , Van 	 (4.2.3) 
I =1  

where r = E si  is the number of uncensored lifetimes. 
Standard large-sample procedures are based on the asymptotic normality of the 

m.l.e.'s (k, et). Asymptotic covariance matrices for (k, "a) obtained by inverting 
observed or expected information matrices involve second derivatives of incom-
plete gamma integral (1,3.16) and are somewhat complicated. Since most of the 
common software packages do not handle the gamma distribution, the simplest com-
putational approach Is to maximize (4,2,3) using optimization software that does 
not require expressions for derivatives (see Appendix D), and gives an estimate of 
the asymptotic covariance matrix at ck, 60 obtained by numerical differentiation. 
An alternative approach.for test; or confidence intervals about parameters, which 
is especially preferable -  in small samples, is to use likelihood ratio procedures, 
described in Appendix C. We wi;I describe these methods in some detail. 

A contour plot of the joint relative log-likelihood function r(k, a) = .t(k, a) — 
P.(k , ci) provides an informative picture of the information about k, a or functions 
of them. In addition, the extent to which contours are approximately ellipsoidal 
(quadratic) indicates whether confidence intervals based on large-sample normal 
approximations for (ic, ei) will b3 accurate and in agreement with results based on 
likelihood ratio procedures. frisk ad of r(k, a), we can choose to plot the likelihood 
ratio statistic —2r(k, a), that is, 

A (k , a) = 2t(1::, 	— 2t(k, a). 	 (4.2.4) 

Approximate ,joint confidence regions for (k, a) with confidence coefficient p are 
given as the set of points (k, 	s nisfying A (k, a)  

Inferences concerning k or a are obtained from their maximized  or profile log-
likelihood functions, or equivalept likelihood ratio statistics. For example, to test the 
hypothesis Ho : k = kn. we can t se the likelihood ratio  statistic  

At(ko) 	2t(k, Cr) — 2e(ko, a(ko)), 	 (4.2.5) 
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where & (k0) is the m.l.e. for a when k = ko, obtained by maximizing e(lco, a) with 
respect to a. In large samples the distribution of A ] (ko) is approximately 4 )  when 
k = ko, and it appears this approximation is reasonably accurate even for small-
sample sizes. An approximate two-sided p confidence interval for k is obtained as 
the set of values ko satisfying A] (ko) 

Tests and confidence intervals for a are obtained in a similar way by using 

A2(ao) = 2E(k, 'c't) — 2E(/-c(ao), ao), 

where /-c (a0) maximizes e(k, ceo). 
Getting tests or confidence intervals for quantiles or the gamma distribution's sur-

vivor function is a little more complicated, since the survivor function has no simple 
closed form. Suppose, for example, that a confidence interval for S(to) is wanted, for 
a specified time to. Since S(to) =  1—  I (k, to/a), we consider hypotheses of the form 

Ho 	(k, to/ a) = 1 — so. 	 (4.2.6) 

If k and & are the m.l.e.'s of k and a subject to the constraint (4.2.6), then under Ho 
the likelihood ratio statistic 

A (so) = 	ei) — 2E(Tc, 	 (4.2.7) 

is approximately )(6 ) . Large values of A provide evidence against Ho, and an 
approximate p confidence interval for S(to) consists of the set of values so satisfying 
A (so) 41)

' 
 p' 

Tests and confidence intervals for quantiles can be obtained in a similar way. 
The yth quantile ty  satisfies I (k, t v /a) =  y,  so for a specified y we consider the 
hypotheses 

Ho !(k,  to/a) = 

which are exactly the same form as (4.2.6). Tests of Ho are therefore carried out as 
for (4.2.6). However, to obtain a p confidence interval for ty  for a specified y, we fix 
the value so = 1 — y in (4.2.6) and find the set of values to such that A (so) in (4.2.7) 
is  

To implement the likelihood ratio method for quantiles or survival probabilities 
we ,must maximize e(k, a) subject to the constraint (4.2.6), for specified values to 
and so. This is easily done as follows: 

1. Define M(k) = f(k, a(k)), where a(lc) is defined implicitly by (4.2.6) for 
given k Note that to find a(k) we can merely solve the equation in (4.2.6) 
for /6* = to/a, and then a = to/ t6' . The value t satisfies (k, 	= 1 — 
and is simply the 1 — so quantile Q(1 — so; k) for the one-parameter gamma 
distribution Ga(k) of (1.3.17); standard software gives these values. 

2. Use an optimization procedure for M(k) that does not require analytical 
derivatives (see Appendix D). 
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Example 4.2.1. The data th:tt follow are survival times in weeks for 20 male rats 
that were exposed to a high level of radiation. The data are due to Furth et al. (1959) 
and have been discussed by Engnlhardt and Bain (1977) and others. The times are 

152, 152, 115, 109, 137, 88, 94, 77, 160, 165, 

125, 40, 128, 123, 136, 101, 62, 153, 83, 69. 

The  arithmetic and geometri2. means of the 20 lifetimes are 7 = 113.45 and 
= 107.07. The m,I.e.'s of k awl a are easily found from (4.2.2) or by direct max-

imization of (4.2.1) to be /2 = 8.80, & = 12.89. The asymptotic covariance matrix 
for (/2, 6, ) obtained by inverting the observed information matrix gives the standard 
errors (estimated standard deviadons).se(k) = 2.73, se(ii) = 4.12 and estimated 
asymptotic correlation c`67:).(Tc, 6) = —.97. We note that k and "ri are highly COITC-

!flied; recall from (4.2.2) that  k& =7 in the case of uncensored data. 
Approximate .95 confidence intervals for k and  a, obtained as lAc ± 1.96s e(k) 

ond  â  ± 1.96se(a), are 3.45 < k < 14.15 and 4.82 < a < 20.96. By way of 
comparison, the .95 confidence interval for k obtained by the invariant procedure 
based on W =  7/F  (Engelhardt and Bain 1978a) is 4.03 < k < 14.40, and the 
.95 interval for cy based on the uniformly most powerful unbiased test (Engelhardt 
and Bain 1977) is 6.5 < a < 13.7..The likelihood ratio confidence intervals are 
4.5 < k < 15.3 and 7.3 < a < 26.0. The agreement between the three methods is 
reasonably good, with the exact confidence limits lying between those for the Wald 
and likelihood ratio methods. 

Let us now consider a confi , lence interval for the median lifetime /,50, which 
would generally be of more interest than intervals for a or k. Confidence intervals 
for the mean p = ka arc also of ..nterest, and easily obtained. By (4.2.6), t,5 satisfies 
1 (k t,51a) =  .50; that is 	= a Q(.5, k), where Q(p, k) is the pth quantile for 
the one-parameter gamma distribution (1.3,17), The m.l.e. for 1,5 is easily obtained 
as .115 = QC .5 , 12) = 109,2, but computation of a standard error is difficult. There-
fore we use the likelihood ratio p.:ocedure described just before this example in order 
to get  a confidence interval, Thil involves the calculation of likelihood ratio statis-
tic values A(t) for specified values of t,5; note that A (t,5) =. 2e(k, 6e) — 
where k.« maximize e(k, a)  sui  ject to the restriction a Q(.5, k) = 1,5. The approx-
imate .95 confidence interval for t,5 consists of values for which A(t,5) < 3.84, and 
gives 92,9 < t,5 < 127.2. 

To illustrate the censored clatu, case, we suppose that the data had been censored 
at  = 150 weeks; this would result in five censored survival times, all equal to 150. 
In this case /2 = 5,79, er = 21.3, re (k) = 2.12, se(â) = 8.54, and Wald approximate 
.95 confidence intervals for k and a are 4.63 < k < 9,95 and 4.56 < a < 38.0. The 
likelihood ratio ,95 confidence intervals are 2.6 < k < 11.1 and 10.7 < a < 52.6, 
there being a fairly big discrepancy between the two confidence intervals fora, The 
reason l'or this is the markedly nonquadratic shape of the likelihood ratio statistic 
A2(a). which is shown in Figum 4.2. The agreement between the Wald and likeli-
hood ratio intervals is improved if we use the parameterization 1,1, = log a, In this 
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Figure 4.2. Likelihood ratio statistic for gamma scale parameter a. 

case we have if = log eit = 3.059,  se()  = se(&)la = .401, and an approximate 
.95 confidence interval 2.273 < tfr < 3.845 from if ± 1.96se(it). This transforms to 
9.71 < a < 46.8, which is fairly close to the likelihood ratio interval. A check of the 

• likelihood ratio statistic or the profile likelihood for  r  shows it to be approximately 
quadratic. 

In order to get a confidence interval for (.5 with censored data, it is simplest to use 
the likelihood ratio statistic A (t,5). Figure 4.3 shows a plot of the statistic; the .95 
confidence interval, consisting of values for which A0,5) < 3.84, is 95,1 < (5 < 
144.6. The m,l.e, is 't1.5 = 116,3 weeks. 

Graphical model checks for the gamma distribution can be based on probability 
or quantile plots, as described in Section 3.3.1. For the former, for example, we plot 
the values (3.3.1) against S(t]; /C, "d) = 1 — /(ti/et, ic), where the ti are the observed 
failure times. For the censored data case here, this is the same as a plot of the points 
((j — 0.5) 120, I (tV e, IC)) for j = 1„ 15, where ti" « 11'5  are the ordered, 
uncensored survival times. This plot is roughly linear, and provides no indication that 
the gamma model is unsatisfactory. 

A second approach is simply to plot the estimated survivor function 5(1; 	and 
the Kaplan—Meier estimate :.'(t) on the saine graph; equivalently, we could plot the 
corresponding distribution function estimates. The fit of the model is readily appar-
ent, and we have the advantage of an untransformed plot of survival probabilities. 
Figure 4.4 in the next section presents such a plot for an inverse Gaussian model. 
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Figure 4.3, Likelihood ratio statistic for the gamma median 1.5. 

4.2.2 The Inverse Gaussian Distribution 

The inverse Gaussian distributioo G(i., A.) discussed in Section 1.3.7 has p.d.f. 
given by (1.3.23) and distributioo function by (1.3.24). For the case of an uncen-
sored random sample /I. ..,  to, fie m.l.e.'s of p. and A are easily seen to he 

it can be shown that nX/5.-- x (2,,_ 11 , that 7 — G (pc, O.), and that land  

i are independent. Confidence limits or tests for A. are consequently easily obtained, 
and uniformly most powerful unl: iased tests and associated confidence limits for itt 
are also available. Chhikara and Folks (1977, 1989), Jorgensen (1981), and Johnson 
et al. (1994, Ch. 15) discuss these and other results for inverse Gaussian models. 

We consider here the general case involving possibly censored data (4,61),  t  = 
The log-likelihood function for and A is 

. A.) = 
	

St log f (4; , 	+ (1 — Si) logrl — F(tf; p., A)), 	(4.2.8) 
1.1 
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where f (I; p,, X) and F(t; p,, X) are given by (1.3,23) and (1.3.24), respectively, 
Derivatives of  £ (p., k) are messy but straightforward to evaluate, and the log-
likelihood is readily maximized both by optimization software that requires expres-
sions for first and second derivatives and by software that does not, Confidence 
intervals or tests for 1.1. or X are easy to obtain via likelihood ratio procedures or the 
asymptotic normality of 0.1„ Confidence intervals or tests for quantiles or survival 
probabilities can be obtained by likelihood ratio methods with a little effort, given the 
form (1.3,24) for the cumulative distribution function (c.d.f.). It is slightly simpler 
to use 02, and the estimated asymptotic covariance matrix / evaluating  
the latter either from algebraic expressions or by using optimization software that 
evaluates the  second derivative matrix at (12 ,5.) by numerical methods. 

Example 4.2.2. Whitmore (1983) considered data on the times to failure of 20 
aluminum reduction cells. Failure times, in units of 1000 days, are given below with 
asterisks denoting a censored observation: 

.468, .725, .838, .853„965, 
1,554, 1.658, 1.764, 1.776, 

1.139, 
1.990, 

1.142, 
2,010, 

1,304, 1,317, 
2.224, 2.279*, 

1.427, 
2.244*, 2.286* 

General optimization software readily finds m.l.e.'s for pt. and X from (4.2.8) as = 
1.61,  X  = 5.96, with standard errors se(ii ) = 0,20, se(X) = 2.06, and estimated 

Time 

Figure 4.4. Inverse  Gaussian and Kaplan—Meier estimates of S(f) for aluminum reductio 
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Table 4.2. Approximate 90% Con! Idence Intervals for F(.5), F(I.0), and F(1.5) 

Method F(.  i) F(1.0) F(1.5) 

Wald (I) (0„038) (.11„37) (.40, .69) 
Wald (2) (.002, 082) (.14, .39) (.40_68) 
Bootstrap (3) (0,  .0S3)  (.09, .36) (.38, .69) 
Bootstrap (4) (.001, 	073) (.1 1„39) (.40, .70) 

asymptotic correlation —0,5. To assess the fit of the model we plot the estimated 

inverse Gaussian survivor function S(t; and the Kaplan—Meier estimate 5(t ) in 

Figure 4.4. There is no indicatior that the model is inadequate. 

Let us obtain approximate .90 confidence intervals for failure probabilities F(t), 
given by expression (1.3.24), Tat le 4.2 shows intervals based on four methods: 

1. The Wald interval 	± 1.645se(1/6/), where Vt.  = F (t) is given by (1,3.24) and 

•e(ir) is obtained by a straightforward but tedious application of the asymp-

totic variance formula (B2). 

2. The Wald interval based on transforming S±1.645se(S), where S = log(k(1— 
ITO) and s e((3) = se(if)I (1 —  

3. The nonparametric percendle bootstrap method (Efron and Tibshirani 1993, 
Ch ,  13). 

4. The bias-cotTected (BC) bootstrap method (Efron and Tibshirani 1993, Ch. 14). 

Results are shown in Table 4.2 for  F(.5),  F(1.0), and F(1.5). Except for  F(.5)  
there is reasonable agreement act oss the four methods, given the widths of the inter-
vals. In the case of P(.5), the intervals based on methods (2) and (4) are to be pre-
ferred. 

4.2.3 Models with Polynomial-Based Hazard Functions 

As discussed in Section 1.3.9, a variety of lifetime models beyond the standard log-
location-scale, gamma, and inverse Gaussian models are sometimes used. Examples 
of settings that are not well descri nd by any of the standard models are when the haz-
ard is bathtub-shaped or bhnodal. Models in which h(t) or some transform of it are 
low-order polynomials sometimes provide a reasonable fit to data in such cases. Tak-
ing log ) td be of polynomial frm is attractive, since no restrictions on the param-
eter values are required. The Got npertz distribution, for which log h(t) = ao + 
has closed-form expressions for density and s,f,'s and has been used a good deal. 
Models with polynomials of degree two or higher, which can represent nonmofio-
Ionic hazards, do not give a clot  cd  form for 5(t). This is not in principle a major 
impediment. to their Lise, given the availability of numerical integration software for 
evaluation of  K(t) and S(t), 

Models for which h(t) is polynomial are more easily handled, since H(t) is also 
polynomial in that case. However, the requirement h(t) > 0 means that parameters 
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must satisfy certain constraints. Models with fractional powers of t, for example, 
h(t) = ao + al t I /2  CY2t, are also easy to handle. The use of a quadratic model for 
h(t) is illustrated in Example 43.1 of Section 4.3. More flexible families of models 
can be provided by taking h(t) or log h(t) to be piecewise polynomial. This leads to 
(regression) spline models introduced in Section 1.3.8; we will consider cubic splines 
briefly. 

A cubic regression spline model for h(t) is one for which h(t) is piecewise cubic. 
Let al < < ak be a sequence of specified cut points or "knots," and define 
ac = 0 and ak+1 =  oc; the cubic spline then consists of cubic polynomials over the 
intervals (ai_i, ai), which are forced to join smoothly at the knots. In particular, h (I) 
is defined so as to be continuous and have continuous first and second derivatives at 
al, , . ai..  The model can be represented parametrically in various ways; one simple 
form is 

h(t) = ao 	a l t 	a2 t 2  -1-cr3 t 3 	ei(t — ai), 	(4.2.9) 
i=1 

where a+ denotes max(a, 0). With k = 0, (4.2.9) defines h(t) as a single cubic 
polynomial, and with k > 1 the hazard function consists of k 1 cubic pieces. It is 
easily seen that if there are k 1 pieces, the number of parameters in the model is 
k 4, reflecting the fact that h(t) has the aforementioned continuity restrictions. 

Splines are also associated with smoothing procedures discussed in Section 3.4 
and were used in Example 3.4.1. Our interest in them here is as parametric models, 
and we rarely want to consider k bigger than two or three, so. that the total number 
of parameters is seven or fewer. The parametric form (4.2.9) is usually poor for 
computation or estimation, it being preferable to have parameters that are at least 
roughly orthogonal. In practice, representations 

h(t; a) = Ea./ B(t) 
i=1 

in terms of known functions Bi (t) are normally used. 
Cubic splines with one or two well-chosen knots can provide flexible enough 

models for h(t) to fit a wide range of lifetime data. Because a fitted cubic polyno-
mial may extrapolate poorly and is sensitive to changes in  the  data, the cubic piece 
over (ak,  cc) is sometimes replaced with a linear function. Various presentations of 
spline models have been given in the literature in conjunction with censored data. 
See Rosenberg (1995) for spline models for h(t); Kooperberg et al. (1995) for spline 
models for log h(t); Abrahamowicz et al. (1992) for spline models for the p.d.f. f (t), 
and Kooperberg and Stone (1992) for spline models for log f (t). 

The log-likelihood function based on a censored random sample  (te,  Be), 
1, . . . , n, can be written in the form (2.2.17), giving 

i(a) = E[8; log h(ti; a) — H (te; a)], 	 (4.2.10) 
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where h ((; a) and H(1; a) are the hazard and cumulative hazard functions, and a 
denotes unknown parameters. If /7(t; a) is piecewise polynomial, then so is H(t; a), 
and (4.2.10) has a closed form. More generally, numerical integration is needed to 
evaluate  f(a), lt is possible to treat the cut points or knot positions ai, as parameters, 
or to prespecify them. The latter is easier, although when the ai are based on an 
inspection of the data, the preciE ion of estimates is overstated. 

It should be said that spline models with, even one or two knots have fairly many 
parameters, and should not be considered a substitute for parsimonious paramet-
ric models, Their main use is in difficult settings where simpler parametric models 
appear inadequate, 

4.3 GROUPED, INTERVAL CENSORED, OR TRUNCATED DATA 

4.3.1 Grouped Lifetimes 

Grouped lifetime data are interval-censored data where each individual has the same 
potential observation intervals. In particular, suppose that lifetimes are observed to 
fall into h 	I intervals if = [cf_i , af), 	= I, . , k + 1, where 0 = a0 <at< 

< ak =1=  no.  Let of be the number of lifetimes in /f, from a random 
sample of size n. In settings where it is possible to see individuals or units only at 
the Iime points al ve cften know only the di and not the exact lifetimes for 
each individual. 

When lifetimes from a continuous distribution are grouped, estimation can be 
based on the exact multinomial likelihood function for the observed data (di 	 dk). 
If the underlying distribution of T has c.d.f. F(i; 0), then (di, 	, dk) has a multi- 
noinial probability function 

di!. • 

n! 	 d  _dk+i 

	

dk!ak+!: ' 	"k "k+1 
	 (4.3.1) 

where yr./ = Pr (a 	< T < a!) = F (a i; 0)— F (a i_t; t9), The likelihood function 
for 0 can therefore he taken as 

k+I 

L(0) = }1[17 (ai; 0) — F(a1....1; 0)Y IJ 
	

(4.3.2) 
i=i 

Maximization of E(0) = log L(0) can usually be easily achieved with general-
purpose optimization software. The score function and information matrix for 0 are, 
respectively. 

at
— = fi Ir • ao 

di  a 27r;  
/(0) 

a0i)01  — 	7r.2. 	ao ) ( 
	

) 	 (4.3,3) 
 j=1 
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and inferences about  6 can be based on the general procedures described in 
Appendix C. 

If censoring can occur in intervals other than the last (i.e., there can be with-
drawals in some intervals), the exact likelihood function cannot be written down 
without further assumptions. One possibility is that all withdrawals occur at the ends 
of intervals. In this case, if w1 represents the number of withdrawals in  !j,  the like-
lihood function is 

k+1 
L(0) = fl[F(aj; 0) - F(aj_i; 0)]di S(ai; 0) w) 	(4.3.4) 

1=1 

If, however, withdrawals occur at unknown times within  »  then some assumption 
about the withdrawal mechanism is needed, just as in the case of life table estimation 
(see Section 3.6 and Problems 3.17, 3,18), The likelihood (3.7.4) in Problem 118 is 
often a reasonable adjustment to (4.3.4). 

Example 4.3.1. The data given in Table 4,3 are from results concerning the 
time to second failure for 104 bus motors (Davis 1952), with time being the num-
ber of thousand miles driven. The data suggest a model with a noninonotonic haz-
ard function, in particular, with the bathtub shape discussed in Section 1.2.4. One 
family of models that might be considered is that with quadratic hazard functions 
h(t) = ao +  zit  + r2t 2 . In this case, the cumulative hazard function is H(1;  0) = 
Olt + 92t2  + 03t 3 , and the distribution function is F (t; 0) = 1 - exp[-H(t; 0)], 
where 8,  = aj_t/j (j = 1, 2, 3). 

Using the likelihood (4.3.2) with k = 6, (al 	 116) = (20, 40, 60, 80, 100, 120), 
and (di, . , c/7) = (19, 13, 13, 15, 15, 18, 11), we rewrite the model as H(t; 0') = 
0'1 (t /100) + 0(t 1100)2  + 0(t/100) 3  for numerical stability. We then find using 
general optimization software that the mie. for 0' is "6' = (1.315, -1.695, 1.747), 
giving 

H (t; 11) = 1.315(1/100) - 1.695(t/100) 2 	1.747(t/100) 3  

To assess the agreement between the fitted model and the data, we can calculate 
expected frequencies 

ej  = 104[F(aj; 	F(aj _ i ; -6)] 

Table 4.3. Frequency Distribution for Bus Motor Failure Data 

Thousands of Miles 0-20 20-40 40-60 60-80 80-100  100-120  > 120 

Observed frequency 19 13 13 15 15 18 I 
Expected frequency 19.64 12.29 12.44 15.70 17.43 14.47 12.04 
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This gives the expected frequencies shown in Table 4.3. The agreement between 
expected and observed frequencies is quite good. The Pearson chi-squared goodness-
of-fit statistic E (di  — ej) 21e1 (see Section 10.2,3) gives a value of 1.41 and an asso-
ciated p-value of P,-( x 6 )  > 1,4!)  = .703, indicating no evidence against the family 
of models, Further discussion t:Y* goodness-of-fit tests is provided in Chapter 10. 

4.3.2  Interval - Censored Data 

Interval censored data, as clescr bed in Sections 2.3.1 and 3.5,3, generate likelihood 
functions of the form (2.3.1): 

L(0) =FT[F(R); 0)— F(L); 0)], 	 (4.3.5) 

where F(t; 0) is the c.d.f, for hfetime and the ith lifetime has been observed to lie 
in the interval (Li, Rd. The sco.e function and information matrix are, respectively, 

ae 
= 	.6.F; i=1 

	

—0 2 e. 	\LI  ,1(8.6,1711a0 (i)F1/8O'\ 	a2 ,6d7i /aoao'l  (o) _ aoa 	 , 	(4.3,7) 

	

oi 	6, 6 	AFi 	 AF, 

where c(o) = log L(0), and we use the  notation  /-71 = F(R); 0) — F(Li; 0). 
The m.l.e.  O can be found by solving ac/ao = 0 or by direct maximization of 

C(0), and inferences about 0  cm be based on the methods of Appendix C. Some 
survival analysis software can handle interval-censored data for log-location-scale 
models; sec the Computational Notes at the end of the chapter. More generally, gen-
eral optimization software desci ibed in Appendix D can be used. 

Example 4.3.2. in Example 3.5.5 we considered some data on the times to the 
appearance of cracks in metal turbine wheels. Each of 432 wheel's was examined on 
a single occasion; the failure times are thus interval censored, with (Li, R1] equal to 
either (0, C1] or (C1 , oo], where CI is the time of inspection for wheel 1. This is often 
referred to as current-status data. 

A nonparametrie estimate of the c.d.f. F(t) was obtained in Example 3,5.5. Here  
we obtaiti•a parametric estimate based on the assumption that 

	

F(t; a, )3) =  I  — expE—(t/)] 	t > 0 

is of Weibull form. Since either Li = 0 or R1 = co for each item, (4.3.5) dan be 
writ ten as 

L(re. 13) =1-11 7 (Ci; a, /3) 8' [1 — F(Ci; 
1=1 

(4.3.6) 
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Figure 4.5. Weibull and nonparametric estimates of F(t) for time to crack initiation. 

where Si = 1(71 < CO. Maximization of t(a, 13) = log L(a, p) or the equiva-
lent log-likelihood for the extreme value parameters u = log a, b = ,8 -1  gives the 
m.l.e.'s &= 46,78, 4 = 2.176. Standard errors obtained from the inverse of / (6e, fl), 
as given by (4.3.7), are 2.99 and .271, respectively. Figure 4,5 shows the Weibull 
m.l.e. F(t; et, 4) and the nonparametric estimate P(t) obtained in Example 3,5.5, 
along with the pointwise approximate .95 con fi dence limits associated with the non-
parametric estimate obtained earlier. 

The Weibull model provides a reasonable fit to the data, as evidenced by a com-
parison of the parametric and nonparametric estimates. In many applications there is 
a desire to use a parametric model to extrapolate beyond the observed failure times, 
but this is naturally risky. As an illustration, we note that a log-logistic model (1.3.12) 
also provides a satisfactory fit to the data here. The m,l.e.'s of u and b in (1.3.12) are 

= 3.680 and 1; = 0,394. The Weibull and log-logistic estimates of F(t) agree 
well up to t = 50, but very different m.l.e,'s of .960 and .856 are obtained for F(80) 
Under the Weibull and log-logistic models, respectively. The maximum values of the 
log-likelihood under the two models are —189.29 and —189.73; the Weibull model 
is slightly favored, but there is no significant difference between them, 

4.3.3 Truncated Data 

Left- and right-truncated data have been discussed in Sections 2,4 and 3.5, Lifetimes 
may also be subject to more general forms Of truncation or selection. A rather general 
setting is where a lifetime Tt is forced by the observation or selection process to lie 
in the interval (ut, vd, so that ut is a left-truncation and vi a right-truncation time. 
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The cases (if = 0 and vi = oc) give ordinary right truncation and left truncation, 
respectively. If an independent interval censoring mechanism applies, so that Ti is 
observed to lie in the interval (1,1, c (u; , vi], then the likelihood function from 
n independent individuals is 

L 	
F(Ri; 0) — F(Li;  0)  

(0) = 
F( .,•• 0) - F(iti.'  0) ;  

where P(/; B) is the parametric c.d.f. for an untruncated lifetime. 
Maximum likelihood estimation and associated inference procedures can be 

implemented using methods dei;cribed in Appendix D. Some survival analysis soft-
ware 'handles truncation and interval censoring for  log-location-scale models; see 
the Computational Notes at the end of the chapter. It should be noted that severe 
truncation limits the amount of information about model parameters, producing like-
lihood functions that are flat in certain regions, and possibly nonelliptical. This can 
render maximization of e(0) more difficult, and large-sample inference procedures 
inaccurate. We consider two ex imples of truncated data to illustrate the differences 
between mild and severe truncation effects. 

Example 4.3.3. (Example 3.5.3 revisited). Examples 2.4.4 and 3.5,3  dis-
cussed right-truncated  data on lie time T from HIV infection to AIDS for n group 
of 124 persons aged 5-59, whose HIV infections resulted from blood transfusions. 
The right truncation arose from the fact that for an individual to be included in the 
data set they had to be diagnmed with AIDS by June 30, 1986. The AIDS latency 
times, //, and truncation times, vi, in months, are given in Appendix G. 

Figure 3,16 showed the nonparametric m.l.e. of Ffl(t; yin") = F(t)/P(vmax ), 
where F(t) is the c.cl.f, for latency time and vmax  = 99.5 months is the largest 
truncation time in the data set. If a parametric model F(t; 0) is specified, then it is 
possible to estimate the uncoil(' tional (untruncated) distribution of T, As we will see, 
however, such estimates are nct precise, and it is impossible to differentiate among 
models that give very different estimates. 

Consider a Weibull model with c.d.f. 

; a, 13) =  I  — exP[ — (1/0 fi l 	1 > 0. 

The special case of (4.3.8), Wlich corresponds to right-truncation only (ui -= 0), 
and met observation of (F Ri; 0) — F(Li; 0) oc [(ti; 0)), gives the likelihood 
function 

L(a, , /3) = 	•Rti; ce, 13 )  
F(v.. 	)3)' i=1 	" ' 

(4.3.9) 

(4.3.8) 

where (t: a, [I) is the Weibull p,d.f. (1.3.5) with a = 	To make the likeli- 
hood more elliptical we empli y the extreme value parameters u = log a, b = 
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when maximizing (4,3.9), and find estimates and asymptotic standard errors (given 
in brackets) from the observed information matrix as  û = 5.40(2.96), 13 = .48(.06). 

Although the extreme value scale parameter h and Weibull shape parameter /3 are 
precisely estimated, the parameters u and a = exp(u) are not. This implies as well 
that quantiles of  T,  given by tp  = exptu b log(— log(1 — p))), are also imprecisely 
estimated, For example, a naive approximate .95 confidence interval for a = t.632 is 

given by exp(ii ± 1.96se(12)}, which yields the interval (.7 months, 73,130 months); 
this is both uninformative and nonsensical.  

Figure 4.6 shows contours of the  log-likelihood function e(u, b) = log L (u, b), 
from (4.3.9); the maximum value is £(12, b) = —35.05. The lack of information about 
the parameter u is clearly indicated. 

As a check on the Weibull model, we compare the nonparametric estimate of 
F(t)1 F(99.5) from Example 3.5.3 with the Weibull estimate F(t; 13)1 F(99.5; 
ôt, /3) in Figure 4.7. The estimates agree well, bearing in mind the large standard 
errors for the nonpararnetric estimate at larger values of t. 

The truncation in this problem is severe; it is known from other HIV-AIDS studies 
where truncation of latency times was not an issue that median latency times for the 
types of individuals represented here are of the order of 10 years. Thus, the data 
here represent only the lower end of the distribution. Nonparametrically we cannot 
estimate unconditional probabilities, F(t), or quantiles, tp , at all, as discussed in 

Figure 4.6. Contours of log-likelihood f(u, b) for right-truncated AIDS latency-time data, 
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Figure 4.7, Welk]II and nonparairetric estimates of F(t)/F(99.5) for AIDS latency times. 

ixample 3.5,3, but even with th.; assumption of a parametric model there is little 
information about such quantities. 

Example 4.3.4. (Example :1.5.1 revisited). Left-truncated data on the life-
times T (in thousands of km driven) of automobile brake pads were discussed 
in Examples 2,4.2 and 3.5.1. A nonparametric estimate of the conditional s.f„ 

tfinin) = S(i)/S(timin), wat obtained in ExaMple 3.5.1, where S(t) represents 
the unconditional s.f. for T and u m i n  = 7.0 km is the minimum truncation time 
across the 98 vehicles rcpresente I in the data set. AnalysiS using several parametric 
models indicated that a log-nortral distribution  fits  the data well; a plot of the non-
parametric and log-normal estim ites of S(t)/S(u rni n ) was given in Figure 3.14. We 
comment briefly here on the log-normal model, which was fitted by using the likeli-
hood function (4.3.8) corresponclng to left truncation at tit, with exact observation 
of ff. This gives 

(it; 	cr)  
L(11, , o) = I 	' 

1=1  S(ui; t, )' 

where f(t; it„ a) and SO; p.„ 	a.t.e the log-normal p.d.f. and survivor functions 
given by (1,3.10) and (1.3.1 1), respectively, Maximization of L(p., a) gives m.1,e.'s 
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and standard errors (in brackets), as fi = 4.109(.045), er = .421(.033); both /A 

and a are precisely estimated, It is known that almost no brake pads have life-

times less than 7.0 thousand km. Under the log-normal model the unconditional 

probability S(tt rn i n ;  2, 6-) is over .99999, so the estimated truncation effect is neg-

ligible. Consequently, the log-likelihood function and information about parame-

ters kt and a is essentially the same as for a complete, untruncated sample of size 

n = 98. 

4.4 MIXTURE MODELS 

Mixture models were introduced in Section 1.3.10. Continuous mixtures, in which 

the survivor function for T is of the form (1.3.29), are in principle easy to deal with, 

provided the model parameters are well identified. In this section we focus on dis-

crete mixtures, where S(t) is of the form (1.3.26). Only models with two components 

are considered; mixtures with more components are encountered rather infrequently 

in lifetime distribution applications. 

Maximum likelihood estimation with parametric mixture models can be imple-

mented with general optimization software, as described in Appendix D. Depending 

on the extent to which the component distributions in a mixture overlap, the like-

lihood function may be flat in certain regions and preclude precise estimation of 

individual parameters. Determining the mie,  may also be difficult in some cases. 

Discrete mixtures are most conveniently used in settings where the data suggest there 

are two or more well-separated components to f0)  or h(t).  We consider a pair of 
examples in which this is the case, 

Example 4.4.1. (Example 3.3.3 revisited). Colon cancer recurrence times 
were discussed in Example 3.3.3 for two groups of patients: a Drug Therapy and a 
Control group. Times to recurrence, T,  are measured in days from treatment, Non-
parametric Kaplan—Meier estimates of the survivor functions S(t) for each group 
suggest that the hazard function for recurrence drops to a low value by some point, 
perhaps because some fraction of patients are  cured  and will never experience dis-

ease recurrence. It was noted in Example 3.3.3 that standard distributions for which 
S(t) 0 for t large, such as the Weibull and log-logistic, do not fit these data. 

Plausible models are ones for which a fraction 1 — p of patients is assumed to 
have no chance of disease recurrence. These are sometimes referred to as cure-rate 
models, and have s.f.'s of the form (1.3,29): 

S(t) = pSo(t) + 1 — p, 	 (4.4.1) 

where 0 < p < 1 and So(t) is a s.f, with S(0) = 1 and S(co) = 0. We consider first 
a model where So(t) is of log-logistic form (1.3.13), 

So(t) = (1 	/a)fi} -1 	t > 0. 	 (4,4.2) 
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The p.d.f. corresponding to (4,4.1) is then -7 /750), or 

P(P/ce)(tIce) 13-1  (r;«,,o) = 	 r > OE 
{1  +(t/) 2  

The likelihood function ftorn a censored sample of recurrence times is 

It 

L(u. P. p)=n.f(ti;«, 	s(ii;  ca,  P, 17) 1-81 , 
=I 

where S (f ; a, ,8, p) is given by :4.4.1) and (4.4.2). Parameter estimates and standard 

errors (in brackets) for the Control and Therhpy groups are obtained with no difficulty 

by standard optimization proce ,  lures, and are as follows: 

Control â  = 419.5(39 8), /3 = 1.58(0.13), /3 = 0.608(0.032) 

Therapy â  = 479.0(51  I), j  = 1.68(0.17), /3 = 0,426(0.032). 

A plot of the sf, estimates S( 	, /3) is shown in Figure 4.8 as Model (1) for 

each of the treatment groups, al )ng with the Kaplan—Meier estimates for each group; 

- ICM 
Model (1) 
Model (2) 

en 
6 

P
ro

ba
bi

li
ty

  o
f  

S
u

rv
iv

al
 

6 

' Therapy 

ont.rof 

6 

1010 	 2000 	 3000 

Time (Days) 

Figure 4.8. Parametric inixture nrul Kaplan—Meier estimates of S(t) for colon cancer recurrence. 
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Figure 4.9. Likelihood ratio statistic for the proportion of patients, p, who experience cancer rccurr 

the parametric model fits well. Parametric estimates of S(t) based on (4.4.1) with a 
Weibull distribution So(t) = exp{—(t/a)fij in place of (4.4.2) are also plotted as 
Model (2). The Weibull mixture model fits well, too, though slightly less so than the 
log-logistic mixture. 

The mixture models provide estimates 1 — /3 of the fraction of the population 
who are long-term survivors (i.e., have no cancer recurrence). In settings where cen-
soring is heavy there may be high correlations among the m.l.e.'s, and an imprecise 
estimate of p. That is not the case here, because follow-up of individuals was long 
and very few failures with large values of t were seen. Confidence intervals for p 
or 1  — p  by the naive Wald method and by the likelihood ratio statistic A (p) = 
ze (e,, fi) — 2P(ii(p), #(p), p) agree quite closely. For example, A (p) is plotted 
for the Therapy group and the log-logistic model in Figure 4.9, and is seen to be 
approximately quadratic. Approximate .95 confidence intervals /3 ± 1.96se(P) and 
{p A (p) < 3.84} for the Therapy group both give approximately .36 < p < .49. 
The corresponding confidence interval for the Control group is .55 < p < .67, 
Indicating a clear difference in the proportion of long-term survivors under the two 
treatments. 

Example 4.4.2. (Example 3.4.1 revisited). Example 3.4.1 discussed data on 
the times to failure for 60 electrical appliances subjected to a life test. Exploration 
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data i here suggested that the hazard function might have two components, 
one consisting of a fairly small plrtion of the distribution and giving small failure 

limes, and one giving a wide rant of larger failure times. A discrete mixture may be 

plausible physically, with the left most component representing items with defects 

that make them liable to fail early and so we explore this possibility. 
Examination of the data and cf the Nelson—Aalen and Kaplan—Meier estimates 

an suggest plausible values for p,  and parametric models for the components SI (t), 

) of a mixture with survivor function 

	

5(0 = p (t) + (1 - p)S2(t) 	 (4,4,3) 

and corresponding p.d.f. 

(t) = Pfl(t) + 	- P),f2(t). 	 (4.4.4) 

For example, the Kaplan—Meier istimate 	(I) shown 	in Figure 4,10 suggests a 
value of p in the , 1—.2 or ,8—.9 rat:ge; a plot of — log :S.  K (1) or of the Nelson—Aalen 

estimate fiNA (1) suggests that models for St (t) and S2(t) with monotone hazard 
functions may be suitable. Conn itiently, we will consider a mixture of two Weibull 

o 	 3(100 	 6000 	 9000 

Figure 4.10. Parametric mixture and Eaplan—Meier estimates of S(t) for electrical appliance failures, 
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components, with SI (t) and S2 (t) in (4.4.3) given by 

(t) = exp[—(t/a1) 13J] 	j = 1, 2. 	 (4.4.5) 

The log-likelihood function based on the 60 failure times ti , 	, t60 given in 
Example 3.4.1 is of the form 

60 
fill 4121 fi2t 	= E log foi; 	, p s 	fi2, P), (4.4.6) 

1.1 

with f (t) given by (4.4.4) with fi (t) = 	(t), j = 1, 2. The model (4.4.4) 
and (4.4.5) with the two parameter vectors (a, p, a', 13 1  p) and (a', tr, a, fi, 1 — p) 
are the saine, so without loss of generality we make the restriction 0 < p < .5. 
The m.l.e.'s are then readily found by using general optimization software to maxi-
mize (4.4.6); estimates and standard errors (in brackets) are &I = 95.4(25.8), 41 = 
1.66(.49), '&2 = 2774.5 (314.2), = 1.40(.18),  J9  = .137(.051). Asymptotic corre-
lations of the m.l.e.'s are all under .46. Initial estimates for the optimization procedure 
arc suggested by examination of KM(t)  and the data: p = .15 and values for al and 
a2 (which are the .632 quantiles for Si (t) and S2(t)) of approximately 100 and 2800 
seem reasonable. Initial values for fit and fi2 of 1 are often effective, and used here, 
though plots developed from the Kaplan—Meier or Nelson—Aalcn estimates can also 
be used to suggest estimates. • 

Figure 4.10 shows plots of the estimated survivor function 

t ) = P ex p f —(t/ & ) 41  + (1 — 13) exp[ — (t16i2) /32 ] 

and of the Kaplan—Meier estimate. The Weibull mixture clearly agrees with the 
observed data. 

4.5 THRESHOLD PARAMETERS 

As mentioned in Section 1.3, threshold parameters are occasionally introduced into 
models; these are values y > 0 such that lifetimes must satisfy the restriction T > y. 
For example, the three-parameter Weibull distribution includes a threshold parameter 
y and has p.d.f, 

f (t; Y, a, 13) =  1Ê. (1Y - ' exp [ ( t—=--Y  
a a 

t > y. 	(4.5.1) 

The existence of a time y before which failure is impossib e is sometimes plausible, 
but data are often quite uninformative concerning its value In addition, nonstandard 
behavior can occur when maximum likelihood methods are applied to such models. 
We will consider these issues briefly, then examine Weibull and exponential distri-
butions with threshold parameters. 
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4.5.1 General Remarks 

If a model has p.d.f. of the forn- 

f (t; 0, :/) = fo(t — y; 0) 	t > y 	 (4.5.2) 

and if (ti, 	= I, , . , n  i  a censored random sample of lifetimes, then the 
parameter y must satisfy y < to) = inin(ti), since we require f (ti; 0 4  y) > 0 
and 0 < S(t i ; 0, y) < 1 for eael it. Peculiarities in the likelihood function 

= FT foui — y; oysisocti_ y; 	 (4.5.3) 
I= I 

can arise. For example, for ihe three-parameter log-normal distribution where 
log(7' — y) is N(tt, (7 2) it c in be seen (see Problem 4.20) that L(A, cr, y) is 
unbounded as y approaches Po from below. The same behavior occurs for the 
three-parameter Weibull model (4.5,1) if fi < 1, since in that case f (t) 	co as 
t 	j'-l-.  This behavior can be avoided if we recognize that there is a finite degree 
of precision within which a continuous variate can be measured, and replace values 
l'or the p.cl.f.  1(1,) in the likelihood function with Pr (ti — A < < t1  + A) = 
F (ti A) — F(ti — A), whey: A represents the precision of measurement. If A is 
small, then F(11 -I- A) — 17 (t, - A) is typically very close to 2Af (0 and there is 
no need for this adjustment, but in the case of  t(I)  it keeps the likelihood finite and 
restricts y to be < t(l) — A. An alternative approach, due to Cheng and Iles (1987), 
is to leave the restriction as y < to), but replace f (t(1)) in the likelihood function 
with /:(1(  + A) — F(t0)), 

Estimation of y is also generally nonregular for certain values of 0 in a model 
(4.5.2); this is discussed for the 'Weibull Model in Section 4.5.2. In practice a con-
venient and satisfactory approach is to estimate 0 and to examine the fit of models 
(4.5.2) with y assumed known. This is easy to do, since when y is known we simply 
consider observations si = ti •- y for the lifetime distribution fo(si; 0), for which 
estimation is typically regular. Plausible values for y can be determined from the 
profile likelihood function 

Lp(Y) = L(b(y), Y) 

where  L(0, y) is given by (4.5,3) and .6(y) is the m.l.e. for 0 when y is known. 
plot  of L p (y) shows plausible  values  for y, and in some cases it is possible to 

calibrate L p  (y) by reference to a 4.1)  distribution for an associated likelihood ratio 
statistic. The fit of models for ixed values of y can be assessed informally through 
plots Or more fornially through the methods in Chapter 10, Unboundedness of the 
likelihood function (4.5.3) mar ifests itself in the profile L p  (y). This is usually not a 
problem, but if necessary we can replace f (t to; 0, y) with either F (t(l)+ A; 0, y)— 
F(to) — A; 0, y) or F(1 (1 ) + A; 0, y) — F(t(J); 0, y), as described earlier, This 
makes the likelihood function (4,5.3) and L p (y) bounded. The details associated 
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with different models vary slightly, but the discussion in the next subsection for the 
Weibull distribution deals with the crucial points. 

Some authors allow the parameter y to take on any real value, whereas we insist 
that y > O. Although there are certain mathematical advantages to leaving y arbi-
trary, it is naturally nonnegative in lifetime models. Sometimes an estimation proce-
dure may produce a negative confidence limit for y; in that case we replace the limit 
with O. Cox and Hinkley (1974, pp. 224-226) provide discussion on this point. 

1 
4.5.2 The Three-Parameter Weibull Distribution 

The log-likelihood function from a censored random sample (ti, Si), 1 = 1, 
arising from (4.5.1) is, from (4.5.3), 

e(a, p, y) = r logfi—r13 log a-I-(0 —1) E Si log(ti — y) _En ( ti  	
) fl 

 

a  i=i 	1=1 

where r = E 8,  is the number of uncensored lifetimes. This function is unbounded, 
since for any p < 1, ga, fi, y) co as y tm—. Consequently, a solution to 
the likelihood equations at/ea = 0, aeop = 0, 8Z/0y = 0 does not produce 
a global maximum for the likelihood. It appears from empirical investigation (e.g., 
Pike 1966; Rockette et al. 1974; Lockhart and Stephens 1994) that the likelihood 
equations must have two or fewer solutions. It has been proven that when P(a, p, y) 
has a local maximum, there is also a second solution to the likelihood equations that 
gives a saddle point. 

Situations in which the Weibull distribution is used with a threshold parameter 
typically have 13 > 1, and we restrict attention to this case. With the restriction 

> 1, the likelihood function is bounded and it may have a local maximum at a 
point (a, /3, j)) with 61 > 0, /3 > 1,  J,  < t(I ). When there is no local maximum, 
t(a, /3, y) is maximized over the region with a > 0, p > 1, y < t(J)  by 

p = t( 1 ) , 	$ 	1, 	
=t — 
	

(4.5.5) 

This can also give the global maximum  of  (a, fi, y) when a local maximum exists, 
so it is necessary to compare the likelihood function values at (4.5.5) and at the local 
maximum in order to determine the global maximum. In this way, maximization of 

(cr, fi, y) gives essentially the same estimate as does maximization of the likelihood 
obtained by adjusting f (tm; a, fi, y) as described in the preceding section, assuming 
the restriction p > l is retained. 

A good way to obtain the mix. and determine plausible values for y is to compute 
the profile log-likelihood function tp  (y) = i(ei(y), 'fi(y), y), where & (y)  and /3(y) 
are the m,l.e,'s of a and 0, with y held fixed, These estimates are easily found by 
treating the values Si = ti — y as a censored sample from the two-parameter Weibull 
distribution. As described in Section 5.2, estimates are provided by many software 
packages. A graph of  £ j,  (y) shows plausible values of y and in most cases allows p. 
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to be accurately determined; note that only values y < t(t)  are considered and that we 

restrict attention to values /3 > L When the m.l.e. (a', /3, p) has been obtained, the 
log relative profile likelihood or die corresponding likelihood ratio statistic A (y) = 
2e(ey, /3, p) — 2e.,,(y) can also be calculated. Asymptotic theory shows that if # > 2, 
then  A(yo) has a limiting 4 )  distribution when yo > 0 is the true value of y, 

though the adequacy of the 4 )  approximation *n moderate-size samples has not I 
been thoroughly investigated. If fi < 2, then the li

n 
iting distribution of  A() is not 

In the case where it is known that # = 1, we have a two-parameter exponential 

model, and it is noted in the next .iection that A (yo) is then asymptotically 42) . For 
practical purposes a conservative guideline is to think of plausible values for y as 
ones with A (y) < 5,99, which is the .95 pantile for 42) . If plausible values for fi 

appear to be greater than 2, then we can use instiad the 4)  quantile 3.84. In most 

cases the log-likelihood function e(Œ,  fi, y) is very flat near the rn.l.e. and there is a 
wide range of plausible values for y. 

The threshold parameter has r different function than a or fi in (4.5.1). Interval 
estimation and tests about dis.trbution characteristics are best carried out with y 
treated as known; the sensitivity of inferences to variation in y can be examined. 

Point estimates and confidence ini:ervals for a and p often vary widely as y is varied; 

this reflects the fact that the likelihood function e(a, fi, y) is flat near the m.l.e., and 
that the in.he.'s are highly corre'ated, The data are informative only about certain 
functions of a., /I, and y and not the individual parameters. As illustrated in the 
example below, estimates of quatailes tp  = y + a[— log(1 — p)]  are often quite 
stable as y varies, and it would hen be reasonable to quote confidence limits for tp  
with y assumed equal to y'. 

1 
Example 4.5.1. Pike (1966) gave some data from a laboratory investigation in 

which the vaginas of rats were painted with the carcinogen DMBA, and the  number  
of days T until a carcinoma appeared was recorded. The data below are for a group 
of 19 rats (Group I in Pike's paper); the  to  obsetyations with asterisks are censoring 
times,  

I143, 164, 188, 188, 190, 192, 206, 
234, 246, 265, 304, 21 (5*, 244* 

209 213, 216, 220, 227, 230, 

These clata.were given in Problem 3.5, where it was suggested that probability plots 
for Weibull distributions with and without a threshold parameter be considered. We 
will fit the three-parameter mod(' to the data here. 

Table 4.4 shows estimates  i(y), 4(y), and associated values of the profile 
log-likelihood f.p (y). The estimates &OA /3(y), and log-likelihood values are 
obtained by maximizing (4.5.4) with y fixed, which is the two-parameter Weibull 
log-likelihood function (see Section 5.2), with ti replaced by ti — y, From this we see 
that a local maximum  of (,  fi,  y) occurs at about p = 122, er = 108.4, = 2.712, 
though the log-likelihood is very flat in the region of this point. Values of the pro-
file relative likelihood function Rp (y) = Lp (y)/L p (p) and of the likelihood ratio 
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ee(y)  $ (Y) tp(Y) R(y) A(y) 

0 234.3 6.08 -88.233 .403 1.818 
60 173.2 4.49 -87.831 .602 1.015 

100 131.8 3.38 -87,467 .867 .285 
110 12 1 .2 3.08 -87.381 .945 .113 
120 110.6 2.78 -87.327 ,998 .004 
122 108.4 2.71 -87.324 1.000 .000 
125 105.2 2.61 -87.330 .994 .012 
130 99.7 2.44 -87,382 .944 .115 
135 94.0 2.24 -87.542 .804 .436 
140 88.0 1.99 -88.064 .477 1,480 
142 85.2 1.80 -88.773 .235 2.896 
143 81.1 1.00 -91.718 .012 8.846 

statistic A(y) = -2 log  R(y) = ze (& , ,P) -2tp (y) are also given in Table 4.4. 
Figure 4.11 shows plots of these two functions; although the relative likelihood 
function is equivalent to the likelihood ratio statistic, which we norMally plot,  we  
show  R(y) here as well to emphasize the shape of the profile likelihood function 
for y. It is seen that no values of y in (0,143) are particularly implausible except for 
those very close to 143. Note that we have restricted fi to be > 1; if we allow values 
p < 1, there is a local minimum  of  (y) very close to  t(l) = 143, and both  £p (y) 
and f(a, fi, y) become arbitrarily large as y -4- 143. 

Note that ii(y) and $(y) vary considerably with y. Unless we are willing to 
restrict y to a narrow range, precise estimation  of  a or p is not possible. How-
ever, estimates of quantiles or survival probabilities are quite stable as y varies. For 
example, the m.l.e, for the pth quantile with a given value of y is 

îp(y) = y + ii(y)(- log(1 - p)]1/fl(Y) 

Estimates for p = .10, .50, .90 at y = 60, 100, 140 are as follows: 

(10(60) = 164.9 1.50(60) = 219.6 /.90(60) = 268.6 
t,10(100) = 167.7 t,50(100) = 218.2 t,90(100) = '268.7 
t,10(140) = 168.3 ti0(140) = 213.2 1.90(140) = 274.0. 

One would expect these estimates to be stable, because Weibull plots of the data with 
the different y values indicate an adequate fit to the data in each instance. 

The value y = 0 is of special interest because it corresponds to the absence 
of a threshold for failure. With these data y = 0 is clearly plausible, and there is no 
need to consider a formal test. If a test were of  interest, it would be satisfactory to use 
A(y) as a test statistic, with a p-value computed with the approximation Pr (A (0) = 
A cbs ) = .5Pr(41)  > Arks). This is because, whereas A (yo) is asymptotically Xri) 
when fi > 2 and yo > 0, the likelihood ratio statistic A(0) has a limiting distribution 



1,0 - 

0.8 - 

54  0.6 - 

0,4 

0.2 2 - 

0 

10 

: 8 _ 

• 	6 - u) 
c4 

4 - 

190 	 INFERENCE PROCEDURES FOR PARAMETRIC MODELS 

0 	40 	80 	1; 0 	160 
	

0 
	

40 
	

80 	120 
	

160 

y (clays) 
	

Y (days) 

Figure 4.11.  Relative  likelihood  fane  ion and likelihood ratio statistic for Weibull threshold parameter 
(time to vaginal cancer data), 

2 when y = 0 with Pr(A (0) = 0) = .5 and Pr(A (0) > x) = .5Pr()( 0)  > x) for 
x > 0, Alternatively, if we allow y and thus P to be negative, then A(0) has a 4 )  
limiting distribution when y = 0; a one-sided test of y = 0 against alternatives with 
y > 0 then gives the same p-v due as for the case with restriction y > 0. 

4.5.3  The Two-Parameter 1.xponential Distribution 

The two-parameter exponentia distribution has p.d.f. 

f 0; (9,  y) = o-e -(1- Y ) /9 	t > y. 	 (4.5.6) 

Although there seem to be relatively few documented applications of this model 
to real data, it is rather easy to deal with and has received considerable theoretical 
attention. It is also of interest a; a special case of the Weibull model in the preceding 
section. A few results are summarized here. 

The log-likelihood function from a censored random sample (tI, (5/), i = 1, 

t(0, y = —r log (9 
	

— Y) 	
(4.5.7) 

t=t 
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where r = E 51 is the number of uncensored lifetimes. Bearing in mind that y  
the smallest observed time, it is easy to see that for any 9  > 0,  1(0,  y) is maximized 
at y = t(l). Since 1(0, t(l )) is maximized at E(ti —t(l))1 r , the m.l.e ,  based on (4.5,7) 
is 

5 = 	- 

	 (4.5.8) 
1=1 

As elsewhere, it is tacitly assumed that r > 0; when r = 0, the likelihood does not 
possess a finite maximum. 

Tests and interval estimates for 19 are readily obtained, and are essentially the same 
as procedures for 6' in the one-parameter exponential model, given in Section 4.4.1, 
with ti — t(J)  used in place of ti. For example, the likelihood ratio statistic for 0 is 

A (9)  = 21 (5 , 9) -  21(6, (0)) 

= 2r 	1 — log (7..)] 
d 

(4.5.9) 

and we can use the limiting 4)  distribution of  A (6)  in order to obtain tests or con-
fidence intervals. 

Inferences about y via its likelihood ratio statistic are also straightforward, though 
the limiting distribution for A (y) turns out to be 42)  rather than the regular 41)  
(Hogg 1956). The likelihood ratio statistic is A (y) = 21(6, 9) -  21 (0(y),  y), and 
since (y) = E(ti  - y)I r , we find from (4.5.7) that 

A (y) = 2r log [1 + n(9 31 )] 

re 
(4.5.10) 

In the case of Type 2 censored data, discussed in Section 2.2,1, exact distributional 
results are available. In this case the t1 values with Si = I are t(j) « to.), the 
first r order statistics, and those with Si = 0 are equal to t(,.); the m.l.e.'s are as 
given in (4.5,8), It is readily seen that S and  9  are jointly sufficient for  O and y; thcir 
distributions are given in the following theorem. 

THEOREM 4.5.1. Let  Sand 9  be the m.l.e.'s based on a Type 2 censored sample 
consisting of the r smallest observations in a random sample of n from the dis-
tribution (4.5.6). Then S and  9  are independent, and 2n (9  — y)19 and 214 510 are 
distributed as 42)  and X3' ar-2)' respectively. 

Proof The random variables  T(l) — y, . , T(.) — y are the first r order statistics in 
a random sample of size n from the one-parameter exponential distribution (1.3.3). 
By Theorem 4.1.1, the quantities IV1 = n(T(I) — y) and 

= (n — + 1)(Ti) — —0) 	i = 2, . , . , 
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independent and have one-parameter exponential distributions. Hence 2n(P - 
y i/0= 21,1/1/0 - 	and 

	

2r 	r 

E- x&_2), 

	

0 	0 
i=2 

by the same arguments as in Theorc in 4.1.1, 

Confidence intervals or tests  forS  or y are easily obtained from the results of the 

theorem, Inferences for (9 can be based on the pivotal quantity 2re/0 --- 42„..2) , and 

inferences for y can be based on th 3 pivotal 

15 
	 - F(2.2,-2) • 

	 (4.5.11) 

That this has an F distribution follows directly from the results of Theorem 4.5.1, 
Quanliles for F(2.2,-1) have a clost:c1 form: the pth quantile is 

F(2.21. -2),17 = (r - 1)[(1. - p) -110.-1)  - 	 (4.5.12) 

it is rather easy to show (see Prob:em 4.18) that when r becomes large, confidence 

limits for 0 and y based on these rivotal quantities become the same as those based 

on the likelihood ratio statistics (4 5.9) and  (4.5.10), used in conjunction with a xli )  

and 4 1  distribution, respectively. 
Confidence intervals  for quantiles or for SO) are awkward to obtain via stan-

dard large-sample methods in the E.eneral case of censored data. For Type 2 censored 

data, however, confidence, intervals for  t,,  = y + 6 [- log(1 - p)] can be based on 

the pivotal quantity 

(4.5.13) 

This is readily seen to he pivotal by the results of Theorem 4.5.1; see (4.5.14) .  If 

is the Oh quantile of Z thon p - 7,„,,9 is a lower q confidence limit for tr . 
Confidence intervals for SO) can also be obtained from (4.5.13) . To get a lower q 
confidence limit for SOO for a Sp( cified (0, we determine p such that p - p , q 9 = to; 
see the discussion in Section 3.2.3 concerning the relationship between confidence 
intervals for pantiles and survival probabilities. 

The distribution of (4.5,13) ha:. been studied by various authors; an exact formula 
and an approximation that can be tised to get confidence limits are given below. How-
ever. Z,,, has a simple representation in terms of independent x 2  random variables: 
by simple manipulation of (4.5.1:;) and Theorem 4.5.1, we have that 

r 	2r(- log6 - p)] 
r  - „ 	 (4,5.14) 

n v2 	 V2 
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where 1/1 — 42)  and V2 	X (22r. 2)  are independent. Quantiles or survival probabili- 
ties for Zp  are easily obtained to any desired degree of accuracy by simulation. 

Engelhardt and Bain (1978b) gave expressions that can be used instead of simu-
lation. If p and q are such that (1 — > 1 — q, then the lower q confidence limit 
for tp  has closed form 

\ 1/(r - 1)1 6  p _r [ 1  
1  —q  

The q lower confidence limit on 5(10) in the same case is 

(1 	q ) I /n 	n.(to  

re 

(4.5.15) 

(4.5.16) 

For the case where (1 — p)" < 1— q, there is no exact expression for the confidence 
limits. Engelhardt and Bain give the following approximations and show they are 
sufficiently accurate for virtually all practical purposes. The lower q confidence limit 
for tp  is 

p + [—m(p) — Ng  (m2(p)  + 
r

12 ) 
1 /1 6 	

(4.5.17) 

where ni(p) = [1-1- n log(1 — p)]/ (r  — 2.5)  and Ng  is the q quantile for the standard 
normal distribution, The corresponding lower q confidence limit for S(t0) is 

exp  [ 	
an 	 r 

1 + r(r — 2.5) 	N 	 \ 1/2\  1 
	 Y 	(r.  Y 2  +a) )j,, (4.5,18) 

where Y = n(9 — t0)/6 and a = r2 (1 — Ng  /r). 
Although (4.5,13) is not an exact pivotal quantity in the case of arbitrarily cen-

sored data, it is approximately pivotal in large samples. A reasonable approach to 
confidence interval estimation or tests in that case is to use the nonparametric boot-
strap (see Appendix 0 .2) to estimate the distribution of z„. A satisfactory approach 
is to select n observations (ti, 31) from the observed data, with replacement, then 
to compute estimates p. and 6* and the value zi*, = cp. — Ep )/ 9" , where i‘p  = 
9 +(— log(1 — p)le is the mix. from the observed data. Repeating this B times (say 
B = 1000), we consider the ep  as a random sample from the distribution of Zp , and 
use it to estimate quantiles or survival probabilities. 

Example 4.5.2. Engelhardt and Bain (1978b) and others considered data on the 
mileages at which 19 military personnel carriers failed in service. There is no cen- 
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coring, and the mileages are 
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162, 200, 271, 320, 393, 508, 539, 629, 706, 777, 
884, 1008, 1101, 1182, 1463, 1603, 1984, 2355, 2880. 

Since there is no censoring, Theorem 4.1.1 tels us that if model (4.5.6) is cor-

rect, then conditional on  T(I) = /(1). the variables To) — t(i) (i = 2  19) have 

the distribution of the order statistics of a sample of size 18 from a one-parameter 

exponential distribution with mean O. A probability plot of the values tu) — 1(1), as 

described in Section 3.3.1, indicates that an exponential model is consistent with the 

data. 

Maximum likelihood estimaNs of 0 and y from (4.5.8) are Y' =  162, 9  = 835.2. 
Confidence intervals for y can be. obtained from the fact that 18(p - y)/6  
by (4.5.11) with r =  o  = 19. For example, since Pr(F(2,36) < 3.254) = .95, we 

get the  .95 confidence interval y > - 3.254b/18, or 11,0 < y(< 162), which is 

very wide. For a two-sided .95 confidence interval for 0, we use 38670 — 430  and 

Pr (21.38 < x(216)  < 54.40) = .95 to get 583.4 < < 1484. 
Let us also obtain  a lower .90 confidence limit for the quantile t, in of the distribu-

tion, We can use (4.5.15) in this case, or determine the distribution  of Z,10 in (4.5.13) 
by simulation. We use the forme . . since it is eat; this gives the interval t,lo > 114.6, 

4.6 PREDICTION INTERVALS 

Some applications involve the 'prediction of future observations in a population or 
process. based on existing data, For example, One may wish to predict the number 

of parts that will need to be rep:aced in a system over the next three months, or the 

time to platelet recovery for a leukeinia patient who has received a bone marrow 
transplant. Prediction is different than estimation of a distributional characteristic 
because we are interested in a  flute number (perhaps only one) of individuals rather 

than the entire conceptual population that the distribution represents. 
Suppose that a future obse ..vation is represented by the random variable Y, 

with c.cl.f. (y; 0), If 0 is known. then the quantities  y(0), satisfying Pr(Y < 
y„(0); 0) =  ca,  *vide prediction limits for Y The so-called plug-in method of 
setting prediction limits with 0 unknown is to replace 0 with an estimate, 6, based 
on existing data. The nominal a upper prediction limit )( OE * does not in this case 
satisfy either Pr(Y < y„(6)1(4; 0) = a or Pr(Y < y„(1)); 0) = a, where we 
consider both Y and  O as rand= variables. If O is based on a large sample then, 
assuming it is a consistent estimator of 0, the preceding probabilities will typically 
be close to a. With small data sc.:ts it is sensible to recognize the uncertainty inherent 
in b. This leads to the concept c f prediction intervals, which we now discuss briefly. 

To start, let  Y1,  , Y„ be a random sample from a distribution F(y; 0) in 
sonie parametric family, and et Y' represent an independent "future" observa-
tion from the sanie distributic n. It is assumed that 0 is unknown, but can be 
estimated from Y1  Y„. Ar a prediction interval for r is a random interval 
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,Yn),  13 (Y1, 	Y,,)] such that 

	

Pr[A(111, 	,Y,,) < Y' < B(Y1 	 17n)] = a. 	(4.6.1) 

Such "exact" prediction intervals can be obtained only in certain situations, but if 
there exists a pivotal random variable 

U = g(Yi 	4,171) 	 (4.6.2) 

whose distribution is free of 19, and if probability statements 

Pr(a < U < b) = a 	 (4.6.3) 

can be inverted into the form (4.6.1), then exact prediction intervals exist. The inter-
val [A (yi ,   y„), B(yl, , y„)] based on observed data (yi  y„) is a realized 
prediction interval and has a similar interpretation to a confidence interval. 

	

Example 4.6.1. Let Y1, 	, Y„ Ua  a random sample from the exponential dis- 
tribution (1.3.3) with c.d.f. F(y; 0) = 1 — exp( —y10), and let Y' be an independent 
future observation from the same distribution. By Corollary 4.1.1 of Theorem 4.1,1, 
it follows that 2Y70 — x (22)  and 2 Erl_ i  / — 420 , and therefore that 

U = 	I E 	P(2,212) 	 (4.6.4) 

is a pivotal quantity. Thus, letting F(2,2, 1 ),,, be the a quantile for the F(2,2„) distribu-
tion and noting that 6 =i7  is the m.l.e. of  9 ,  we have Pr (U < 17(2,211),a) = a, and 
so 

Pr(Y' 5. F(2,2n),a) = a. 	 (4.6.5) 

Thus 6F(2,2,1 ),,,, is an a upper prediction limit for the future observation Y' For 
example, if n = 10, then F(2,20),.95 = 3.49 and the .95 upper prediction limit is 
3.4916, 

By comparison, y.95(0) = 3.006 for the exponential distribution, so the plug-in 
.95 prediction limit would be 3.006, The unconditional probability Pr (Y' < 3.006) 
is substantially less than .95 in this case. As n increases, the proper .95 prediction 
limit 6F(2,2,1 ),,95 approaches 3.006, reflecting the fact that 6 converges to the true 
value of 0 as n -+ oo. For n = 30 and n = 60, for example, the .95 limits obtained 
from (4.6.5) are 3.156 and 3.076. For n = 60 there would be little harm in simply 
using the plug-in limit. 

The preceding example is special in yielding exact prediction intervals, If there 
had been a Type 1 censored random sample (ti, i = 1, . . . , n, for example, then 
exact intervals would no longer exist, This is analogous to the situation concerning 
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:onlidence intervals for 0, where exact intervals are unavailable with Type 1 cen-

sored data. If the random variable Y represents potential observed data,  then, as with 

confidence intervals, we can look Rif. prediction intervals [A (Y), B(Y) I for which 

Pf.[A (Y) < Y' 5. B(Y)] -4 a 	 (4.6.6) 

as the sample size n --> co. If the probability on the left approaches a sufficiently 

'fist as it increases, then for suffiet nitly large n the interval may reasonably be termed 

an approximate a predictiOn interval for the future observation Y' 

Plug-in limits based on coriM ;tent estimators of 0 provide intervals satisfying 

(4.6.6). In particular, if 4(0) is the pth quantile for Y' and  O  = bm is consis-

tent, then for ai , a, such that  i + a2 = 1 — ci the interval [A, (6), y....,y2 (b)] is 

an approximate a prediction inter val. However, with small or moderate sample sizes 
the actual coverage probability P r[A(Y) < Y' < B(Y)) may not be as close to a 

as desired. Two approaches are of 'en used to improve coverage probability accuracy. 
The first is to look for approximate pivotal quantities U = g(Y, Y') whose distribu-

tion depends very little on 0, even for small sample sizes, and to obtain prediction 

intervals by inverting probability atatements (4,6.3). The second approach is termed 

.alibratioa, and consists of determining (usually by simulation) the actual coverage 
probability a' (0) associated with n plug-in prediction interval with nominal coverage 
e. IF desired, the value of a can tl-en be adjusted so as to make ce(0) greater than or 
•:qual to some nominal value. In p .actice, what is usually done is to adjust a to make 
a'(0) equal to some desired cove-age probability, where "6 is the mie. for 0 based 
on the observed data y. 

P(v): 0) is the c,d.f. for continuous Y', then 17 (Y'; 0) is a Uniform(0, 1) random 
variable and appealing approxitna':e pivotal quantities for  prediction  are 

= 	b (Y)) 	 (4.6.7) 

or monotonic functions of U. Tl- e distribution of U can be estimated by simula-
tion for any value of 0 by generating independent data Y' and Y. This is usually 

done for the value 0 = I) only, where Ô  = boo is the m.l.e. for 0 based on the 
observed data, This procedure is sometimes referred to as a parametric bootstrap 
(see Appendix D.2). 

It will not lie. possible to simulate censored data Y under the estimated model 
with 0 = to unless the censoring p rocess is known, One can if necessary generate Y 
and 0(Y) using nonparametric bootstrap sampling (see Appendix D.2). Two general 
notes of caution are that large numbers of simulations may be needed • to estimate 
the distribution of  pivotais or to ci librate plug-in prediction limits well, and that the 
accuracy of approximate methods has been studied only in a few special settings. 

Example 4.6.2, Consider the exponential model of Example 4.6.1 and a Type 1 
censored random sample yi = (ti 6;), i = , n, which arises as follows. Each 
individual has a lifetime Ti from tie exponential distribution and a known potential 
censoring time,  C, , and we observ , 1t,  = min(7), Ci) and Si = I (ti = TO. The m.l.e. 
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of9  is = Et,/ E Si and the approximate pivotal (4.6.7) is U = 1 — exp(— Y76). 
If we can closely approximate  the distribution of U or a monotonic function of  U,  
such as W = 10, then prediction intervals can be given. In particular, if a and b are 
such that P r (a < W < b) = a, then [A(9); B(6)] = (a .  , b0) is an(approximate) a 
prediction interval for Y' 

The calibration approach is essentially the same. For simplicity suppose we want 
an upper prediction limit B(Y) for Y' Since  ye (9) = —0 log(1H— a) is the ath 
quantile for Y', the plug-in a upper prediction limit is y„,(6) = log(1 — a). 
However, the true coverage probability associated with the prediction limit is 

h (a) = Pr(Y/  YotA; 0], 	 (4.6.8) 

where we suppress notationally that h(a) also depends on B. The process of calibra-
tion consists of determining the function h(a). Once this is done we can obtain a pre-
diction interval with the desired coverage. For example, for a .95 interval we use the 
plug-in limit y,,, (9 ) with a chosen so that h (a) = .95. Since y„((3) = log(1 — a) 
in the present setting, (4.6.8) implies that 

h(a) = Pr[W < — log(1 — a); 0], 

where W = Y'/6, Thus calibration is here equivalent to determining the distribution 
of W 

To illustrate the use of simulation for calibration or determination of the distribu-
tion of W, let us consider the following artificial example involving an uncensored 
sample of size n = 10, as in Example 4.6,1. In this case W = Y'/§ is distributed 
exactly as F(2,20) so the accuracy of approximations obtained via simulation can be 
examined. Suppose the 10 observed lifetimes are 0.695, 0.148, 0.911, 0.344, 1.034, 
0.718, 0.296, 1.178, 0.802, 0.825, giving 6 = 0.695. Table 4.5 shows the exact .05 
and .95 quantiles of W along with parametric and nonparametric bootstrap estimates, 
obtained, respectively, as follows. 

1. Independent pseudorandom observations y' and yik  ..... )10  are generated 
from Exp(.695), giving a value 	= y'/y" This is repeated B times, giving 
values wl", 	, w;. 

Table 4.5. Exact and Simulated Quantiles of W 

Quantile 
Exact 
Value 

Parametric 
Bootstrap 

Nonparametric 
Bootstrap 

W.05 

10 .95 

.051 

3.493 

B = 2,000 
B = 10,000 
B  = 50,000 
B = 2,000 
B =  1 0.000 
B = 50,000 

.060 

.045 

.051 
3.517 
3.418 
3.507 

.054 

.051 

.049 
3.084 
3.051 
3.079 
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2. A value y' is generated from Exp(.695) and a nonparametric bootstrap sample 
... .,  yibo ) is generated by sampling 10 values, with replacement, from the 

observed lifetimes. This give!. u.)* = y'/y', and the process is.repeated B times 
to give uft, 	to*11 . 

In each case the .05 and .95 quantiles of W can be estimated as W 0513)  and 
The parametric bootstrap estimates are very accurate if the Value of B  is suf-

ficiently large. The nonparametric estimates do not change much as B increases 
beyond 2000 for the small sample size (n = 10) here; the .05 quantile of W is esti-
mated well, but not the .95 quantile, These results should be viewed in:the context 
that the exact .05 and .95 quantile of W = Y'fé are .051 and 3.493. The nonpara-
metric bootstrap here improves only slightly on the plug-in method, which gives the 
.95 quanti le as 2.996. 

The discussion so far has dealt with the prediction of a single independent obser-
vation Y' from the distribution under consideration. Predictions for functions of two 
or more random variables may also be of interest, say 

V = g(Y;, 	, 

For example, V might be the sum E 	or the rth order statistic 	which are 
both of interest itt reliability conMxts. If the c.d.f. Fit (v; 0) is available in closed 
Corm, then it may he possible to me U = Fv (V ; as an approximate (or in some 
special cases, exact) pivotal quantity from which prediction intervals for V can be 
obtained. In most such cases, it will be necessary to estimate the distribution of U 
by simulation, as illustrated in 'Esample 4.6,2. The calibration approach can also 
be used and is equivalent to the pivotal method, This involves calibrating plug-in 
prediction limits 1),(6) for V, where Fv[v,r (0); 0] = a, and can be done using 
simulation. In. some applications '/ may not be independent of Y and  O.  This does 
not complicate matters substantially provided that the joint distribution of V and 
:an be approximated by simulatio:i. 

Prediction of discrete random 1•ariables can also be of interest, for example, V = 
E I (Y1 > yo), the number of life imes among future 1',...,  ',in , that exceed some 
stated value yo. In this case, intervils with exact nominal coverage probabilities such 

.95 or .99 usually don't exist ev3n if 0 is known, but intervals with approximately 
such coverage can be sought. The best approach is calibration of plug-in prediction 
limits, The following example involves a discrete variable V that is also not indepen-
dent of  O. 

Example 4.6.3. The lifetimes T of certain electromechanical units can be 
assumed to follow a clistributior F(i; 0). Suppose that n units enter service at 
the same time and that after a time r has elapsed, r < n of the units have failed, it is 
wished to obtain prediction limits l'or the number of remaining units V that will fail 
in the time interval (r, 
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Given r, V has a Binomial(m, p(0)) distribution, where m = n — r and 

F(r';  0) — F(t; 0) 

1 — F(r; 0) 

If 0 were known, we could determine, say, an a upper prediction limit B c, (0 , r) as 
the smallest integer such that 

Pr[V < 	r)Ir; 0] >  a. 	 (4.6.9) 

The plug-in prediction limit is Bc,(O, r), where 6 is the m.l.e. of 0 based on the 
data y observed up to time r; this consists of r and information about the times of 
the r failures over (0, r). The calibration approach is then to estimate the uncondi-
tional coverage probability h(a) = P r[V* < Da (O* , r*); 0], where (V*, 0*,  r*) are 
random variables representing the data over (0, r) and the number of failures over 
(r, r'). This is done by assuming that 0 = 6(y), the mie.  based on the observed 
data. The probability h(a) can be estimated by simulation. Noticing that 

h(a) = E 1P r[V* 5 Ba (O* , r*)I 6*, r*]}, 

and that the probability inside the expectation is given by the distribution Bino-
mial(n —  r*,  p(b)), allows us to avoid simulating values V* 

In many prediction problems the distribution of V may be analytically intractable, 
necessitating the calculation of even plug-in limits by simulation. Calibration is then 
more computation-intensive. If the data set on which the plug-in limits are based is 
moderately large, it is usually safe to forgo calibration. Since it is generally advisable 
to assess the effects of model variation on prediction, one can replace calibration 
with a sensitivity analysis on the effects of changes in 0 and the model on plug-in 
prediction limits. 

We conclude by mentioning that Bayesian methods of prediction are attractive. 
Let  r(0)  be a prior distribution for 0 and let 

L(0;  y)n-  (0) 
P(OIY) — 

f L(0; y)n (0) d 

be the posterior distribution for 0, given observed data y that provide the likelihood 
function L(0; y). The Bayesian predictive distribution for the independent future 
observation, V, given y, then has probability density or mass function 

f (yiy) = f fv (y; 0) p(Oly) d 0, 	 (4.6.10) 

where fv (v; 0) is the p.d.f. or probability mass function for V when 0 is known. If 
V and Y are not independent, then fv (y; 0) is replaced by fy (yly; 0) in (4.6.10). 

Bayesian prediction is readily implemented in many problems using numerical 
methods or simulation. As the sample size giving y increases, Bayesian a-probability 
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prediction intervals converge to plug-in a prediction intervals. Aitchison and Duns-

more (1975) and Geisser (1993) provide overviews of the Bayesian approach. 

BIBLIOGRAPHIC NOTES 

The exponential distribution was featured in many early papers on lifetime distribu-

tions, particularly with reference to industrial life testing; see, for example Sukhatme 
(1937), Epstein and Sobel (195.7, 1954, 1955), Epstein (1954), Bartholomew (1957), 
Mendenhall (1958) and Govinclarajulu (1964). Johnson, Kotz, and Balakrishnan 
(1994, Ch, 19) provide a more extensive list of references. Anscombe (1964) and 
Sprott (1973) emphasized the tre of parameter transformations to improve the accu-

racy of large-sample procedure: as in Section 4.1. 
Industrial life test plans under exponential distributions have been thoroughly 

studied in the early references just cited, and later by Aroian (1976), Bryant and 

Schmee (1979), Kao et al. (19n), and others. Life test acceptance plans published in 

various reliability standards (see. Blischke and Murthy 2000, pp. 697-701) have been 

based on this work; a note of elution is that these plans are sensitive to departures 

from the assumed exponential model (e.g., Zelen and Dannemiller 1961; Harter and 

Moore .1976; Fryer and Holt 1 )76). Plans for comparative experiments have been 

studied in the context of clinical trials and other areas,. Early examples are found 

in Armitage (1975), Breslow and Haug (1972), and Louis (1977), where sequen-

tial plans are emphasized. Bea stein and Lagakos (1978), Rubinstein et al. (1981), 
Lachin and Foulkes (1986), and others provide detailed examinations. Books on clin-

al trials  (e.g., Whitehead 199: ; Piantadosi 1997) discuss the planning of compara-
tive experiments under various ' ypes of assumptions. 

Inference for the gamma model has been considered by Engelhardt and Bain 
(1978a), Chao and Glaser (I 97II) and others for the complete data case. The inverse 
Gaussian model has been considered by Chhikara and Folks (1977, 1989), Jorgensen 
(1981), and Whitmore (1975, 1983). Johnson et al, (1994, Chs. 17, 15) provide 
numerous references for the gamma and inverse Gaussian models. 

Models with polynomial hazard functions were considered by Bain (1974), Can-
field and Borgman . (1975), and Gaver and Acar (1979). The Gompertz model with 
log h(t) linear  lias  been widel: ,  studied, and Gehan  and Siddiqui (1973) consider 
models for which some transform  of h(t) is linear in the parameters. The use of 
piecewise polynomial functions, especially splines that are everywhere smooth, has 
received a'great deal of recent attention. In addition to the'preceding references, see, 
l'or example, Etazadi-Amoli aryl Ciampi (1987) and, for a discrete-time application, 
Erroll (1988). Additional references are given in the Bibliographic Notes for Chap-
tc 3. 

Silvapulle and Burridge (1986) discuss unimodality properties of likelihood 
functions based on grouped chta; Heitjan (1989) provides a review of inference 
procedures. Lindsey (1998) discusses inference based on interval-censored data for 
parametric models, and Lindsey and Ryan (1998) discuss models with piecewise 
polynomial hazard functions. The parametric treatment of truncated data is similarly 
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straightforward in principle, but if truncation is severe, one may encounter likelihood 
functions that are uninformative about certain parameters. Kalbfleisch and Lawless 
(1988b, 1989) consider applications where this is the case. 

In some applications censoring times may be missing for censored individuals; for 
example, see Suzuki (1985a,b, 1995), Kalbfleisch and Lawless (1988a, b), Hu and 
Lawless (1996), and Hu et al. (1998). This book does not address this topic except in 
Problem 3,11, and likewise does not deal with missing data on covariates. Lawless 
et al, (1999) provide some general discussion and references on these topics. 

There is a substantial literature on discrete mixtures of parametric models (e.g., 
Titterington et al. 1985; Btihning 2000), with mixtures of normal (Folkes 1979; 
Aitkin and Wilson 1980; Johnson et al. 1994, Sec. 13.10.2), exponential (Johnson et 
al. 1994, Sec. 19.9), and Weibull (Kao 1959; Falls 1970) distributions among well-
studied models. Mailer  and Zhou (1996) consider curc-rate models as in Example 
4.4.1. Meeker and Escobar (1998, Sec.11.5) consider similar models in reliability 
applications. For examples of continuous mixture models, see Whitmore (1986). 

Inferences about threshold parameters have been studied a good deal, in part 
because of the possibility of nonregular asymptotic behavior for certain parameter 
values, Cheng and Traylor (1995) provide a survey of the area; see also Smith (1985, 
1995). Estimation for the three-parameter Weibull model has been studied exten-
sively (e.g., Pike 1966; Rockette et al. 1974; Lcmon 1975; Lockhart and Stephens 
1994; Smith 1995). The two-parameter exponential distribution has also been widely 
studied, particularly for the case of complete or Type 2 censored data (e.g., see Engel-. 
hardt and Bain 1978b; Pierce 1973 and references therein). Johnson et al. (1994) con-
tains many additional references on Weibull and exponential models with threshold 
parameters. 

Prediction problems are considered by Aitchison and Dunsmorc (1975), Hahn and 
Meeker (1991), Geisser (1993), and Meeker and Escobar (1998,    Ch, 12; 1999), who 
all give numerous references and examples of applications. Beran (1990) and Hall 
et al. (1999) consider calibration using bootstrap simulations. Barndorff-Nielsen and 
Cox (1994, Sec. 9.4; 1996) discuss different approaches to prediction, and asymp-
totic coverage properties for prediction intervals. Aitchison and Dunsmore (1975), 
Geisser (1993), and Meeker and Escobar (1998, Ch. 14) discuss Bayesian prediction 
intervals. For Bayesian point prediction, see Skouras and Dawid (1998). 

COMPUTATIONAL NOTES 

The gamma, inverse Gaussian and polynomial hazard function models of Section 4.2 
are not incliided in major statistical software packages, but it is relatively easy to 
implement maximum likelihood methods using standard optimization software, as 
discussed in Appendix D. Interval censoring and truncation for data from the com-
mon log-location-sCale models (Weibull, log-normal, log-logistic) are handled by 
several packages, including S-Plus. Software for fitting discrete parametric mixtures 
to censored data is discussed by B iihning (2000). With censored data we can use opti-
mization software, with care taken to explore the shape of the likelihood function for 
models with several parameters. 
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PROBLEMS AND SUPPLEMENTS 

4.1 The following data are times ti, 	rn  between successive failures of air  con- 
ditioning equipment in a Boeing 720 airplane (Proschan, 1963): 74, 57, 48, 29, 
502, 12, 70, 21, 29, 386, f.9, 27, 153, 26, and 326. Assuming that the data come 
from an exponential dist ibution with mean 0, compare confidence intervals 
for B obtained by using he approximate  pivotais  below with exact intervals 
obtained by . using the fact that 2E ri g) 42„ ) : (1) viicê - eve") - N(0, 1); 

(2) 3 -1 (r-fi - 0) - N(0, 1), where 0 = 0 -0 ; (3) the likelihood ratio 
statistic. 

(Section 4.1) 

4.2 Consider the likelihood function L(9)  obtained in the case of Type I censored 
sampling from the exponential distribution and let = g(0) be an arbitrary 
one-to-one transformation. Show that (B 3  log L/a03 ) = 0 if and only if 0 a 

0 -1 / 3  (The likelihood fulction for 0 thus looks more "normal" than that for 
and suggests that treating as normally distributed is preferable to treating 6 
as normally distributed in obtaining confidence intervals.) 

(Section 4.1; Anscombe 1964; Sprott 1973) 

4.3 The following data are remission times, in weeks, for a group of 30 leukemia 
patients in a certain type of therapy; starred observations are censoring times: 
I. 1. 2. 4, 4, 6, 6, 6, 7. 8, 9, 9, 10, 12, 13, 14, 18, 19, 24, 26, 29, 31*, 42, 45*, 
50*, 57, 60, 71*, 85*, 91, 
(a) Estimate the median remission time by three methods: (1) by using the 

nonparametric meihcd of Section 3.2.4; (2) by assuming that the underly-
ing distribution of reilission times is exponential; and (3) by assuming that 
the distribution of rerfission times is gamma. Compare confidence inter-
vals based on the thrce methods. 

(b) Similarly compare e aimates of S(26), the probability a. remission lasts 
more than 26 weeks, using the nonparametric Kaplan-Meier estimate and 
the  two parametric models, respectively. 

(c) Is there any evidence against either of the parametric models? 
(Sections 4.1, 4.2) 

4.4 Suppose that an acceptance plan is desired which, under the one-parameter 
exponential model, will reject• Ho 0 = 1000 with probability .10 when 

= 1000 hours, and with probability .95 when 0 = 300 hours. Obtain Type 2 
censored plans, both with and  without  replacement of failed units, and graph 
the power functions for ti e plans. 

(Section 4.1) 
4.5 Sensitivity of oponential distribution tests to model departures, 

(a) Let , 	 in  be a complete random sample from an exponential distribu- 
tion with mean B.  C( nsider life.test plans that test Ho = 1000 versus 
HI 0 < 1000 and have size 0.10. Graph the power functions of the tests 
for sample sizes n = 10 and n = 20. 
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(b) Suppose that ti, 	tn  actually come from a Weibull distribution with 
p.d.f. (/3/a)(t/a)P — I exp[—(t/a)fij, t > 0, where /3 = 1.5 and a = 
Giro + 1/1.5); this distribution also has mean 0 .  It can be shown that 
the distribution of E tace is well approximated by a )( 2  distribution, 

n 	2 E - 
a i.1 

where c and b are selected so that cx .(1)  has the same mean and variance 
as E tact. Show that this yields the values c = [r(l + 2/1.5) — P(1 + 
1/1.5) 2)/2F(1 + 1/1.5) and b = + 1/1.5). 

(c) Use the x 2  approximation of part (b) to examine the power function of the 
tests in part (a) when the underlying distribution is a Weibull distribution 
with /3 = 1,5 rather than an exponential distribution. 

(Remark: A one-sided size .05 test of )3 = 1 vs. /3 > 1 in a Weibull model has 
power at /3 = 1.5 approximately equal to .4 and a foi. n = 10 and n = 20, so 
this degree of nonexponentiality is not certain to be detected.) 

(Section 4.1) 

4.6 Predicting the duration of a life test, Sometimes it is desired to predict the 
total duration of a life test on the basis of early results in the test. Suppose, for 
example, that a test is to terminate at the time to.) of the rth failure. If the sth 
failure has just occurred (1 < s < r), we can predict t(r)• 

(a) If the data came from a one-parameter exponential distribution with mean 
0, prove that t ( i .) — t(,r) and 

Ts  = E t(,)  + (n — s)t( s ) 

are independent, and that U = O(r) — t(s))/ Ts is pivotal, with distribution 
function 

(n  — s)!  Pr(U < t) —1 
(r — s — 1)!(n — r)! 

r— s — I (F. _ s  _ 1)  
(-1)7(n — r + + ) 

[1 + (n — r + + 1)tr 

Show how U can be used to obtain prediction intervals for t(,.), based on 
t(I), 	, t(,ç). 

(b) Describe how simulation can instead be used to obtain the distribution 
of U. 

i=0 

(Section 4.1 ;  Lawless 1971) 
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4.7 The following observations are failure times (in minutes) for a sample of 15 
electronic components in an accelerated life test: 

1.4, 5.1, (.3, 10.8, 12.1, 18.5, 19.7, 22.2, 

23.0, 30.C, 37.3, 46,3, 53.9, 59.8, 66.2 

(a) Assuming that the data came from a gamma distribution, obtain the m.l.e.'s 
I:. and a,. of the. shape and scale parameters. 

(b) Let Q p (k, a) represent the pth quanti le of the two-parameter gamma dis-

tribution, given k and a. That is, Q p (k, a) satisfies 

(ic e  (k, -) = p, 

where / (k „v) is the incomplete gamma integral (1.3.16). Examine the ade-

quacy of the gamma tncdel by plotting the points 

[Qo 	va(fc, ét. ),  to)] 	i =  1,...,  n, 

where to) is the  ith smallest observation in the sample of n, 
(Sections 3,3, 4.2; Wilk et al. 1962) 

4.8 Chhikara and Folks (1977) gave the data below on repair times (in hours) for 
46 failures of an airborne communications receiver. 

0.2 0.3 0.5 1 1 .5 0.5 0.5 0.6 0.6 0.7 0.7 
0.7 0.8 0,8 1.0 1.0 1,0 1.0 1.1 1.3 1.5 
1,5  1.5 1.5 :LO 2.0 2.2 2.5 2,7 3.0 3.0 
3.3 3.3 4,0 4.0 4.5 4.7 5,0 5.4 5,4 7.0 
7,5 8.8 9.0 10.3 22.0 24,5 

(a) Treating the times as euct continuous observations, fit an inverse Gaussian 

distribution to the data. 

(b) informally assess the .11: of the model. Use simulation or other means to 
consider whether the two largest repair times seem consistent with an 

inverse Gaussian model. 
(Section 4,2.2) 

4.9 Parametric vs. nonparamea lc estimates. Consider a study where all units still 
alive at lime c are withdrawn, So that their lifetimes are right censored. Suppose 
it is wished to estimate S(to, , where 0 < to < c, 

(a) Compare the precision 9f the nonparametrie estimate g(to) = (n - 
where r is the number c. f units failing by time to, with that of the m.l.e. of 
3 (t ) when the underlyirg distribution is exponential. 
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(b) Outline how the precision of the Kaplan—Meier estimate ,S(t) could be 
compared with the exponential m.l.e. of S(t) under general Type 1 cen-
soring (Section 2.2.1), 

(Sections 3.2, 4.1; Miller 1983) 

4.10 Loss of information under grouping. Consider settings where n individuals 
are inspected at specified times al ak so that only the numbers of deaths 
between successive inspection times are observed. That is, we observe di = 
number of lifetimes in (aj_i, af] for j — 1 k 1, where an = 0 < al < 

< ak < ak+i = oo. 

(a) Assuming that lifetimes follow an exponential distribution with mean 0, 
obtain the information I (0) and asymptotic variance of ji(0' — el) under 
both the observation scheme just given and under observation of exact fail-
ure times, NJ with Type 1 censoring at time ak• 

(b) Assume further that di = fa for j = 1, 	, k, and evaluate the expected 
information 1(9) under both observation schemes. Make a numerical com-
parison of grouped and exact observation for the values k = 1, . , 5 when 
ak corresponds to the .50 quantile of the underlying exponential distribu-
tion. Repeat the comparison if ak corresponds to the .90 quantile, 

(Sections  4.1, 4.3) 

4.11 Loss of information under current status observation. Consider n = km indi-
viduals, where k and ni are positive integers, and suppose that ni individuals 
are observed at each of k times C1,  , Ck, it being determined in each case 
whether their lifetime exceeds the respective Ci or not. Suppose that C1 cor-
responds to the (j —  .5)/k  quantile of the underlying lifetime distribution; we 
could of course only approximate this in practice, since the quantile values 
would be unknown. 
(a) Assuming that the underlying lifetime distribution is exponential with 

mean 0, compare the information I (0) and asymptotic variance of 	— 
0) for current-status data with each of k = 1, 2, 4, 8 and with exact obser-
vation of the lifetimes. 

(b) Outline a numerical study to compare the precision with which the pth 
quantile,  te,,  of an underlying log-logistic distribution (1.3.12) would be 
estimated, under exact observation of lifetimes and under current-status 
observation with each of k = 1, 2, 4, 8. 

(Section 4.3) 

4.12 The life table data in Table 4.6 are from a study involving 112 patients with 
plasma cell myeloma treated at the National Cancer Institute (Carbone et al. 
1967). 

(a) Use plots of empirical estimates of the survivor and hazard functions to 
suggest possible models. 

(b) Fit Weibull and Gompertz models to these data, using maximum like-
lihood. Compare results using the likelihood function (4.3.4), which 
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Table 4.6. Snrvival Times foi. Patients with Plasma Cell 
Myeloma 

Interval (Months) 
Number at Risk 

at Star (n,) 
Number of 

Withdrawals (w,) 

[0. 5.5) 
[5.5, 10.5) 

11 
9 

1 
1 

[10.5, 15.5)  7 3 
[15.5, 20.5)  55 0 
120.5, 25.5) 45 0 
[25.5, 30.5) 34 1 
[30.5. 40.5) 25 2 
[40.5, 50.5) 10 3 
[50.5, 60,5) 3 2 
160.5, oo) 0 0 

assumes withdrawals occurs at the ends of intervals, with those using 
the likelihood (3,7,4) in Problem 3.17. Informally assess the fit of each 
model, 

(c) Compare the est mates in part (b) with the 	obtained by assuming 
that failure times or censoring times in an interval are all equal to the inter-
val midpoint.  

(d) Compare also th ! variance estimates based on the approaches in part (b) 
and the approximation of part (c). What do you conclude? 

(Section 4.3) 

4.13 Consider the interval .censored data on breast cosmesis given in Problem 3.13. 

(a) Fit Weibull and !og-logistic distributions to the data from each of the two 
treatment group:. Plot estimates of the s,f.'s S(t) under the two models, 
along with the nonparametric estimates obtained from Problem 3.13. 

(b) Fit models with I I) a cubic hazard function with h (0) = 0, and (2) a cubic 
spline hazard function with a single . kfait at 18 months for each treatment 
group. Compare the estimates of S(t) with those of part (a), 

(Sections  4.2,4.3; Lindsey and Ryan 1998; Lindsey 1998) 

4.14 Mixtums with known components. Suppose that Y has p.d.f. 

(Y; /2) =  p! (y) + - p)f2(y), 

where 0 < p < 1 and fi and h are completely specified p.d.rs, 
(a) Show that the ex )ected information from a complete sample of size n from 

the distribution  

fi (y) f (y)  dy 1(0 = 	 
1)( 1  — 0( 1 	(y; P) 
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Note that this reduces to the binomial information n[p(1 —  p)] 	fi 
and f2 do not overlap. 

(b) If 

1 	 2/2 1 
fi  (y)  = 	 

	

(2701/2 	
and 	f2 (y) = 

(2701/2
e —y2/2 

evaluate 1(.5) numerically for several values of Comment on the preci-
sion with which one can estimate p as a function of IL, 

(Section 4,4; Hill 1963) 

4.15 Consider the mixture model (4.4.1) with long-term survivors in the case where 
the survivor function is 

S(t)= 1 — p pe'le 	r  > 0 

(a) Data from a study on 100 subjects who were followed for half a year gave 
22 failure times ti with E  t  . 4.41 years and 78 censoring times, each 
equal to 0.5 year. Plot contours of the log-likelihood function 

e(0, p) = 22 log(p/O) — 4.41/0 -I- 78 log(l.  p pe-5/19 ) 

and consider interval estimation of p. 

(b) After 3.0 years of follow-up there were 49 failures observed, with E = 
31.10, and 51 censoring times, each equal to 3.0, Plot contours of the log-
likelihood funtion t(9, p) in this case, and consider estimation of p. 

(Section 4,4) 

4.16 Using general optimization software, fit a mixture of two log-logistic distri-
butions to the data in Example 4.4,2 using maximum likelihood. Compare the 
estimate of S(t) under this model with the estimates shown in Figure 4.10. 

(Section 4,4) 

4.17 Consider the data in Example 4.5,1, to which a three-parameter Weibull model 
(4.5.1) was fitted. Obtain m.l.e.'s of or, p, and y using the alternative likelihood 
function discussed in Section 4.5.1, in which f (t (1 ); ce, fi, y) is replaced with 
F(t(i)+A) — F(t(0- 6,), where F(t)is the c.d.f. corresponding to (4.5.1) and A 
is a small value; use A = .5. Compare the estimates with those in the example, 
and also compare the profile log-likelihood function £(6e(y), (y), y) with that 
in Table 4.4. 

(Section 4.5.2) 

4.18 Prove the assertion made immediately following (4.5.12). Note that as,' 	co, 
an F(2.0 random variables converges in distribution to  

(Section 4.5.3) 



208 	 INFERENCE PROCEDURES FOR PARAMETRIC MODELS 

4.19 The data below represent failure times, in minutes, for two types of electrical 
insulation in an experimer t in which the insulation was subjected to a continu-
ously increasing voltage stress. 

Type A 219 3 79,4 86.0 150.2 21.7 18.5 
121 9 40.5 147.1 35.1 42,3 48.7 

Type B  21.8 70,7 24.4 138.6 151.9 75.3 
12.3 95,5 98.1 43.2 28.6 46.9 

Examine graphically whe , her the two sets of data might be considered to be 
random samples from diVerent two-parameter exponential distributions (see 
Example 4.5.2). If this appears reasonable, compare the two distributions and, 
in particular, test that they have the same threshold parameter value. 

(Section 4,5.3) 

4.20 The three-parameter log-normal distribution. For -the three-parameter log-
normal distribution, log(ï — y) is normally distributed with mean p. and 
variance a2 , where T > y and y > 0 is a threshold parameter, 
(a) If y is known, deter' 'tine the m.l.e.'s P,(y) and 6- (y) of g and  a from 

a complete sample of size n. Thus obtain the profile likelihood function 
/,„-œx  (y). Show that 

urn  Lmax(Y) = co, 

Consider t he ramifications of this for maximum likelihood estimation. 
(I)) Consider the rat-tumot data of Example 4.5. l as having arisen from a three-

parameter log-normal listribution, Compute and examine the profile likeli-
hood function Lmax (y). Obtain the value P that gives a local maximum of 
Lam 

 
(y).  Treating thi:: as the mie,,  estimate all three parameters. Deter-

mine a range Of plau:;ible values for y and examine the effect of y on 
estimates of distribution quantiles, 

(c)  Compare  L 5 (y)  an  P in part (b) with those obtained by using the mod-
ified likelihood l'onction described in Problem 4.17. 

(Section 4.5; Griffiths 1980) 

4.21 Disease remission times T for patients undergoing a certain type of treatment 
are well described by an exponential distribution. A set of 50 patients gave 

= 61.5 years and tlie m.l.e.  O = 1.23 years for the mean duration of 
remission. In a future set o 100 patients let V denote the number whose remis-
sion time exceeds 1 year. Obtain a lower .95 prediction limit A(9) for V using 
the plug-in method and then determine by simulation the unconditional cover-
age probability Pr[V > A Al for this procedure, 

(Section 4.6) 
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4.22 Bayesian prediction 
(a) Consider an exponential lifetime distribution with mean 0, and  censored  

lifetime data, giving the likelihood function 

1 
L(0) = — exp( —T 10), 

O r  

where r = 	a/  and T = 	ti . Assuming that X = 0 -1  has a two- 
parameter  gamma prior with density function 

n (X; a, b) = —
r(b)

a- 	e —" (X > 0), 

obtain the predictive distribution for a future lifetime Y, using (4.6,10). 
(b) Obtain a lower .95 Bayesian prediction interval for Y based on uncensored 

data with r = n = 20 and T = 2000 and a gamma prior With b = 
a approaching 0. Compare this prediction limit with a frequentist limit 
based on the method of Example 4,6.1. The limiting improper prior ir (X) = 
X -1  is sometimes taken as a noninformativé prior for X. Note that for the 
preceding general gamma prior,  E(A) = ba — f and Var(X) = ha 2 . 

(Section 4,6; Aitchison and Dunsmore 1975; Martz and Waller 1982) 





CHAPTER 5 

Inference Procedures for 
Log-Location-Scale Distributions 

5.1 INFERENCE FOR LOCATION-SCALE DISTRIRUTIONS 

Location-scale distributions, introduced in Section 1.3,6, have survivor functions of 
the form 

S(y; u, b) = So (
y -
-

b 
	— oo < y < co, 	(5,1.1) 

where u(—co < u < co) is a location parameter, b > 0 is a scale parameter, and 
So( ) is a fully specified survivor function defined on (—oo, oo), If T is a lifetime 
variable and Y = log T has distribution (5.1.1), then we say that T has a log-location-
scale distribution. The survivor function for T may be written as 

S* (t; 	= so (1°g 	 b ) 

= SMI ice) fi i, (5.1.2) 

where a = exp(u), fi = b -1  and for 0 < w < oo, S(w) = So (log w). The 
Weibull, log-logistic, and log-normal distributions are all of this form; the cone-
sponding location-scale parameter distributions of Y are the extreme value, logistic, 
and normal, respectively. 

Log-location-scale distributions are the most widely used parametric lifetime 
models, and regression models in which u (and sometimes b) in (5.1,1) are functions 
of covariates are of fundamental importance in both parametric and semiparamet-
ric frameworks. This chapter presents inference procedures for location-scale and 
log-location-scale models without covariates. Following a general development of 
methodology Weibull, log-logistic, log-normal, and other models are discussed in 
more detail. We focus on settings where exact lifetimes or censoring times are 

211 
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observed, with no truncation o • selection effects present. For problems involving 

interval censoring or truncatiot , reference may be made to Sections 4.3 and 4.4, 
Similarly, we do not consider threshold parameters, which were treated in Sec-

tion 4.5, 

5.1.1 Likelihood-Based Mett.ods 

This section summarizes generd results for location-scale models; illustrations are 

deferred to later sections that dc al with specific distributions. We will discuss max-
imum likelihood and associated methods in terms of the parameters (n, b). The 

log-likelihood function for u and b is usually closer to quadratic than that for (a, fi), 
and large-sample normal apprcximations for it, b tend to be more accurate than 

those l'or (Z, /3. A still better choice of parameters for obtaining the maximum like-

lihood estimates (m.l.e,'s) and inplementing normal approximations is (u, log b); 
survival software often uses di s.  We will retain the more natural (u, b) parame-
lerization for general discussion, bearing in mind that (u, log b) may be used for 

computation. 
For a censored random sample of lifetimes (ti, 31), I = 1, ., n the likelihood 

function under the model (5.1.1: for log T is 

L(ti, b) =1-111E 	()) 	b  )] So ( - 11 	 

	

- 

	 -di 	

(5.1.3) 

where yi = log ti and fo(z) = —4(z) is the probability density function (p.d.f.) 
corresponding to Sa(z). Letting zi = — u)/b and r = E 8i, we find the log-
likelihood function for  u and b as 

= —r log b 	[81 log jb(zi) + (1 — al) log So (zi)J. 	(5.1.4) 

Since azdati = 	and  8zi/0/2 = —0 -1 , the score functions are 

a log  So(zi)1 	
(5.1.5) 

a e 	" r alovfoczo  
1. 61. 	+ (1 	5' ) 	az ,  

= 

a  log So(zil 
 , (5.1.6) a " 	r 	V ." 

 L

a tog fo(zi)  + (1 8,)zi 
57; 	 6lz ' 	az, 

	

(=I 	 azi 

	

second derivatives of 	, b) are 

8 2 e v," 	a 2  hg fo(zi) 	a' log So(zi)] 
7.7-i 	w 	az  z 	+ (I 	n 2 ozi  

(5.1,7) 
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8 2 -E 	r 	2 ■--," 	a log fo Ur)  
+ i-Ti. 2[81zi 	, 	+(1  sozi

a log Sa (zi ) 1 

	

i=1 	aZi 	 aZi 	j 

1 .v-1, 	2  02  log fo(zi) 	2  0 2 10g S0(Zi)  
± Ti 2_, B i z, 	.., 	+ (1 	St)z.: 	8z,2(5.1.8) 

.i  

82.e  
 = 	
rx  a log  fou 	

b 

	

i) 	..
) 

a  og  soczin 

	

8u0b 	 ci 	i 
azi 	 azi 

32 log So(Zi)1 8 2 log  fo(z) 	(1  _ ôt)Zi 	2 
 0z1 u 

The observed information matrix is 

( —8 2Z/ 8u 2 	P. I aua 
(11 ' 	= 	e abau 	—8 2.el 8 b2  ) ' 

and the usual large-sample normal approximation to the joint distribution of the esti-
mators a and  b is, as described in Appendix C, to treat (a, 13) as approximately bivari-
ate normal with mean (u, b) and covariance matrix I(û, Er I  It may be noted that 
since a, 13 satisfy the equations 8Z/0u = 0, aziab= 0, the first term in (5.1.9) equals 
Oat (0, -6) and the second term in (5.1.8) equals —2r/S 2 . 

The Fisher information matrix 1(u, b) = E ( ! (u, b)) is not available unless the 
censoring process is fully specified, It can be obtained in the case of Type 1 or 
Type 2  censoring, described  in Section 2.2.1. For Type 1 censoring, let C; be the 
prespecified censoring time for individual i, and let Ri = (log Ci — u)/ b. Then 
P r(Si  =1)  = Po(Pt) = 1—  So(Pi), and given that Bi = 1, the standardized variable 
Z1 = — u) I b  has  the truncated p.d.f. 

fo(z)  

	

g (z) = 	— oo  <z  < R, . 	 (5.1.10) 
Fo(Ri) 

Once again, there is some simplification from the fact that E(3E/8u) = 0 and 
E(818b) = 0, which implies that the first term in (5.1.9) has expectation zero 
and the second term in (5.1.8) has expectation —2r/b 2 . The remaining terms can be 
evaluated using (5.1,10) and Pr(8i = 1) = Fo(Ri). Problem 5.4 considers the case 
of an extreme value distribution. 

	

The primary use of 1(u, b) is for design rarposes; the matrix I(u, 	at spec- 
ified values of u and b can be used to estimate the precision of estimators based 
on a given sample size and censoring pattern. In place of direct calculation, we can 
alternatively estimate 1(u, b) by simulation, Design-related issues are discussed in 
Section 5.6. 

5.1.1.1 Wald-Type Confidence Procedures 
Approximate confidence intervals or tests for u, b, and other parameters can be 
obtained by treating (û, 6) as bivariate normal with mean (u, b) and covariate matrix 

(5,1.9) 
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= 	13) -1 . In particular, let se(6) = Aar(/2  denote the standard error of 
an estimate 6 , so that 

se(t7) = P1 1 (2  , 	se(S) = pg2, 

Confidence intervals for u and h can be obtained from the approximate pivotal quan-
tities 

— u 
Zi — 

se(fi)' 
— b 

Z2 = 
se(h) 

(5.1.11) 

both of which are appt oximately N(0, 1) for large samples. For example, the fact 
that P r (-1,96 < Z1 < 1.96) 	.95 leads to the approximate .95 confidence interval 

— 1.96se(fi) < u < -1- I .96,se(û). Confidence intervals for b can alternatively be 
based on the approxitn;:te N(0, 1) pivotal quantity 

log —  log b 
Z4.  — 	 

- 	se(log .6) 

where se(logL) =  .cc(  )/i  by (B4) of Appendix B. Intervals based on  Z are slightly 
more accurate in small samples than ones based on Z2. 

The pth quanti le for Y is y p =u+wp b, where wp  = F0-1 (p) is the pth quantile 
of Fo (7.) = 1 — 	(z)  ii (5.1.1), The standard error of the mix. sip  = 	w p b is 

= 	+ 2Wp P12 	Wp2  (1.22) 1/2 , 	 (5.1.12) 

Z = 	YP  
P 	se (9p) 

(5.1.13) 

is an approximate stancard normal pivotal quantity that can be used to get confidence 
intervals for y p . 

Confidence interval ; for Survival probabilities S(Yo) or for F(yo) = 1 — S(Yo) 
can be obtained for a specified yo by using the approximate N(0, 1) pivotal quantity 

0-.11 —  
Zo — 	, 

se(*) 
(5.1,14) 

where 	= Sii-I (S(Y0)) = (yo — u)/ b. The asymptotic variance formula (B2) of 
Appendix B gives se(t7f) = (n/1-/a) 1 / 2 , where a' = (-4-1  , —(yo — Ob -2 ), An 
alternative procedure is to use the relationship between quantiles and the survivor 
function along with  th .1 pivotal quantity (5.1.13). Since S(Yo) 1 — p if and only 
if y p  > yo, we can obtain a lower q confidence limit for S(yo) by finding the value 
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of p such that yo is a lower q confidence limit for  yi—p.  This requires that we find 
= S0-1 (S(Yo)) such that 

+2,2i12 	f/22)1/2 
= —Ng , 	 (5.1.15) 

where  Ng  is the qth quantile for N(0, 1). This usually gives a result  close to that 
based on (5.1.14), which requires that we solve 

[ 1'111 + 21'0'012 Pr/2211/2 	Na 
	 (5.1.16) 

to get a lower q confidence limit for lb", and thus S(yo) = So(tk). Note that (5.1.16) 
is slightly easier to use, since (5.1.15) involves solving a quadratic equation to get O. . 

The normal approximations upon which the preceding procedures are based can 
be inaccurate for small samples; Jeng and Meeker (2000) and Doganaksoy and 
Schmee (2000) provide discussions and references for extreme value and normal 
distributions. An alternative to the normal approximations is to use bootstrap sim-
ulation procedures to estimate the distributions of pivotals Z1, Z2, and Zr  given 
earlier (Appendix D.2; Efron and Tibshirani 1993, Ch, 12; Davison and Hinkley 
1997, Ch. 5). Analytical adjustments designed to improve accuracy can also be 
made. A cautionary note is that all of these procedures can perform poorly in small 
samples with heavy censoring. Of course, small samples typically contain only 'very 
limited information about the lifetime distribution and this limits the practical impact 
of such data. 

Likelihood ratio procedures are slightly more trouble to implement than Wald 
procedures, but often perform better in small or medium-size samples; we consider 
them next. 

5.1.1.2 Likelihood Ratio Procedures 
To test hypotheses IT: u = uo or H: b = bo, respectively, one can use the likelihood 
ratio statistics 

A (uo) =2(û, ) — 2t (uo, kuo)) 

and 

A2(bo) = 	/;) — le(a (60), ho), 

where ii(bo) maximizes gu, bo) and  (uo) maximizes t(uo, b). Large values of 
A1 (u0)  and A2(bo) provide evidence against the hypotheses, and approximate 
p-values may be calculated by using the fact that under the respective hypotheses, 
the statistics A (it()) and A2 (b0) are asymptotically distributed as 4 ) . Approximate 
two-sided q confidence intervals for u or b are obtained as the sets of values Lio 

or b0 for which A I (no) or A2(bo) are < x2I),q One-sided confidence intervals are (' 
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obtained as the sets of values sa isfying inequalities for the signed square roots of 

A (au) and A2(h0) (see (C24) of Appendix C). This gives, for example, lower q 
confidence limits for u consisting of values 

/ (00 < û)At(00) 	4),2,7-1 
	 (5.1.17) 

and upper q confidence limits consisting of values 

{no / (00 	û)A1  (00) _"5 41),2,7 - 1}' 
	 (5.1.18) 

Likelihood ratio inferences about quantiles or survival probabilities are also 

straightforward. For the pth qumnile we consider hypotheses H: y,,  = ypo; the 

likelihood ratio statistic for testing H is 

A(yo ) =  2e(û, 	— 	L), 	 (5.1.19) 

where (i7,  13) maximizes e(u, h) under Ti  Since yp  = u we b, to find fi, T) we can 

just maximize 

Er (...7) = Z(y po — w e b, b) 	 (5.1.20) 

to get 13 , and then a = YpO — w,L, Confidence intervals for yp  require the determi-
nation of values ypo such that /,(ypo) < 4 ).q . This involves the same degree of 

computation as likelihood ratio onfidence intervals for u or b and, indeed, u is just 
the quantile for which 11.1p = 0. 

Confidence intervals for S(yo: are also readily found. The likelihood ratio statistic 

for testing H S(yo) = Sd  is A(.!0), of the same form as in (5.1.19), but with (fi, 13) 
maximizing t(u, h) under the restriction H.  The condition S(yo) = so implies by 
(5.1. I) that u +  S (so)b = yo, (u,  -6) can be obtained by maximizing 

c 2 w = e(yo — so  (so)b, b) 
	

(5.1.21) 

to get /3, and then u  = yo — So—I  (.70)13. This is precisely the same as the maximization 
of (5, I .2 (1 ) in, the estimation of quantiles. 

The likelihood ratio procedures tend to give quite accurate confidence intervals 

when the number of failures iS lbout 20 or bigger, with two-sided intervals giving 
closer to nominal coverage than one-sided. The accuracy can be made very good even 
for fairly small samples by appriximating the distribution of the signed square-root 
statistic by bootstrapping, or by using an analytic correction for mean and variance. 
Given that any parametric mode  is only an approximation to reality and that a mod-
erate number of observations is needed both to assess models effectively and to pro-
vide estimates with a reasonable degree of precision, even the unadjusted likelihood 
ratio procedures are satisfactory for most practical purposes. 
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5.1.2 Exact Procedures Under Type 2 Censoring 

Although the methods of Section 5.1.1 can be used quite generally, when lifetime 
data are complete or Type 2 censored, there exist exact pivotal quantities upon which 
inferences about parameters in models (5.1.1) can be based. This topic is discussed 
in Appendix E; we employ the results here. 

Let a and /3 be the m.l.e.'s of u and b, or any other pair of equivariant estimators 
(see Appendix E), The following theorem follows immediately from Theorems El 
and E2 of Appendix E: 

THEOREM 5,1.1. Let û and be the m.l.e.'s of u and b, based on a Type 2 
censored sample from (5.1.1), which for convenience is labeled yi < y 2  < 
with r < n. Then 

i. Z1 = 	— u)/S, Z2 = b7b, and Z p  = 	y p )/b are pivotal quantities. 

ii. The quantities ai = (yi — t2)113 form a set of ancillary statistics (i.e., statis-
tics whose distribution does not depend on u or b), of which only r — 2 are 
functionally independent. 

The pivotais  Zi, Z2, and Zp  can be used to construct confidence intervals or tests 
for u, b, yp , and S(yo); note that these are not the same  pivotais as in (5.1.11) and 
(5,1.13). A practical difficulty is that the distributions of the pivotais,  whose general 
form is given in Theorem E3 of Appendix E, is complicated. However, for any given 
values of r and n it is easy to approximate the distributions to a high degree of 
accuracy by simulation, as follows. Since the distributions of Z1, Z2, and Z p  do not 
depend on the values of u and b in the underlying model (5.1.1), we can set u = 0 
and b = 1, generate a pseudorandom sample yi < Y2 < 	< Yr, then obtain a, .6, 
and thus values 4 =  û/b, 4  = 6, ep  = - w)/b, where w p  = 	(p) is the 
pth quantile of Fo(z). These are random values from the distributions of Z1, Z2, and 
Zp , and by repeating the process a large number of times we can obtain a precise 
estimate of their distributions. 

Some tables of percentage points (quantiles) for Z1, Z2; and Zp have been 
obtained by simulation in the case of the extreme value and normal distributions. 
Similar tables for pivotal quantities based on linear estimators, rather than m,I.e.'s 
of u and b, have also been given. Information on this is provided in Sections 5.2.2. 
5.3.1, and the Bibliographic Notes for this chapter. 

There is a second way to use the pivotal quantities Z1, Z2, and Zp  for inference, 
and that is through their conditional distributions, given the set of ancillary statistics 
ai ,   a,. defined in Theorem 5.1.1. Except for the case of uncensored data from the 
normal distribution or the general case r = n = 2, no pair of estiniators û and .6 can 
be sufficient for u and b in a location-scale model (5.1.1). It has been convincingly 
argued that inferences about parameters in (5.1.1) should be made conditional on 
the observed value of a = (al, , ar); this is discussed in Appendix E. By these 
arguments, confidence intervals should be based on the conditional distributions of 
Z1, Z2, and Z given a. To get a q confidence interval for u, for example, we need 
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to obtain values el and e2 such that 

Pr(tt < •Zt 	£21a) =  q. 	 (5.1.22) 

This may seem more compli :,ated than considering the unconditional (marginal) dis-
tribution of Z1, but it turns out to be easier to calculate probabilities like (5.121) 
numerically than unconditional probabilities such as Pi(fi < z, < £2). The con-
ditional distributions of Z1 and Z2 given a are given in Theorem E3 of Appendix E, 
and the calculation of probabilities for Z1, Z2, and Z 1, is discussed in Section 5.2.2 
for the case of the extreme vllue distribution. 

The m.l.e.'s  û and i; are asymptotically sufficient, and in even moderate-sized 
samples there is usually littic difference between conditional and unconditional con-
fidence intervals based on ;;), Z2, and Z p . In addition, although Z1, Z2, and Zp 

 are strictly pivotal only for the case of Type 2 censoring, their distributions often do 
not depend much on u and b for other censoring schemes, assuming the expected 
number of observed failures is moderately large. An alternative to the inference pro-
cedures of Section 5.11 is to use Zi, Zz, and Z 1, of Theorem 5,1.1, approximating 
their distributions via bootsbap simulation. 

5.2 WEIBULL AND EXTREME-VALUE DISTRIBUTIONS 

This section considers inference procedures for the Weibull distribution (1.3.5) with 
p.d.f. written in the form 

.f(t; a, 0) = 	
( ) 

— — 	 ex p [ — (1/a).9, 
P 	13 - 1 	

t > 0 	(5.2.1) 
a a 

where a > 0 and fi > 0 Ere the scale and shape parameters. Instead of working 
directly with (5.2.1), we ofte  i  find it convenient to work with the equivalent extreme 

I ti c distribution for Y = log T, which is of location-scale form (5.1.1) with'p.d.f. 

((y; u, =Texp 	 —oc  <y <00, 	(5.2.2) 

where u = lOg a and b =  fi  The methods of Section 5.1 can be applied to 
the extreme value distribution, and inferences about Weibull parameters obtained 
by transformation from the e trerne value parameters. 

5.2.1 Likelihood-Based Jr ference Procedures 

Let (t i , 6/), i = I. 	N: a censored random sample of lifetimes from (52.1) 
and (y 1 ,6;), i = I, 	with yi = log tj ,  be the corresponding censored sample 
from (5,2,2). To apply the general expressions (5.1.4)—(5.1.9) of Section 5.1.1 to the 
extreme value distribution, note that for (5,2.2) expressed in the general form (5.1.1) 

So(z) = exP(—:- 	,fo(z) = —4(z) = ez  exp(—ez). 	(5.2.3) 
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This gives the log-likelihood from (5.1.4) as 

t(u, b) = —r log + E(Sizi  — e°),  
i=1 

(5.2.4) 

where zi = (yi — u)/ b and r = E Si. It follows from (5.2,3) that 

8 log fo  (z) 
—1 	ez , 

az 

810g  So(z) 	e z ,  
az 

8 2  log fo (z) 
8z 2  

8 2  log  So (z) 
8z2  

— e2 ,  

— e2 ,  

giving straightforward expressions for the first and second derivatives of 	b) from 
(5.1.5)-(5.1.9). The log-likelihood function  t(11, b) is easily inaximized to give f 
many software packages handle this and the inference procedures in the next para-
graph. 

Using the fact that (5.1.5) and (5.1.6) equal 0 at (a, i;), we find the observed 
information matrix at (a, 13) for the extreme value model to be 

E 
 - 1 

2; e2i r + 	ez' 

	

(=I 	1=1 

E 
i=1 I CO, 17) = .7,- 

Approximate confidence intervals or tests for u, b, yp , or other quantities can be 
found by treating 	S) as bivariate normal with mean vector (u, b) and covariance 
matrix I 	1 , and the corresponding approximate pivotal quantities in (5.1.11) 
and (5.1.13) as N(0, 1), as described in Section 5.1.1 and Appendix C, Inferences 
for the Weibull parameters a = log u, p= b-1 , and tp  = log yp  are easily obtained 
by transformation. 

Likelihood ratio procedures are also easy to apply, though less commonly avail-
able in software packages. As discussed in Section 5.1.1, their accuracy is generally 
superior to that of the Wald-type procedures. Inference for b is especially straightfor-
ward, since under the hypothesis H: b = bo, the likelihood equation Mu, bo)/8u = 
0 has the closed-form solution 

1 	11 

00) = bi) log (-- 	eY//h0) 

r 

The likelihood ratio statistic 

	

A (bo) = 2i (a, 	— 2-e(a(bo), bo) 
	

(5.2.6) 

and confidence intervals Po A (bo) < 40 , 4  ) are therefore easy to obtain, 

(5.2.5) 
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Let us also consider confidence intervals or tests for quantiles y p  = u + wp b, 
where from (5.2.3) we have that w p  = T i  (1 — i')  = log[— log(1— p)]. The location 
parameter u is just y.632  and so is a special case. The likelihood ratio statistic A (ypo) 
for testing 1-1:yp  = ypo is given by (5.1,19), and (a, i;) in (5.1.19) can be obtained 
by maximizing (5,1.20), which here becomes 

(b) —r log b 	(Yi Ypo w pb) 
exp 

(31i — )'po w pb)] 
• 

t 
(5.2,7) 

This is easily maximize :1 with standard software to give and then a= yo  — IDA 
and 

A (y po) = 	6) — 	 (5.2.8) 

Two-sided confidence Intervals (ypo A (Ypo) < 4 1 ) or analogous one-sided 
intervals are found by iterating this process over  a range of values ypo. A close 
approximation to A (y ) can usually be obtained by calculating it at a small number 
of values y po on either side of Sip  = fi w 1,& and then passing an interpolating spline 
through the points (ypo. A (ypo)). 

To obtain confidence intervals for survival probabilities S(yo) = exp(— exp((yo — 
u)/b)1 we consider the lkelihood ratio procedure described in Section 5.1.1, This is 
based on the statistic 

A (so) =  2e(û,  f.7) — ma, 5), 	 (5.2.9) 

where (fi, 5) maximize:; au, b) subject to H: S(yo) = so. By (5.1.20) and  (5.2.4), 
5 is found by maximiziig (5,2,7), with yo replacing y po and log(— log so) replacing 
w p , and then û = yo — log(— log so)i; 

Example 5.2.1. Leukemia remission time data were given in Example 1.1.7. 
The observations were remission or censoring times, in weeks, for two groups 
of patients, one given a treatment (drug 6-MP) and the other a placebo. Each 
group had 21 individuals; 12 times were censored in the 6-MP group and 0 in 
the Placebo group. Kaplan—Meier estimates of the survivor functions were given 
in  Example 3.2.1, and probability plots suggest that Weibull models are consistent 
with the data. We consi ier here the results of fitting Weibull distributions to the two 
samples. 

The results of sevet al confidence interval procedures for estimating (for each 
treatment group) the Vveibull shape parameters p , the median remission times t30, 
and S(10), the probab.lities remission lasts longer than 10 weeks, are shown in 
Table 5.1, The maximum likelihood calculations and Wald-type procedures were car-
ried out using the extreme value parameters (u, b). That is, confidence intervals for 
u, b, and y,50 were obtained using the approximate pivotals (5.1.11) and (5,1.13), and 
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Table 5.1. Approximate .95 Confidence Intervals by Several Methods 

Drug 6-MP Placebo 
Parameter Method â = 33.77, 	= 1.35 &= 9,48, 	= 1.37 

LR (.72, 2.21) (.98, 1.88) 
Wald (b) (.87, 3.00) (1,02, 2.07) 

Wald (log .6) (.79, 2.33) (.98, 1,93) 
Bootstrap (.95, 2.04) (1.00, 1.78) 

LR (16.2, 51.6) (4.75, 10.3) 
Wald (9.50) (15.8, 42.1) (5.02, 10.5) 
Bootstrap (15.6, 46.2) (4.72, 9.99) 

S(10) LR (.637, .931) (,197„513) 
Wald (i) (.630, .923) (.208, .524) 
Bootstrap (.689, .915) (.164„511) 

then transformed to give the confidence intervals for a, /3, and t.50 via ct = exp(u), 
/3 = b -1 , t.50 = exp(y.50). Confidence intervals obtained both by treating f, as 
normal and log t7 as normal are shown for comparison. The asymptotic covariance 
matrices 10, Sri for the two groups are as follows; 

6—MP. 
(.07473 .02442) 	 (.02816 .00671 

.02442 .04229 	Placebo: .00671 .01604j 

Wald-type confidence intervals for S(10) = exp[—(10/a)fi] were obtained by con-
sidering the parameter Ill = log(— log S(10)) = (log 10 — u)/b. Confidence inter-
vals for lib-  were based on the approximate N(0, 1) pivotal quantity (if --*)Ise (if) of 
(5.1.14); these were then transformed to confidence intervals for S(10) = exp(—e'1').  
Numerous software packages implement these procedures for Weibull and extreme 
value models; see the Computational Notes at the end of the chapter. 

Likelihood ratio procedures do not depend on what parameterization is used for 
the models. The appropriate statistics, written in terms of u and b, are given in (5.2.6), 
(5.2.8), and (5.2.9). There is no need to employ derivatives of Of, b), and a simple 
but effective approach is to maximize constrained log-likelihoods such as (5,1.20) 
and (5.1.21) using general derivative-free optimization software (see Appendix D). 

The bootstrap confidence intervals were obtained by the S-Plus 2000 implemen-
tation of the nonparametric BCa methods of Efron and Tibshirani (1993, Sec. 14.3). 

Relative to the widths of the confidence intervals, the methods agree quite well, 
except for the Wald interval for p in the drug 6-MP group. This group has only 
nine failure times, and it is known that Wald procedures may not perform well in 
such cases. The approximate N(0, 1) pivotal based on log L gives intervals in much 
better agreement with the likelihood ratio (LR in the table) intervals. It would not be 
misleading to base conclusions on either the likelihood ratio or bootstrap intervals. 
It is known that the likelihood ratio procedures tend to be accurate with the sample 
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Figure 5,1. Weibull ail 1KM estimates of survival (leukemia remission times). 

siz.es here, but if desired they can be improved slightly by making adjustments to the 
signed likelihood ratio statistic (e.g., Doganaksoy and Schmee 2000). 

Confidence intervals for  5(10) were obtained by nonparametric methods in 
Example 3.2.3; likelihood ratio intervals were (.54, .90) for 6-MP and (.20, .59) for 
Placebo patients. The shorter intervals in Table 5,1 reflect the additional information 
that assumption of a parametric model invokes. The Weibull model fits well, so there 
is sonie comfort level in using it for inference. Another advantage of the parametric 
model is that it provides a confidence interval for the median for each group, whereas 
the nonparametric method mint do this for the 6-MP group, because of the degree 
of censoring. In 'ally case, both the parametric and nonparametric analyses make it 
clear that there is a substantid difference in the remission time distributions for the 
drug 6-MP and Placebo patients. 

figure 5.1 shows the Weibull and Kaplan—Meier estimates of S(t) for each treat-
ment group. 

Example 5,2.2. These ditta are based on Type 2 censored lifetimes with r = 28 
and n = 40, and were cliscumd by Lawless (1975, p. 258). They will also be con-
sidered later in Example 5.2.3, because it is possible to construct exact confidence 
intervals when data are Type 2 censored, Here we illustrate the large-sample pro-
cedures of the current secticr , and compare the results from them with the exact 
intervals. 
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Table  5.2. .90 Confidence Intervals Obtained by Three Methods 

Method ye  .v.ot 

Wald (.66, 1.16)  (—.13,44)  (-2.50, —1.29) (-5.19, —2.87) 
LR (.70, 1.22) (—.I2, .48) (-2.62,  —L37)  (-5.44, —3.05) 
Exact (.72, 1.28) (—.11,.51) (-2.71, —1.41) (-5.67, —3.15) 

The ordered log failure times yi = log ti are —2.982, —2.849, —2.546, —2.350, 
—1.983, —1.492, —1.443, —1.394, —1.386, —1,269, —1.195, —1.174, —.845, 
—.620, —.576, —.548, —.247, —.195, —.056, —.013, .006, .033, .037, .046, .084, 
.221, .245, .296. A probability plot of the data indicates that the data are consistent 
with an extreme value model for Y 

The m.l.e.'s and asymptotic covariance matrix for the extreme value parameters u 
and b are  û  = .1563,  b  = .9104, and 

.1.7‘ = /(ri , f,)-1 = (.02994 .00282) 
.00282 .02336 

Lower quantiles of a lifetime distribution are often of interest in engineering or reli-
ability settings, because of a desire to identify times before which few failures are 
likely to occur. Table 5.2 shows .90 Wald-type confidence intervals for u, b, and 
quantiles y jo and y,01, obtained using the approximate N(0, 1) pivotal quantities 
(5.1.11) and (5.1,13); note that yp  = 	log(1— p))b, so that y.10 = u 
and  Yo  i = u — 4.60b. Table 5.2 also shows likelihood ratio (LR in the table) con-
fidence intervals for each parameter. Finally, exact conditional confidence intervals 
are shown; they are obtained using methods in Section 5.2.2.1 and their calculation 
is outlined in Example 5.2.3. 

The likelihood ratio intervals agree well with the exact intervals, the only discrep-
ancy of any size being for the extreme quantile, y,oi. The Wald intervals also agree 
quite well relative to the widths of the various intervals. It would not be misleading 
to use intervals based on either of the approximate methods, but the likelihood ratio 
procedures are preferred. Bootstrap intervals, not shown here but similar to those 
used in Example 5.2.1, agree well with the likelihood ratio intervals. 

5.2.2 Exact Confidence Intervals Under Type 2 Censoring 

It was noted in Section 5.1.2 that when data are complete or Type 2 censored, the 
quantities Z; = (û — u)/13, Z2 = Ern, and Zp  = — y 1,)/ .6 are pivotal quanti-
ties. Exact conditional tests or confidence intervals for parameters are rather easily 
obtained; we consider them first and then discuss exact unconditional intervals. 

5.2.2.1 Conditional Confidence Intervals 
The conditional distributions for Z; and Z2, given the vector a = (al 	ar) 
of ancillary statistics defined in Theorem 5.1.1, is derived in Theorem E3 of 
Appendix E. This shows that for the general location-scale model (5.1.1), the joint 
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of Z1. Z2 given a is of tile form 

r 
k(a, 	Z 21.-1  n 	z2 + Z1Z2) Sa (a, Z2 + Z2)n-r 

	
(5.2,10) 

i=1 

	

where k(a, r, n) is a  'unction   ar_2, r and n. For the extreme value distri- 
huticm. the density ,f0(z) and lurvivor function So(z) are as given in (5.2.3), so that 
(5.2. I 0) becomes 

I.. 

k(a ' 1.,  " )7-'21-1  exl)  5—s  (ai zz + zizz)  ( 	 , 

,....„, 	 ,-, 
(5.2.11) 

;A' where we employ the notatior 	 + (n — r)w r . From (5.2.11) we 
can derive the marginal distil utions for each of  Z1,  Z2, and Z p , conditional on a. 
The results ant given in the foilowing theorem (see Lawless 1978). 

THEOREM 5,2.1,  Let Zp  = 	—  y)/ 	(5 — u — w p b)II; and Z2 = 

where w 1, = log[— log(I — p)], a and i; are equivariant estimators of u and b based 
on a Type 2 censored sample yi < 	< yr  from the extreme value distribution 
(5,2.2), and al = (yi — (7)/b, — 1 	r  Then 

The conditional p.d,f, of Z2, given a, is of the form 

h2(z1a) — (

Zr-2  exp (z — 1) t ai) 

z > 0 	(5.2.12) 

(

-:- ealz) 
1=1 

The conditional distribi tion function (elf.) of Z p , given a, is. 

co 	 r •  
Pr(Zp lia)  f h2(Z la) r, etuP +" E e''' dz 

i=1 
(5.2.13) 

where I (r„r) is the incomplete gamma function (B12). The d.f. of Z1, given 
a, is given by (5,2.13) v/ith w 1, = 0. 

Proar 

To obtain (5.2,12) we integrate zi out of (5.2.11). This takes the form 

r* 

exp z2 Eai rz1z2 — ez 1 z 2 	eamZ2 dzi, 

1=1 	 1=1 
/11 (z21a) = Ic(a, 



we get 

c° [ k(a,  r, n)4-2  eXP(Ei...-1 a i z2 + r w p) 
(Er:1  e.  alz2+tp py 

P r(Z p  < t la) = 
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Letting 

1 .*  

	

Y= 
	ealZ2) eZ I Z2 ,  

i = 1 

one finds 

/.* 

	

h2(z21a) = k(a, r, n) exp 	aiz.2 	E en,z, 	). 

This is essentially (5.2,12), where for convenience several terms are grouped 
together to form the new constant 

k(a, r, n)F(r)  exp(E  ai) 

rd* 

ii. It is not possible to integrate z2 out of (5,2.11) analytically, so we work with 
the distribution function (d.f.) of Z p  , given a. The joint p.d.f. of Z2 and Zp = 

Zi w1, Z,  given a, is easily found from (5.2.11) to be 

h (z, z21a) = k (a, r, n)4 	(-1  exp E(atz2 + Z2Z ± wp) 
i=1 

r* _ E exp(ai z2 + z2z + wp) 

where z2 > 0,  —oc  <z  <oc. The d.f. of Zp, given a, is 

00 f  
P r (Z p  < 	= 	h(z, z21a)dz dz2. 

fo 

Making the change of variables 

r* 
y =  e2  E Z2 = Z2, 

r, n) — 

X 
 f

t* 
),r 1— 	dy] dzz 

0 
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where 

r• 

E ea') 	wp). 

After a little rearrangement, this gives (5.2.13). 

To construct confidence htervals for u, b, or yp  one needs to obtain percentage 
points for ZI Z21 or Z These are readily found from the results of Theorem 5.2.1, 
though numerical integraticn is necessary to integrate (5.2,12) and to evaluate 
(5.2.13). This is described in Example 5.2,3. It can be shown (see Appendix E) 
that different equivariant estimators yield the same confidence intervals for a given 
sample, and therefore it is immaterial what estimators are used to form the pivotals 
and a, but we use the in.l.e.'s Note that although h2(z21a) involves an unknown con-
stant k'(a, r, n), this can be rvaluated by using the fact that h2(z21a) must integrate 
to one. 

The mechanics of the method will be made clear in the following example. 

Dimple 5.2.3. (Example 5.2.2 revisited). We will get confidence intervals 
by working with pivotal quantities and ancillaries based on the m.l.e.'s. The m.l.e.'s, 
from Example 5,2,2, are  û.,1563 and  b = ,9104, and the ancillaries are ai = 
(3); — .1563)1.9104, 1  28. Before obtaining the confidence intervals, let us 
consider the type of calculations required. The constant Ic i  (a, r, n) in (5,2.12) can be 
evaluated from the fact that 

1.0 

co  

112(21a) dz = 1, 

which implies that 

n) = 
	

r_2 ex l ((z — I) Ea) 	(—
r 

E ea, z) dzi 	(5.2.14) 
i=1 	1=1 

The integrand in (5.2.14) is %veil behaved and the integral is easily evaluated numeri- 
cally with standard software The integrand is generally very close to 0 for z outside 
of the range 0 to 10. 

Having obtained k'(a, r, ,1), we can easily determine percentage points for Z2, 
using 

Pr(Z2 Ida) = f 112(zIa)dz: 
Jo 

(5.2.15) 

r 	— 1 
1 

Exact percentage points = Z2, y  making (5.2.15) equal to y can be obtained itera-
tively. 
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Getting percentage points for Zp  involves similar computations with (5.2.13). 
This integral behaves in much the same way as integrals (5.2.15). Since /(r, s) < 1, 
the integrand in (5.2.13) is in fact always less than or equal to the integrand in 
(5.2.14). Finally, note that if a significance test for some specified value of b or yp  is 
wanted, one needs to calculate only a single probability for Z2 or Z 1,.  

Let us now consider the data in the example. By numerical integration, the inte-
gral in (5.2.14) is found to be .4355, and hence lc' (a, r, n)  = 2.2961. We now have 
the complete p.d.f. h2(z1a), and can calculate any desired probabilities for Z2, Z1, 
or Zp . Suppose, for example, we want a two-sided .90 confidence interval for b. 
Integrating h2(z la) numerically, we determine that P (Z2 < .7131a) = .05 and 
Pr(Z2 < 1.2571a) = .95. Thus 

Pr (.713 < 17b < 1.2571a) = .90, 

and this yields .724 < b < 1.277 as a ,90 confidence interval for b from the observed 
value b  = .9104. 

Suppose we also want a lower .95 confidence limit for yiu. From (5.2,13), we 
find that 

Pr(Z,io < 3,1531a) = .95 

where Z,10 = - y .1o)/g. Thus y,i0 > û —3.1531i is the desired confidence interval, 
which gives y, io > —2.714 as the realized interval. 

Let us also consider confidence limits for the survivor function, continuing to 
work with the extreme value distribution for which S(yo) = exp(—e (Y0-01b ). Con-
fidence limits or tests for S(yo) can be obtained from the pivotal Zp used to get 
confidence limits for quantiles, because of the relationship between the survivor 
function and quantiles. Specifically, suppose that £(y) is a lower q confidence limit 
on  y 1,  based on data y; that is, Pr (e(y) < yp) = q. This is true if and only if 
Pr[S(f(y)) > 1 — 12] = q, so if we determine p = p(y) such that £(y)  = yo, then 
1 — p is a lower q confidence limit for S(y0). 

To obtain a lower q confidence limit for S(y0) using Z 1,, one can therefore proceed 
as follows: since the lower q confidence limit for yp  is of the form «y)  = — Lzp,q. 
where z p , q  is the qth quantile of Z p , it is merely necessary to determine p such that 

—zp, q  = (Yo —12 )/L. 	 (5.2.16) 

The lower q confidence limit on S(yo) is then 1 — p. 

Example 5.2.3. (continued) Suppose that a lower .95 confidence limit on 
S(-1.0) = exp(—e (-1— )/b) is wanted. According to (5.2.16), we need to determine 
p such that 

— 1 — 
— 1.207, — Zp„95 — 
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recalling that = .1563 and L = .9104, That is, we must find p such that Pr(Zp  < 
1.207Ia) = .95, using (5,2,13). Noting that §(-1.0) = exp(—e (-1-0/13 ) = .755 and 
starting with I — p in the neighborhood of .70, we easily find after a few iterations 
with (5.2.13) that the required value of p is .353. The ,95 confidence interval for 
SI-1 . (1) is therefore S(— .0) ,647. 

The conditional method can be used to obtain confidence intervals whatever the 
size of  the Type 2 censored sample. It can also be used with Type 2 progressively 
censored data (see' Problem 5.6), In even moderate-size samples the unconditional 
methods based on the same pivotals Z1, Z2, and Zp tend to agree closely with 
the conditional methods, and provide a viable alternative. We discuss these meth-
ods next. 

5.2.2.2 Unconditional Confit!ence Intervals 
As noted in Section 5.1.2, confidence intervals can also be based on the marginal 
distributions of the pivotal quantities Zt,  Z2, and Z p . It is generally impossible to 
obtain these distributions in a simple form suitable for numerical evaluation; for the 
case of the extreme value distri'mtion, in particular, co 0,2 must be integrated 
out of (5.2.11). However, the di itributions of Z, Z2, and  Z,,  can for specified values 
of r and it  be estimated very ac:urately by simulation, as discussed in Section 5.1.2. 
Some tables of (pantiles obtained via large-scale simulations for the extreme value 
distribution have been publishtld (e.g., Thoman et al. 1969, 1970; Billmann et al. 
1972: McCool 1970, 1974). The amount of computation required to estimate the 
distributions of Z1, Z2, or Zp accurately enough for practical purposes, for given 

and n, is of the sanie order rs for approximation of the distributions using naive 
nonparamctric or parametric bcotstrap methods; about 2000 random samples is suf-
ficient. It is therefore. feasible to obtain quantiles as needed, though tables are useful 
i f available, 

A very simple chi-squared F pprox imation has been found for the distribution of 
= 17)/ b. It was developed t3mpirically and is accurate enough for virtually all 

practical situations involving Type 2 censoring. We provide it here since it offers 
a convenient way to estimate or compare Weibull shape parameters fi, and it can 
provide a check on the acçurac:: of Wald-type large-sample procedures for 1; or fi. 

The approximation is of the form 

2 
g• r, n)(—  (5.2.17) 

where g(r, n) 6ad hfr, n) are . cciistants specified below. Their values are determined 
by matching the first two  mon  eras of g(r, 10(13/ b) to those of 4h0v0) . Since the 
moments of TO are not known exactly, they have been estimated by simulation and 
approximated in various ways. Table 53 was prepared by combining results given by 
Harter and Moore (1968), McCool (1975b), and Lawless and Mann (1976). Values 
oi l:  (r,  n)  aie  given for various r, n) combinations; it follows from (5.2.17) that 

= h(', n) + 2. 
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Table 5.3. Values h(r, n) for Use in Approximation (5.2.17r 
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5 10 20 40 60 80 100 co 

.1 - - 2.0 6.0 10.0 14.1 18.1 0.205n 

.2 2.0 6.2 14.6 23.0 31.5 39.9 0.420n 

.3 4.3 10.9 24.0 37.0 50.1 63.2 0.652n 

.4 2.2 6.7 15.8 33.8 51.8 69.9 87.9 0.899n 

.5 3.5 9.1 20.7 44.0 67.3 90.6 113.9 1.165n 

.6 4.7 11.4 25.8 54.7 83.5 112.3 141.1 1.457n 

.7 6.0 14.8 32.6 68.1 103.8 139.5 175.0 1.782n 

.8 7.8 18.5 40.0 83.3 126.4 169.5 212.5 2.155n 

.9 10.3 23.0 49.0 100.9 153,0 204.9 256.9 2,607n 
1.0 12.9 29.3 62.4 128.2 194.8 257.6 325.5 3.290n 

° g(r, n) = n) + 2. 

Comparison of percentage points of S/b obtained by using (5.2.17) and these val-
ues of h(r, n) with the essentially exact percentage points given by McCool (1974, 
1975b) and Billmann et al. (1972) shows that the approximation is adequate for vir-
tually all situations. The approximation tends to improve as n or r / n increases and 
is exact in the limit as n oc, for fixed rin. For values of n and r/n not covered in 
Table 5.3, suitable values of h(r, n) can be obtained by linear interpolation. 

Example 5.2.4. As a comparison of the exact conditional and unconditional 
confidence interval procedures, consider the following artificial Type 2 censored 
sample yi < < yto from the standard extreme value distribution, with n = 
20, r = 10: -3.57, -2,55, -2.02, 1.66, -1.36, -1.15, -.95, -.77, -.61, -.45. 
Table 5.4 shows .90 confidence intervals based on pivotals Z1, Z2, and Zp  of (5.1.11) 
and (5.1.13). The m.l.e.'s of u and b are CI = -, 112 and 6 := .907; the conditional 
intervals were obtained as described in Section 5.2.2.1, and the uncônditional inter-
vals were based on percentage points given by McCool (1974). It is clear that there is 
no practical difference in the two sets of intervals. We remark in passing that the use 
of approximation (5.2.17) and Table 5.3 gives the same unconditional interval for b 
(to two decimals) as in Table 5.4. 

Table 5:4. Two-Sided .90 Conditional and Unconditional 
Confidence Intervals 

Parameter Unconditional Method Conditional Method 

b (.64, 1.81) (.64, 1,82) 
u(Y.632) (-.51, .90) (-.51,89) 
Y. is (-3.74, -1.49) (-3.76, -1.51) 
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5.3 LOG-NORMAL AND LOG-LOGISTIC DISTRIBUTIONS 

5.3.1 Inferences for Log-Normal and Normal Models 

The log-normal and log-logistic distributions are similar in many respects, and are 

discussed together in this section. 

The log-normal distribution (1.3.10) for lifetime T is equivalent to Y = log T 
having a normal distribution ,V(p., a 2 ). The normal model is of location-scale form 

(5.1.1), with u = A, b = ard standard survivor and density functions 

S0 (z ) = I — (z), 
1  

,f0(Z) = .46 (Z) = 	
2 
/2, (5.3.1) 

where (1)(z) and (1) (z) are the s .:andard normal cumulative distribution function (c.d.f.) 
-and p.cl.f. This and (5.1.4) give the log-likelihood function for a censored random 

sample as 

f(,i, a) = —r log a — —
2 
E 8; 	— Si) log So(zi), 
i=1 	i.1 

(5.3.2) 

where zi = (yi — p.)la and = 	Si. The first and second derivatives of e(p., 
are given by (5.1.5)—(5.1.9)  with  

a k)gib(z) 	 82100b(z)  az 	—z, 
az2  

il  log Sn(z) 	fi(z) 	a 2  log So(z) 	zfo(z) 	fo(z) 2  
az 	= Si(z) 	0 z 2 	So(z) 	S0(z) 2  

The log-likelihood (5.3.2) is casily maximized, and many software packages handle 

the procedures below. The observed information matrix I 	Fr) and asymptotic 
covariance matrix 12 = (P, 	— I for (fi, 6') are calculated using (5.1,7)45.1.9), 
with (p., a) replacing (u,  b). Confidence intervals or tests for p„  a,  quantiles  y,,  = 

i.  + (1) I (p)o- or probabilitie:; So[(yo — a] can be based on pivotals (5.1.11) and 

(5.1.13) or on likelihood ratic procedures described in Section 5.1.1. 

5.3,1.1 Exact Methods 
With complete (uncensored) ;amples, exact test and confidence interval procedures 
for p and a are well-known t-nd discussed in elementary texts. In particular, /2 = y 
and (3-  = 1(n — 1)s 2 /n] 1 / 2 , where y = 	yan and s2  = E(y;  - 37) 2  / (n — 1) are 
the sample mean and variance, and the pivotal quantities Zi = 	— 1,0 is and 

= 	— 11s 2 /o' 2  have stuc ent-t and chi-squared distributions with n — 1 degrees 
of freedom, respectively. Not that these pivotal quantities are written in a different 
form than those used for gent ral location-scale models in Theorem 5.1.1. 

Estimation of quantiles or the survivor function of the normal distribution is not 
discussed in most elementary texts, so we consider it for the case of complete sam- 
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pies. This can be approached through the pivotal quantity 

Z — 5jP YP  (5.3.3) 

where jip  = y+ w ps =  Y  + 4) --1 (p)s estimates yp . Probabilities for  Z,,  can be 
obtained from those for the noncentral t distribution, which is defined as follows. A 
noncentral t random variable with 7.) degrees of freedom and noncentrality parameter 
A, denoted t u) (?,.), arises by considering 

Z A. 
— (w/01/2' 

where Z 	N(0, 1) and W 	4)  are independent random variables and  A is a 
constant. The noncentral t distribution is discussed in detail by Johnson et al, (1995, 
Ch. 31). From (5.3.3) we now have that 

— [frig,  1.1.)/a — 

	

Pr(Zp < z.) = Pr 	s /a 
jrz(z —iw p )] 

= pr[t io_0(-.11iWp) iti(z — WO] 	(5,3.4) 

Tables and software exist for noncentral t probabilities and quantiles, as discussed by 
Johnson et al. (1995, Ch. 31); an illustration of their use is given in Example 5.3.1, 

Exact tests and confidence interval procedures are also available when data 
are Type 2 censored, according to the methods discussed in Section 5.1.2 and 
Appendix E. The distributions of the exact pivotal quantities Z1, Z2, and Z,,  of The-
orem 5.1,1 are analytically intractable for r < n, but can be approximated closely 
by simulation, Schmee and Nelson (1977) give tables and charts for obtaining con-
fidence intervals that were determined in this way. Conditional distributions of the 
pivotal quantities Z , Z2, and  Z 1,  given the observed value of the ancillary statistic 
a defined in Theorem 5.1.1 can also be used for inference. The distribution of Z1 
and Z2 given a is given in Theorem E3, and it can be seen that numerical double 
integration is necessary to obtain probabilities or quantiles for any of Z1, Z2, or Z p . 
As a result, and because unconditional and conditional probabilities for Zi, Z2, and 
Zp  tend to agree closely except for very small samples, this is not generally used. 

Examples of the methodology in this section are deferred until Section 5.3.3, 
where both log-normal and log-logistic models are fitted to data, 

5.3.2 Inferences for Log-Logistic and Logistic Models 

The log-logistic distribution (1.3.12) for a  lifetime variable T and the correspond- 
ing logistic distribution for Y = log T were discussed in Section 1.3,4. The logis- 
tic distribution is of location-scale form (5.1.1) with standard survivor and density 
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functions 

et 
So(z) = 	 fo(z) (1 + ez)' 	 (I + ez)2  

(5.3.5) 

respectively. The log-likelihood function for a censored random sample is, from 

(5.1.4), 

fl 

, h) = —I. log b + Es,[z;  — 2  log(1 + e t')]—Eci —BO log(1 + ez!), (5.3.6) 
i=1 	 i=1 

where za = (yi — 	b and r E a; . The first and second derivatives of e(u , b) are 

given by (5. 1,5)—(5.1.9) with 

il  log j'0(z) 	2ez 	8 2  log .th(z) -2ez  

z 	 1 + ez 	az2 	= (1 + et) 2  

a log So (z) 	 D 2  log 50(z) —et 

— 1 - - 	 Oz2 	= ( 1 -1- ez) 2  Dz 

The to.l.es a, b, and associate-1 large-sample procedures for obtaining tests or confi- 

dence intervals are available rum several common software packages. The observed 

information matrix 1 (û, b) ar d asymptotic covariance matrix 127 = (û , 6) -1  for 

/;) are calculated using (5.1.7)—(5.1,9). Confidence intervals or tests for u, b, 
guanines yp  = u + ilog(p/(1 - - p))]b or probabilities So [(vo — u)/ b] can be based on 
the usual pivotals (5. I . II) and (5,1.13) or on likelihood ratio statistics, as described 
in Section 5.1.1. 

Exact tests and confidence htervals based on the pivotais  Zj,  Z2, and  Z,,  of Theo-
rem 5.1.1 are available When ti e data are Type 2 censored. Probabilities and quantiles 
for the pivotals can be obtained by simulation as described in Section 5,1.2, Unlike 
the cases of the-extreme value andflormal distributions, no tables seem to have been 
published for the logistic mod 31. Conditional probabilities for the pivotal quantities, 
given the ancillary statistic a o." Theorem 5.1.1, require numerical double integration. 

5.3.3 Examples 

The examples below illustrate applications of the log-normal and log-logistic distri-
butions. The two distributions have similarly shaped density and hazard functions, 
and it is usually difficult to discriminate between them unless the data contain a rea-
sonably large number of failut e times. 

Example 5.3.1. The data below were discussed by Schmee and Nelson (1977) 
and show the number of thousr nd miles at which different locomotive controls failed, 
in a life test involving 96 controls, The test was terminated after 135,000 miles, by 
which time 37 failures had o, :,curred. The failure times for the 37 failed units are 
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22.5, 37,5, 46.0, 48.5, 51.5, 53.0, 54,5, 57.5, 66.5, 68.0, 69,5, 76,5, 77.0, 78,5, 8.0, 
81.5, 82.0, 83.0, 84,0, 91.5, 93.5, 102.5, 107.0, 108.5, 112,5, 113.5, 116.0, 117.0, 
118.5, 119.0, 120.0, 122.5, 123.0, 127.5, 131.0, 132.5, 134.0. In addition, there are 
59 censoring times, all equal to 135,0. 

Probability plots suggest that either a log-normal or log-logistic model fits the 
data rather well. The log-normal and log-logistic models will be Written here with 
distribution functions of the respective forms 

Flatt(t; u, b) — cl) 
(log t — u) 	

t > 0 

e tlogt—u)/b 
FLL(t; u, b) — 	 t > 0 4. e tiog t—tom • 

to emphasize the location-scale parameters (u, b), which it is convenient to use. The 
m.l.e.'s and asymptotic covariance matrices V = f)) -1  are obtained from stan-
dard software as 

log-normal; 

log-logistic: 

û  = 5.117, 

ii = 5.083, 

5 

1; 

= 

= 

.706, 

.384, 

(.01085 
V N = 

.005729 

.008018 
vt, = 

.002550 

.005729 

.008686 

.002550 

.003244 

The maximum log-likelihoods for the models are almost equal; the log-normal's is 
.14 larger, Note that although u is the median for both models, the interpretation 
of b differs: for the log-normal model the variance of log T is b2 , whereas for the 
log-logistic model, it is 7r 2 b2/3. Figure 5.2 shows plots of the two fitted survivor 
functions 1 — FL,N(t;  û, b.) and 1 — fi'LL(t;  û, /3), along with the Kaplan—Meier esti-
mate of S(t). 

An objective of many life tests is to determine times before which the fraction of 
units failing is small, or to estimate the reliability at certain times. We will use the 
two fitted models to estimate the reliability at 80,000 miles, that is,  5(80), which was 
of interest because of warranty coverage. 

Let us consider the procedure based on the approximate standard normal pivotal 
quantity (5.1.14). Following the argument leading to (5.1.16), we find ir = (yo — 
ii)/S for either model, and 

se(171) = 	+2I2 + 

where yo = log(80). Estimates for  5(80) are then LN (80) = 1 — (1)(17/) and 
,§t.t.(80) = (1 + exp(if)) —I  for the log-normal and log-logistic models, respec-
tively. Two-sided .95 confidence intervals for V/ are computed as tit ± I ,96se(ir), 
and are transformed to confidence intervals for S(80) by the relationships AN (80) = 
1 — 1)00 and SLL (80) = (1 + exp(i/t)) -1 . This yields the following estimates and 

P 1222) 1/2 , 
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Figure 5.2. 	• and KM estimates of failure time  si, for locomotive controls, 

.95 confidence intervals for 5(80): 

log-normal: L'(£i()) = .851, .785 < 5(80) < .902 

log-logistic: k• 80) = .861, .791  5(80) < .911. 

The confidence intervals fcr 5(80) agree well, as they should since the survivor 
functions (s.f.'s) l'or both modds agree closely with each other and with the Kaplan—
Meier estimate of s(t) over the range 0-135. By way of comparison with confidence 
intervals constructed using the likelihood ratio procedures described in Section 5.1.1, 
we used (5,1.19) and (5.1,20) with the log-normal model to find a two-sided .95 con-
fidence interval for 5(80). Thi gave .785 < 5(80) < .903, in very close agreement 
with the interval obtained using the approximate standard normal  pivotais. 

The log-normal and log-logistic distributions have hazard functions that first 
increase and then decrease at higher times. However, the points at which the hazard 
functions begin to decrease Are well beyond the censoring time of 135,000 miles, It is 
impossible to draw any coneltutions about the right half of the distribution from these 
data, Indeed, n Weibul I model for which the hazard function is monotone increasing 
also fits these data well; we consider this in Example 5.5.1. 

The following .  example compares exact confidence intervals for a log-normal 
quantilc with intervals based ol maximum likelihood large-sample theory. 

Example 5.3.2. Example! .  3.3.1 and 3.3.2 discussed uncensored data on the 
number of millions of cycles io failure l'or 23 ball bearings in a life test. .  The data 
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are given in Example 3.3.1 and appear consistent with a log-normal distribution for 
time (i.e., number of million cycles) to failure, T.  Lower confidence limits on quan-
tiles such as tio and t.01 are often used to rate bearings with respect to endurance 
or reliability. We will compare limits obtained using the large-sample approxima-
tions of Section 5.3.1 with exact confidence limits, which are in this case available 
because the data are uncensored. We revert to using p, and a to represent the nor-
mal distribution location and scale parameters, instead of u, b, as in the preceding 
example. 

The sample mean and variance for the 23 log failure times y , . , y23 are  5  = 
4.150 and 5 2  = .2841 (s = .534). The m.l.e.'s of AL and a are consequently 

= 4,150 and er = (22/23)I/ 2S = .522. The .01 and .10 quantiles of Y are y,0 t = 
- 2.326a and y. o = — 1.282a, respectively. Using the m.l.e.'s, the asymptotic 

covariance matrix V = 1(11, &) -1  and (5.1.12), we find 9.10 = 3,481 (se = .175) 
and 9,01 = 2.937 (se = .271). Approximate .95 lower confidence limits for yp  
based on (5.1.13) are given by Sip  — 1.645se(9p ); this gives y,i0 > 3,194 and 
y,oi > 2.492 and corresponding intervals tin > 24.4 and toi > 12.1 for the 
quantiles of T = exp Y 

Exact confidence intervals for the quantiles are based on (5.3.3) and (5.3.4). For 
a .95 lower confidence limit for yp , (5.3.3) and (5.3.4) indicate that we need the .95 
quantile of the noncentral t variable  t 22) (—,/f3-tv p ). For  woe = —1.282 and w,oi = 
—2.326 this gives e(22) (6.14) and q22) (11.17), Tables in Owen (1968) give the .95 
quantiles as 8.966 and 15.398, and yield the confidence intervals y. > 3.152. Y.OI > 
2,435 and t,10 > 23,4, t,01 > 11.4. The intervals based on the approximate N(0, 1) 
pivotals (5.1.13) are in good agreement with the exact intervals. 

5.4 COMPARISON OF DISTRIBUTIONS 

The comparison of distributions is often important, for example, the comparison of 
failure time distributions for products manufactured at different sites, or the compar-
ison of times to response for subjects in different arms of a clinical trial. Chapters 7 
and 8 consider comparisons based on semiparametric models. In this section, com-
parisons based on parametric location-scale models are discussed. In particular, if 
lifetimes in ni populations are distributed according to the same log-location-scale 
family (5.1.2), with survivor functions 

Si (t) = S6`[(t/cri ) 0J] 	 (5.4.1) 

then comparison of the distributions merely involves a comparison of the parameters 
(tY,i, /3i). In terms of log-lifetime Y = log T, the survivor functions are 

(y) = So ( Y 	14/ 	 (5.4.2) 

where u1 = log 	bi = 07 f , and (w) = So (log w). 
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The comparison of distributions (5,4,2) when .50(2) is normal (Gaussian) is a well- 
known problem. Comparisons are especially simple when the standard deviations cri 

,   ni) are equal. The same is true in the general case: if bi = "2 = 
= bm . then the nth quantile of the jth distribution is yip  = uj + web, where 

= 1 (1 — p), and so for any two distributions (say I and 2) 

Y I p —  1 '2p = /4 1 — / 1 2 	 (5.4.3) 

is a constant for all 0 < p 	1. If the  means  of the two distributions exist, their 

difference is also equal to to -- u2. Furthermore, testing equality of the distributions 

amounts to a test or II: u  = 
In  terms  of lifetime T, (5.4.3) implies that the ratio of quantiles ii,,/t2 = 

is constant for all p in (0, 1). There are also simple consequences of (5.4.3) for the 

survivor functions  or the c.d.f's of Y and T: 

S2(y) = 	b, 	(01 — 02)1, 	S2(t) = 	ft (al /c12)]. 	(5.4.4) 

In particular, the survivor or distribution functions for Y are translations of one 

another by an  amount u j — 	along the y-axis, 
One normally begins by comparing the scale parameters bi , 	, b„, in (5.4.2), or 

the shape parameters /31, 	, ,8„, in (5.4.1). If it can safely be assumed that they are 
equal, then comparison of quantiles or means reduces to a comparison of II 	.. ,  u rn  
or cr , 	, am . If the parameters bt , . ,b„, are not equal, then (5.4.3) and (5.4.4) do 

not hold and the difference y• p y2p = (U1 - u2) 	p 	b2) depends on bk 
b2 , and p. 

We will consider the comparison of arbitrary distributions (5.4.1) or (5,4.2), and 
itien  specific families of models. The comparisons in this section are based on inde-
pendent samples from. the distributions in question, and studies that use pairing are 
not discussed. This topic is considered in Problem 5.15, and further in Chapter 11, 

5.4.1 General Methods for Comparing (Log-) Location-Scale Distributions 

For convenience we continuo to consider problems in terms of the location-scale 
parameters (ti 1, hi). It is assumed that there are independent censored random sam-
ples from the in distributions in question; the sample of lifetimes from the jth distri-
bution will be denoted Q/1,80, i —  I ni, with  y,j = 

One way to compare, say, nth quantiles yj 1, and y2p of two distributions is simply 
to examine confidence intervals for each. If a confidence.interval or test for y p Y2p 

s wanted, then the approxinute standard normal pivotal quantity 

(51 1 	.92 — (Yip 	Y2p)  
(5,4.5) 

rse()Iip)` 	Se(5,.2p)211/2 

can he used, where h p , 5I2i„ se(h p), se(hp) are the m.l.e.'s and standard emirs 
from the two individual samples. Similarly, to compare bi and b2 we can use the 
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approximate standard normal pivotal 

— 
(log 6i  — log 62) — (log  — log b2)  

Z  

5.4.1.1 Likelihood Ratio Procedures 
Likelihood ratio procedures tend to be slightly more accurate than those based on 
(5.4.5) or (5.4.6) for small- or medium-size samples, as discussed in the preceding 
sections, It is also convenient to test equality of parameters for two or more dis-
tributions through likelihood ratio methods. First consider a test of the hypothesis 
11:b1 = = b,,, for m distributions (5.4.2). The log-likelihood function for the 
combined sample from all ni distributions is 

, 	 ..... bm) = 	1)1), 
1=1 

where -ei(ui, bi) is the log-likelihood (5.1.4) for distribution j. To test  H,  we use 
the likelihood ratio statistic 

A = 2E (al, . • , am , 61 , 	 An) — 2“5i, 	,   5), 	(5.4,7) 

where 5 .1, 6j are the m.l.e.'s obtained from ei (ui, b1 ) and a , 	, ,„ , 13 are the val- 
ues obtained by maximizing the constrained log-likelihood function e(u, 
b, . . . , b). The distribution of A when H is true is asymptotically 4n _ i)  as the n 
become large. 

Confidence intervals for the ratio of two scale parameters, say h1  /b2, can be 
obtained by considering the likelihood ratio statistic A (a) for testing H: b1 = ab2, 
where a > 0 is some specified value. Note that 

A (a) = 22(û 1 , /12, 61, 62) — 	52t ab-2, i;2), 	(5.4.8) 

where 51, it 2, .62 maximize  £(u1, u2, ab2, 122). An approximate q confidence interval 
for bi /62 consists of values {a A (a)  

A test of equality for location parameters 	, u„, is of interest mainly when 
the scale parameters 	... ,,  b,,, are equal. A likelihood ratio test of H: ui = 

= u„„ b1 = 	= b,,, versus the alternative hypothesis HI: ui not all equal; 
bi = 	=  b, uses the statistic 

A =  2e(û1,,.., 	..... b") — 2e(u* „ u* , b* 	V), 	(5.4.9) 

where 51, • • • am and 6 are as in (5.4.7), and u* , 1)* maximize E(u . 	 u, b, 	, b). 
The distribution of A is close to xl;n_ i)  for large samples, if H is true 	 

If bi = b2, confidence intervals for ul — u2 can be obtained by testing hypotheses 
Ho: ui —u2 = 8, b1 = b2 against the alternatives HI: ui , u2 are unrestricted; 61 = b2. 

237 

(5.4.6) 
[se(log /31) 2  + se(log 62) 2 1 1 /2  

to obtain confidence intervals or tests for GI /b2. 
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The likelihood ratio statistic for doing this is 

A (S) = 2e :51, 52, 	— 22(u; + 8, 14 , b* , b*), 	(5.4.10) 

where 51, i2, L maximize e (ui, 02, b, b) and q, b* maximize t(02 + 8, 02,  b, h).  

An approximate q confidence interval for u —  02 is given by (S A(S)  
Recall from (5.4.3) that u — u2 is also the difference yi p y21,  for 0 < p < 1, when 
b1 = b. 

If 131 0 b2, then conficbnce intervals for yip — Y2p can be obtained through 
the likelihood ratio statistic for tests of hypotheses H: yi p  — y2 p  = A, which is 
equivalent to ut—u2 = wp(bz—bi )+A, where w p  = ,50-1 (1—P), with So(z) as in 
(5.4.2). The likelihood ratio statistic A(s) = 2e(51,  û2. 17 1, b2) — n(ût, û2 ,  i,  -62) 
requires that we maximize e(u2+A+wp(b2—b1), 02, bl b2) to obtain 52, b1, 62 and 

= ii2+ A ±u, /, (/;2—E71). This is easily handled with general-purpose optimization 
software. 

When the samples from the nt distributions are all either complete or Type 2 cen-
sored, then it is in principle ppssible to develop exact tests, for example, ofbj = b2 or 
"t  = u2 (assuming. bi = b2 I, by using the results of Section 5.1.2 and Appendix E. 
Except for the.case of normally distributed complete data, which lead to well-known 
F and t tests, these procedui es are not analytically tractable. It is possible, however, 
to obtain ,-values to a close approximation by simulation, Sections 5.4.2 and 5.4.3 
consider this further. 

5.4.2 Comparison of Weilmll or Extreme Value Distributions 

Weibul I distributions with survivor functions 

= exp[—O/c2 .1) 13J] 	= I, 	 (5.4.11) 

can be compared using the procedures of Section 5.4,1, with the log-likelihoods 
bi) foruj = log a j, :7j = fiT I  of the form (5.2.4) in Section 5,2.1. Illustra-

tions are presented in the exemples that follow, but first we mention some additional 
simple methods for complete or Type 2 censored samples, 

To test H: 	b2 ( 9 1 = /32) or obtain confidence intervals for  b, /b2,  we could 
use the fact that Z2 ,1 = Li/of 	= 1, 2) are pivotal quantities: see Section 5.2.2. 
Thus 

w 	Z22 	) L2 
I  — Z21 — 62 Li 

is also a pivotal quantity, and zonfidence intervals for bi/b2 can be found from values 
e 2  such that Pr(e, < W 1 < e. 2 ) = q; this gives [el (/31/62), e2(bi /b2)] as the 

confidence interval. The values of ei and e 2  can be obtained by simulation along 
the same lines described in !lection 5.2,2: some tables generated by simulation are 
provided by Thoman and Bain (1969) and McCool (1974). Tests of H = b2 

(5.4.12) 
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can likewise be based on W1 with b1 = b2, values that are too small or too large 
providing evidence against H. 

An approach that avoids simulation and is satisfactory in virtually all situations 
is to use the chi-squared approximation (5.2.17), which gives gjkabi 4,j)  for 
constants  g»  h1,  which can be determined from Table 5.3. This implies the approxi-
mation 

g2h1 
F02.h 1) • g1 h2 

(5.4.13) 

If b1 = b2, then it is also possible to obtain exact confidence intervals or tests for 
ul — u2 or cit /a2 through the pivotal quantity 

W2 = 
cat —fi2)— cut — 14 2) 	 (5.4.14) 

where 51, 52,  b = b 1  = 17-2 are the m.l.e.'s under the restriction GI = b2. The 
distribution of W2 is intractable, but can be determined for specified values r1, 
12, n2 by simulation; Schafer and Sheffield (1976) provide some tables generated this 
way. 

The exact intervals just discussed are unconditional, in the sense of Section 5.2.2. 
Conditional procedures are based on the distributions of pivotais  conditional on the 
observed values of ancillary statistics; these are rather intractable and not pursued 
here. As discussed in Section 5,2.2, the conditional and unconditional approaches 
generally give close to the same results, except possibly for very small samples. 

Example 5.4.1. Example 1.1.5 introduced some data on the time to breakdown 
of electrical insulating fluid subject to a constant voltage stress in a life test exper- 
iment 	 Specimens of insulating fluid were tested at seven voltage levels I, (j = 
1 	 7), with samples sizes ranging from 3 to 19. The data are given in Table 1.1. 

A model suggested by engineering considerations is that, for a fixed voltage level, 
time, T, to breakdown has a Weibull distribution, and that the Weibull shape param-
eters 13i are the same for different voltage levels. These assumptions can be assessed 
informally through Weibull probability plots; if they are true, plots (see Section 3.3.1) 
of the samples should be roughly linear and parallel. Example 6.2.2 in Section 6.2.2 
considers this. We consider here the assumption of equal pi  through a hypothesis 
test. 

Table 5.5 shows values of the m.l.e.'s (3 ./ = j.l, 5» and 6ej = exp(5 .1) for 
each sample. The 61  are not too different, but the  û1 and which represent the 
.632 quantiles of Y and T, respectively, differ considerably. To test the hypothe- 
sis H:121 = 	= b7, we consider the likelihood ratio test based on (5.4.7); for 
this we need the values 'is' = ti(iii,13j) and the m.l.e.'s 51, 	, 57, /-; under H, 
and they are also given in Table 5.5. The estimates ii 1 , • , re , i; can be obtained 
using Weibull—extreme value regression software or by direct maximization of 
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Table 5,5. Estimates from Voltage Breakdown Data 

Sample 
(kV) 	a / 	Li 	iii 

26 	3 	1,834 	6,86 
28 	5 	1.022 	5.87 
30 	I I 	.944 	4.35 
32 	15 	1.781 	3.26 
341 	19 	1.297 	2.50 
36 	15 	1.124 	1.46 
38 	g 	.734 	.001 

 

a,  

1177,3 
321.4 

69.5 
34.3 
12.5 
4.05 

.87 

7.07 	—23.72 
5.77 	—34.38 
4.24 	—58.58 
3,53 	—65.74 
2.53 	—68.39 
1.40 	—37.69 

—,14 	—6.76 

Under fithi = 	fr,  = 1.25!.  1 	— 299.65. 

.1.17,  b. 	wile re 

7 

b7 ) =  
i=1 

with ei (Iii, hi) the extreme value log-likelihood (5.2.4) for sample j. 
The values COI, 	h1, 	 137) = E 	= —295.26 and e(ii1, 	, 117, 

5, , .5) = —299.65 give the observed value of (5.4.7) as A = 8.78. Treating 
A as 41  under H,  we get a p-value of Pr(46)  > 8.78) = .187, which does not 
provide evidence of a difference in values for b1, . • , /pi or p i  137. 

Example 5.4.2. The data below are the voltage levels at which failures occurred 
in two types of electrical clble insulation when specimens were subjected to an 
increasing voltage stress in laboratory test. Twenty specimens of each type were 
involved,.and the failure vo'titges (in kilovolts per millimeter) were, in increasing 
order, as follows. 

Type Unsulation 32.0, 35.4, 36.2, 39.8, 41,2, 43.3, 45.5, 46.0, 46.2, 46.4, 
46..i, 46.8, 47.3, 47.3, 47.6, 49.2, 50.4, 50.9, 52.4, 56.3. 

Type II Insulation 39.1, 45.3, 49.2, 49.4, 51.3, 52.0, 53.2, 53.2, 54,9, 55.5, 

57.1, 57.2, 57,5, 59.2, 61.0, 62.4, 63.8, 64.3, 67.3, 67.7. 

Engineering experience 'Stone and Lawless 1979) suggests that failure volt-
ages for the two types of cal)le are adequately represented by Weibull distributions 
(5.4.11) with a common slug e parameter /3. Weibul I probability plots (Section 3.3.1) 
of the two samples are shown in Figure 5.3, and the  fact that  the points lie roughly 
along two parallel lines indicate that these assumptions are reasonable. 

The 	for the extreir e value parameters (cti, bj), I  = I, 2, are shown below, 
with standard errors in parentheses: 
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Figure 5.3. Weibull probability plots of  cable-insulation failure voltages. 

Type I: û 1 	3.867(.025) 
	

bI = .107(.018) 

TYPe 	= 4.080(.026) 
	

= .109(.019). 

There is clearly no evidence of a difference in the values of bi and b2  (or of pi and 
p2). 

Under the assumption that bi = b2, the difference 3 = u — ti2 equals the dif-
ference yi p  Y2p in quantiles of the two log-lifetime distribution, so let us get a 
confidence interval for it. The likelihood ratio procedure based on the statistic A(3) 
of (5.4.10) gives an approximate .90 interval through the  determination  of values 
such that A(3) < 90  2.706,  Values A(3) for a specified value 8 are given 
by software for Weibuff and extreme value regression model, which are discussed 
in Chapter 6. This approach gives the interval —.272 < 8 < —.157, whidli yields 
.90 confidence interval for exp(ut u2) = ai/a2 of .762 < or] /a2 < .855. Note 
that this is also a confidence interval for the ratio ti p /t2 p  of the quantiles for the two 
failure distributions. A slightly simpler but perhaps less accurate procedure is to use 
the approximate standard normal pivotal quantity 

W 
— 42) — 8  

— 	 (5.4.15) 
[s 	s e 02) 2 ] 1 /2  

to obtain confidence intervals. The approximation P r (-1.645 < W < 1.645) = .90 
yields the .90 confidence interval —.272 < 8 < —A54, and the interval .762 < 
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al /a2 < .$57, virtually identical in this case to the likelihood ratio-based intervals. 
"Exact" intervals could also be obtained using the pivotal quantity (5,4.14), since the 
samples are uncensored here. Simulation or use of tables of Schafer and Sheffield 
(1976) produces intervals close to those given by the approximations above. 

5.4.3 Comparison of Log-Normal or Log-Logistic Distributions 

The comparison of pm ameters in log-normal and log-logistic models can be carried 
out in the same ways as  for the Weibull distribution. In the case of log-normal distri-
butions there are well-known methods based on normal models that can be applied 
when the data are uncensored. In particular, if yi ,   y , and Y211 • • • Y2n2 

are independent random samples from two normal distributions N(pi, q) and 
N (R.2. q), and if 72 „,? are the sample means and variances, then confidence 
intervals for (71 /02  or iests of 	al = a2 can be based on the pivotal quantity 

(2 (S I  2 
Cr2 
— 	 F(ft - 1 al ) - 1 ) • 
al

) 	

S2 
(5.4.16) 

ll'o =  0-2, then confidence intervals or tests concerning 8 = 	— /h2 can be based 
on the pivotal quantity 

IS J1  + 
I 	112 

where s 2  = [(n — );.? + (02 — 1)41/(n) + n2 —2) estimates the common value 
() f (7 2 

The following example compares large-sample and exact intervals for 5, the data 
being uncensored. 

Example 5.4.3. (ltxample 5.4.2 revisited). The cable insulation failure volt-
ages in Example 5.4.2 are consistent with both log-normal and Weibull models. Let 
us consider a compatis :m of quantiles for Types land II insulation under a log-normal 
model. 

There is no censoi ing and we find the following estimates of the parameters 
, /41, al, 02 under the assumption that log failure voltages have distributions 

N 	ai1 ) and N 	ail ) for Types I and TI insulation: 

Th =5 =3.805 	= .136 
	

(sj = .01936) 

/1 2 	3 . 2 =. 4.018 
	

6-2 = .132 
	

(si = .01833), 

The sample variances 	are related to the m.l.e.'s aj by cij = (19sy/20) 1  /2 . 

There is clearly no evidence of a difference in the standard deviations cri , 0-2, so 
we obtain a .90 confidc nee interval forS = I — p,2 based on the exact pivotal quan- 

(57  — 3 12) — 3  
'(f! +112 -2), 	 (5.4.17) 
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tity (5.4.17). We find that 	— fi2 = —.213, s = .137, and  Pr(—l.686  < 438) < 
1.686) = .90, giving a .90 confidence interval as —.213 ± 1.686(.1373)(1) 1 /2 , 
or —.286 < 8 < —.140. The large-sample procedure based on the approximate 
pivotal quantity (5.4.15) yields the approximate .90 confidence interval —.213 ± 
(1.645)(â 2/20 eq/20) 1 /2 , or —.283 < 5 < —.143, which is in close agreement 
with the exact interval. 

Recall from Example 5.4.2 that the extreme value model gaye the confidence 
interval —.272 < < —.154. One would expect the estimates to be similar, given 
that both distributions fit the data well. 

5.5 MODELS WITH ADDITIONAL SHAPE PARAMETERS 

5.5.1 Introduction 

As discussed in Section 1.3.6, location-scale models for I which the baseline or 
error distribution involves one or more shape parameters '  are sometimes useful. 
Besides additional flexibility for fitting data, such models can provide comparisons 
of Weibull, log-normal, and log-logistic models, and can be used to examine the 
robustness of conclusions to plausible variations in the model. 

For simplicity, and because it is usually sufficient for practical applications, we 
consider models that have a single shape parameter k. In this case, the distribution 
(5.1.1) for Y = log T takes the form 

Y — u —oo < y < oo, 	(5.5.1) 

where So(z; k) is a survivor function on  (—no, no)  for k in some set of allowable 
values. The corresponding survivor function for lifetime T is 

5(1; a, p, k) = S8`[(t I a)fl ; k] 	t > 0, 	 (5.5.2) 

where Sp (w; k) = So (log w; k), a = exp(u), and fi  = b -1  
Two useful models are the log-Burr and generalized log-gamma families repre-

sented by (1.3.20) and (1.3.22); the former includes the extreme value and logistic 
distributions, and the latter the extreme value and normal distributions. We consider 
them in Sections 5.5.2 and 5.5.3, but first discuss some general points. 

Maximum likelihood estimates a, 6, is‘ from censored data for a model (5.5.1) 
are conveniently found by first maximizing the log-likelihood t(u, b, k), with k held 
fixed at various values, to obtain estimates (k), -6(k), and the profile log-likelihood 
ftinction .ep (k) =  £(û(k),  6(k), k). The profile I p  (k) often has flat regions, and in 
some models can have more than one stationary point, but it is 'generally easy to 
obtain the m.l.e. ie (which maximizes p (k)) and a = û(k), h = b(/c). The profile 
log-likelihood function, relative likelihood function, or equivalent likelihood ratio 
statistic 

A (k) =  2e(û,  "6, Tc) — 2E(u (k), 6(k), k) 	 (5.5.3) 
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can be used for an assessmeqt of plausible k-values. For interior values Ica in the 
parameter space the statistic i (k0) is asymptotically 4 )  when k = ka. 

To obtain interval estimate s or tests about parameters, one possibility is to treat 
all three parameters u, b, k as unknown and employ large-sample procedures based 
on likelihood ratio statistics or normal approximations for 6, k). This approach 
requires care, because k is ofmn imprecisely estimated and normal approximations 
can be poor unless the nuMber of failures is large. An alternative procedure is to 
make inferences with k held fixed, but to vary k across a plausible range of values in 
order to see its effect. This  ha:  the advantage that large-sample methods with k fixed 
tend to be quite accurate, as de scribed for extreme value, normal, and logistic models 
earlier in this chapter, In the crse of complete or Type 2 censored data, exact methods 
am also available. Moreover, with k fixed there are straightforward interpretations of 
the parameters u and b in any model (5.5.1). The pth pantile of Y is 

y p (k) = u w p (k)b, 	 (5.5.4) 

where tup (k) = Sr» (I — p; k) is the pth quantile of S0(z; k), and u corresponds to 
the pantile l'or which w p  (k) 	0. 

In some situations the parameters u, b, and k may all have meaningful physi-
cal interpretations; see, for e:tample, Problem 1.14 concerning a derivation of the 
generalized Burr and log-Bur models. In this case there is a stronger argument for 
formally treating k as unknown in the construction of tests or estimates. 

5.5.2 The Generalized Log-Burr Distribution 

The generalized log-Burr mor el (1.3.20) has s.f. of the form (5.5.1) with 

5.0(Z; k) = (I 	
- ) 

	oc  <z  < 00 	 (5,5.5) 

and corresponding p,d.f. 

fo(z; k) = ei 	+ — 
k 

— co < < oo. 	(5.5.6) 

It includes the logistic distritution (k = 1) and extreme value distribution (limit 
as k oc) as special eases. The log-likelihood function for (u, b, k) based on a 
censored 'random sample (ti , (50,  I  = 1,...,  n takes the form 

c ( r, b, k) = —r log b +1;(5; log jb(zi; k) E(I _Bo  log  so(zi; k), (5.53) 

where z; = (y; — u)/b, yi = log II  and r = E 
It can be useful to paramer!rize the model in terms of X = k -1 ; the logistic and 

extreme value models then cc tTesponcl to X = land O.  The log-likelihood (5.5.7) 
can be maximized for fixed X or k, giving û(k),  5(k), and the profile log-likelihood 
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value .ep (k) = £(ü (k), (k), k). The profile log-likelihood can have more than one 
stationary point. From empirical studies (Gould 1986) it appears always to have a 
local minimum at some value k*, below which it is strictly increasing. The model 
degenerates to an improper uniform distribution as k approaches 0,  and in practice 
we restrict attention to values above some minimal ko > 0, For  values  k > ko, the 
maximum may occur at k =  oc or a finite k .  The likelihood ratio statistic A(k) of 
(5.5.3) identifies plausible values and for finite k can be used for tests or confidence 
intervals by reference to the usual 41)  limiting distribution. The extreme value case 
k = oo = 0) is a boundary point and under H : k = co, the likelihood ratio statistic 
A(co) has a limiting distribution with Pr (A (oo) < a) = .5 + .5Pr(xA )  < a), 

Example 5.5.1. (Example 5.3.1 revisited). Failure times from a life test 
involving 96 locomotive controls were examined in Example 5,3.1, where log-
normal and log-logistic distributions were found to describe the data well. Although 
the sample is fairly large, 59 of the 96 failure times were censored at t = 135.0 
(thousand miles), and no discrimination between the two models was possible; the 
log-normal's maximized log-likelihood was only .14 larger than the log-logistic's. 
We will now fit a log-Burr model, showing that the Weibull model is also consistent 
with the data. 

The log-likelihood function (5.5.7) is easily maximized with standard software 
when k is a fixed value. Table 5.6 shows the mi.e.'s 5(k), I;(k), and values e p  (k) = 

ecrt(k), i;(k), k) for several k values. The profile log-likelihood function e p  (k) has a 
local maximum at fc:  = .598, and Table 5.6 also shows the likelihood ratio statistic 
A(k) = 2e 1,(k) — 2e p (k). Figure 5,4 shows A(k) and also the same statistic as a 
function of  A = lc — I We see that A (k) increases very little for k > le, with both the 
log-logistic (k = I) and Weibull (k = co) failure time models being very plausible. 
The profile  L,,  (k) increases rapidly for k < .1; in Figure 5.4 the plot is truncated at 
k = 

The parameters u and b have different interpretations for models with different k 
values, but alternative plausible models give very similar estimates of survival prob-
abilities or quantiles in the lower half of the distribution. For example, for the logistic 
model (k = 1) the estimate of the median for Y is ,9,50 =  û  = 5,083, and for the 
Weibull (k =  oc)  it is j1,50 =  û  — .3665S = 5.054. 

'Bible 5.6. m.i.e.'s and Likelihood Values (Log-Burr 
Models) 

k 	 û (k) 	r, (k) 	e p (k) 	A (k) 

0.1 4.516 ,195 —75.47 3.79 
0,5 4.978 .346 —73.58 .01 
0.598 5.009 .358 —73.57 .00 
1.0 5.083 .384 —73.60 .05 

10.0 5.198 ,424 —73.73 .31 
co 5.212 .429 —73.75 .35 
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Figure 5.4. Likelihood intio st itistics A (k) and A (X) for log-Burr model (locomotive controls data), 

Plots portraying confidence intervals with different confidence coefficients, under 
alternative models or methods of estimation are often useful. An  example is Fig-
ure 4.1 of Example 4.1.2, where confidence intervals for an exponential mean are 
shown. Such plots are soinetimes termed confidence distribution plots. Log-Burr 
models with a wide range of k values fit the data well in the present example, so 
Ici us demonstrate the effect of model choice on estimation of the .10 quantiles tio 
or . The .10 quantile foc Y = log T is, for given k, 

u+ blog[logk -1-log(.9 -11k  — 1)]. 
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Figure 5.5. Confidence distribution plots for y, le (locomotive controls data). 

Confidence intervals, treating k as fixed, May be based on the approximate N(0, 1) 
pivotal quantity (5.1.13), 

9 lo(k)  — 	—  y.10(k) 
Z 	' 

se(5).10(k)) 

A two-sided approximate q confidence interval consists of values  y, 10(k) that satisfy 
Z2  < xhq . Figure 5.5 shows a plot of Z2  versus y,10(k) for k = .1„5, 1.0, and 
co; note from Table 5.6 that all four values are within a .95 confidence interval for 
k, though .1 is barely so. Approximate confidence intervals with any confidence 
coefficient are evident from the plot; for example, Z2  < 2.706 and Z2  < 3.84 give 
.90 and .95 intervals, respectively. The three models with k = .5, 1.0, and oc  give 
similar lower confidence limits, but upper limits that are a little different, relative to 
the widths of the confidence intervals. The model with k = .1 gives a quite different 
upper limit. 

5.5.3 The Generalized Log-Gamma Distribution 

The generalized log-gamma distribution (1.3.22) has s.f. of the form (5.5.1) for 0 < 
k < oc,  with 

So(z; k) = 1 — l[k, k exp(zk —I/2 )), 	—oo < z <  cc, 	(5.5.8) 
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where 

f  x 
/ (k ; 	= " du 

F(k) 
(5.5.9) 

is the incomplete gamma integral defined in (1.3.16). In the limit as k 	oc,  .50(z; k) 
approaches the survivor function for the standard normal distribution, 1 — (1)(z). The 
p.d.f, of Z = (Y — u)/b for 0 < k < co is 

ji)(z.; k) = 
kk 

k) 
explic 5 z — /c exp(z/c — ' 5 ):1, 	—oc  <z  <oc, 	(5.5.10) r ( 

and as k 	co, this approaches the standard normal p.d.f. q5(z). 
As discussed in Section I 3.6, the cases k = 1 and 1 = co give the extreme 

value and normal distributions, corresponding to Weibull and log-normal distribu-
tions for T The p.d.f. fb(z; k) changes relatively little as k increases from 1 to  oc,  
and unless a large amount of Iota is available, it is not usually possible to estimate 
k very precisely. Fol. many data sets both Weibull and log-normal models provide 
satisfactory fits; see Example 5.3,1 and Example 5.5.2 below. 

It is frequently useful to parameterize the model (5.5.10) in terms of X = 
instead of lc. The normal and extreme value distributions then correspond to X = 0 
and I. Prentice (1974) showed that models with X < 0 are also allowed; distributions 
with X < 0 correspond to situations where —Z has p.d.f. (5.5.10) with k 
Extending the model in this way not only provides a wider class but also alleviates 
some technical difficulties that arise in (5.5,10) because the important case X = 0 is 
a boundary point. 

The log-likelihood function for (u,  b, k) based on a censored random sample 
(te: 6;), i = I, 	. , n takes the form 

e(u b, k) = —r log b E 3, log fo(zi; k) 	E (1  - 8,) log So(zi; k), (5.5.11) 
1=1 	 i=i 

where z; = (yi — u)/h,  y  = log ti, and r = 	öj.  It is straightforward to maximize 
(5.5.1 I) with k fixed to obtain Ei(k), (k), and the profile log-likelihood function 
for k. For the values k = 0 and oc, software for extreme value—Weibull and normal-
log-normal models can be used: general optimization software handles other k values 
quite easily. For 0 < k <  oc  the functions fo (z; k) and So(z; k) are given by (5.5.10) 
and (5.5,8), respectively. The information matrix /k(u, b) for (u, b) with k fixed can 
be obtained by numerical differentiation of e(u, b, k), which is available in much 
optimization software, or from analytic expressions that are messy but straightfor-
ward to obtain. 

It is usually sufficient to consider about 8-10 different k values in obtaining the 
profile log-likelihood eca(k), I3(k), k) = p (k) and a few more to locate the m.l.e. fc 
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precisely, The parameter X = k — I/2  is useful for computation and portrayal of (k). 
Values of X close to zero are common in lifetime applications, and it is possible to 
have  A  = 0 (fc = oo). This happens when A in the extended model, which allows 
X < 0, is less than zero. In situations where X, = 0 is a plausible value, it is a good 
idea to consider the extended model rather than just (5.5.10). 

Tests of the hypothesis H: k = Ic0 can be based on the likelihood ratio statis-
tic  A(k0) of (5.5.3). For finite ko the distribution of  A(k0) is asymptotically )(A ) 

 under H.  A slight technical difficulty arises in testing the normal-log-normal model, 
since ko =  oc  (Xo = 0) is on the boundary of the parameter space. This can be over-
come by working with the extended family, in which case X = 0 beccimes an interior 
point and the likelihood ratio statistic is asymptotically 4)  at X. = 0. If the parame-
ter space 0  < k  <  oc  (X > 0) is retained, then A(ko) has an asymptotic distribution 
when ko =  co  (Xo = 0) such that for a > 0, Pr(A(oo) a) = .5- 1 - .5Pr (4)  a). 

The generalized log-gamma family provides tests of the Weibull and log-normal 
models against parametric alternatives. It can also be used to examine the effect of 
departures from an assumed Weibull, log-normal or other model on inferences or to 
conduct sensitivity analyses of model choice. Example 5.5.2 illustrates this, 

5.5.3.1 Exact Methods for Uncensored Samples 
If k is assumed known in (5.5.10), then, as discussed in Section 5.1.2, exact inference 
procedures based on pivotal quantities 

— y p  
Z2 H ,  h

, 	Z
P 
 = (5.5.12) 

are available when the data are Type 2 censored. The distributions of Z1, Z2, and 
2„ are analytically intractable, but can be obtained to a desired degree of accuracy 
by simulation. Art alternative approach is to consider the conditional distributions of 
the pivotais,  given the observed values of the ancillary statistic a in Theorem 5.1.1, 
Lawless (1980) showed that when the data are uncensored, this approach is compu-
tationally feasible, and we summarize the relevant results here. 

In (5.5.10) the m.I,e.'s with k held fixed are ti = û(k)  and '6 = I;(k); similarly, 
Yp = y(k) = u + w(k)b, as in Section 5.5.1. The ancillary statistics are cu = 
(yi — Ci)16, where yi ..... y„ is the uncensored sample of log-lifetimes, and where 
for notational convenience we write û,  b for  û(k),  kk). The distributions of Z2 and 
Z„ given a =  (ai,  , an ) can be obtained from Theorem E3 of Appendix E and are 
as follows: 

1. The marginal p.d.f. of Z2, given a, is 

g2(z.la; k) = 
C (a, n, k)zn -2  exp[k 112 (z — 1) EL, ail  

> 0. 	(5.5.13) 
exp(aizk—I/2)] 
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2. The marginal distribution function of  Z,,, given a, is 

1 /2 (tZ Pr(Z/, 5_ t ea; k) = f g2(z la; k), 
7th 

 kek- -1-10) 	ek - u2 atz 
, 0 	

dz, 
1=1 

(5.5.14) 
where I (k, 	is given by (5.5.9) and we write w for wk(p)• 

Both (5.5.13) and the integral in (5.5.14) can be integrated numerically; the nor-
malizing constant C(a,  n, k) can be determined from the fact that (5.5.13) integrates 
to one. The integrals involved are of the same type as those encountered in Sec-
tion 5.2.2.1. For tie special case kk=  oc the distributions of Z2 and  Z 1,  are given by 
well-known result ; for the normal distribution, as discussed in Section 5.3.1. 

Example 5.5.2. (Example 5.3.2 revisited). Let us reconsider the data on fail-
ure times for 23 bdl  bearings in a life test, which were examined using a log-normal 
distribution in Example 5.3,2, but which earlier probability plots suggested were con-
sistent with either a log-normal or Weibull model. Table 5.7 shows maximum like-
lihood estimates 17 (k), .6(k), and profile likelihood values e p (k) = (k), k), 
based on maximizing (5.5.11) with k fixed at the values shown. The m.l.e. = 10.6 
(X. = .31) is easil: ,  located; this gives a = 4,23,  b  = .510, The table also gives the 
profile relative likelihood function, R p (k) = L(5(k),I;(k), k)/ L(û, .6, IC). As dis-
cussed in Example 4.5.1, a plot of the function R p  (k) is a nice alternative to a plot 
of A (k) or of e,,, (k), since it shows the likelihood function directly. 

The values k =: co (X = 0) and k = 1 (), = 1) are both highly plausible; with 
likelihood ratio statistic values A (oo) = .35 and A(1) = 1.45, there is clearly no 
evidence to contradict either the log-normal or Weibull model. An approximate .95 
confidence interval for k, based on values such that A (k) < x(I),.95 •2  = 3 84 consists 

-  

of all k values greater than about .40. There are obviously members of the extended 
family of models with X < 0 that are also very well supported by the data, though 
parameter and likelihood values have not been shown for these models. 

To examine the effects of model choice on inferences about distribution charac-
teristics, we determine confidence intervals for the quantiles  yet.  .Y.to, and y.50 of the 

Table 5.7. 	and Likelihood Values (Log-Gamma Models) 

k- I/2 0(k) 1-7(k) e(k) R(k) 

.3  1,26  4.604 .417 -20.14 .072 

.5 I .i • 14 4.507 .449 -19,14 .216 
1.0  I .( 00 4.405 .476 -18.23 .485 
4.0 •f 00 4.279 .502 -17,57 .942 
9.0 .:' 33 4.237 .509 -17.509 .999 

10.6 ."..: 07 4.230 .510 -17.5075 1.000 
12.0 .289 4.225 .511 -17.508 1.000 

400 .C50 4.164 .520 -17.62 .895 
co 0.0 4.150 .522 -17.68 .839 
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log-lifetime distribution for several values of k. Because exact confidence intervals 
based on the pivotais  Zp  in (5.5.12) are available here by working with (5.5.14), we 
give them. Confidence intervals for the normal distribution case (k = oo) were con-
sidered previously in Example 5.3.2. Note that with a given value k, the pth quantile 
is y p (k) = u w p (k)b, where w p (k) is the pth quantile of the standard distribution 
(5.5.10), and satisfies 

1[k,  k exp(w p (k)k -112)] = p. 

The incomplete gamma integral I (k, x), given by (5.5.9), is the distribution function 
for a scaled chi-squared or single-parameter gamma model (1.3.17), and quantiles 
are provided in many software packages. In particular, let x p (k) be the gamma pth 
quantile, satisfying 1(k,  x) = p. Then k exp[w p (k)k -112] = xp (k), or 

w p  (k) = k 112  log(x p (k)1 k). 

For example, we find with k = 10, p = .50 that x.5(10) 	9.667, and so 
W(l0) = -.107. 

Table 5.8 shows m.l.e.'s and .90 intervals (lower confidence limit. LCL; upper 
confidence limit, UCL) for k = .5, 1, 10, co. Lawless (1980) describes the calcula-
tion of the intervals in some detail. As would be expected, there is good agreement 
in the confidence imervals for the median y.50 at different values of k. However, as 
we move to the tail of the distribution, the different models give somewhat differ-
ent results. The left tail of a distribution is of much interest in lifetime applications, 
so this is important. For example, the .10 quantile is used in rating certain types of 
manufactured items. If the lifetimes in this example are assumed to come from a log-
normal distribution, the lower .95 confidence limit on y.10 is 3.15 (corresponding to 
a limit of 23.34 million revolutions for t.10), whereas it is 2.83 (corresponding to a 
limit of 16.95 million revolutions for t.10) if a Weibull distribution is assumed. This 
difference may or may not be of practical importance, but is substantial relative to 
the lengths of the two-sided .90 confidence intervals for y, I() or t.io. The differences 

Table 5.8. m.l.e.'s and .90 Confidence Intervals for 
Quantiles 

k=.5 k=1 k=10 k=oo 

Y.50  UCL 4.45 4.42 4.36 4.34 
9.so 4.26 4.23 4,18 4.15 

LCL 4.01 4.01 3.98 3.90 

y. 10  UCL 3.56 3.63 3.69 3.68 
9.to 3.19 3.33 3.46 3.48 
LCL 2.56 2.83 3,10 3.15 

y,o, UCL 2.36 2.71 3.14 3.20 
9.ot 1.73 2.22 2.81 2.94 
LCL .54 1.29 2.21 2.44 
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in the estimates of y,01 are larger still, to the extent that the m.l.e, for y.01 under the 
normal model is not even inside the .90 interval for y,01 under the extreme value 
model. 

When the effect of model choice is accounted for, the real precision with which 
low (or high) guanines are estimated is often considerably less than is implied by 
the estimates of an individual model; this is seen clearly here. Example 5.5,1 also 
showed, in Figure 5.5, the dependence of confidence intervals for yin on which of 
the log-Burr models was used for analysis, 

5.6 PLANNING EXPERIMENTS OR LIFE TESTS 

The selection of an experimental plan for Studying lifetimes involves a consider-
ation of costs, time, and other constraints. Some general issues were discussed in 
Section 2.5, and the design of plans for an underlying exponential distribution was 
considered in Section 4.1.4, E;•erimental plans for extreme value, logistic, and nor-
mal distributions have also bem studied, and simulation may be used to help with 
one-time designs for them or other location-scale models. A brief discussion of this 
area follows. 

Experiments or life tests can be of many forms, as discussed in Sections 2.5 and 
4.1.4. In particular, they can involve staggered entry of items into the study, includ-
ing in some cases the replacement of items. The large-sample inference methods 
discussed in this chapter are vnerally valid in such settings, but numerical calcula-
tion or simulation is generally needed to investigate frequency properties and thus 
compare plans, In addition, with a location-scale model we typically need guesses at 
the values of parameters u and h in order to plan a study. 

Simulation is an important inethod of investigating plans. Given tentative param-
eter values,, data can be generated from the distribution in question according to a 
speci lied experimental plan, and point and interval estimates of parameters of inter-
est cah be obtained. By replicating this process we can assess the precision with 
which parameters are estimated. This can be repeated with different experimental 
plans, thus allowing a comparison and guidance in the choice of a plan. Since this 
procedure is dependent on the values of u and h, it may be advisable to repeat it with 
alternative values,of u and b. Time and effort can be saved in such investigations by 
using principle S of experimental design for the simulation study itself. 

An example involving simulation is considered in Section 5,6.3. Some plans 
involving Type 1 or 2 censoring can also be explored by direct numerical calcula-
tion: we consider this next. 

5.6.1 Information Calculations Under Type 1 or Type 2 Censoring 

Experiments In which n items or individuals are placed on study at the same time and 
followed until some common censoring time, C, are referred to as Type 1 censored; 
the saine term applies to studies in which individuals may enter the study at different 
times, so that. individual j has a specified potential censoring time,  C, equal to the 
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available follow-up time for the individual. Under a location-scale model (5.1.1) for 
log-lifetime Y, it is possible to evaluate the Fisher or expected information matrix 
1(u, b) and corresponding asymptotic covariance matrix ,T(tt, b) -1 , as described in 
Section 5.1.1, though numerical integration is needed to do this. Let us consider this 
briefly. 

Consider the case where all censoring times are the same:  C1  = C. The discus-
sion surrounding expressions (5,1.7)—(5.1.10) in Section 5.1,1 shows that the Fisher 
information matrix 1(u, b) is then of the form 

	

1(u, b) = 510(u, b). 	 (5.6.1) 

1(u, b) is the 2 x 2 matrix whose entries are the negative expected values of (5,1.7)— 
(5.1.9), and since the expected values of the terms in (5.1.5) and (5.1,6) equal 0, we 
have the following as the entries in (u, b): 

21).1 t = —E [ 8; 02 
log fo(zi) 

 + (1 80
0 2 10g So (zi)  

a Z 	 n.,2 

	

U  4  i 	

(5.6.2) 

10,12  = 10.21  = _E  8, zi  ' 	i) 
 + (1 (51)z, [ 	

a log fo(z 	a2  log So(zi)  
az? 	 az?. 	

(5.6.3) 

1022 = —E 

	

	
8 2  log So(zi)1 

 +  E(). (5.6.4) 82  ogfo(7 )  

	

, 	biz7 	.I  + (1 	8i)z [ 	
04 	 04 	

Si  

These expressions can be evaluated for any specific location-scale model with the use 
of (5.1.10) and the comments surrounding it. Note that the values of u and b affect 
10(u, b) through the standardized log censoring time Ri = R =, (log C — u)/b. 
Problem 5.4 gives the resulting information matrix expressions for the extreme value 
model. i 

Escobar and Meeker (1994) provide an algorithm to compute 10(u, b) and the 
asymptotic covariance matrix ,T(u, by' for extreme value, normal,'and logistic dis-
tributions. Several sources contain tables or figures that give asymptotic variances for 
estimates of quantiles  y,  or other parameters. Meeker and Escobar (1998, Sec, 10.5) 
provide references as well as a table and charts for extreme value and normal distri-
butions. These are discussed further in Section 5.6.3. 

Type 2 censoring yields Fisher information matrices that are formally equivalent 
to those for Type 1 censoring, so the preceding comments can be applied to this 
case as well. Extensions to deal with fixed censoring times Ci, which vary across 
individuals, can also be made; this merely means that 1(u, b) in (5.6.1) is a sum of 
different matrices 2- (u, b)/b2, given by (5.6.2)—(5.6.4), 

5.6.2 Formal Tests and Acceptance Procedures 

An important problem in acceptance sampling or reliability demonstration is the 
development of formal hypothesis tests for quantiles or survival probabilities. For 
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example, consider the hypotheses 

Ho y 1  = ypo versus Ht yp < Y p0 

for some particular locatior-scale distribution. With arbitrarily censored data we 

would typically resort to a Hst based on the likelihood ratio statistic A (y po), as in 

(5.1 ,I 9), or on the Wald-typo approximate pivotal quantity (5.1.13). For the sake of 

discussion, suppose that (5.1 13) is used, so that a formal size a test of Ho versus H1 

would seek a critical value za such that 

(SIP  Ypo  
PI.(Zp  < zo; Y p = pc) = Pr 

se0p)
.5.  Z 01 Yp = Ypo = 

The usual procedure is to treat Z p  as standard normal, giving zo = 	where Aft, 
is the a quantile for N(0, I). 

We usually want to select  the sample size and experimental plan so that the power 

of the test at some specified alternative value of the parameter in question is satis-

factorily large. The conditior ,  yp  = ypl is a composite hypothesis, just as yp = Y p0 

is, since yp  = u -I- w p b. A reasonable procedure in many instances is to assume 

that b is fixed and that changes in y p  are clue to changes in u. One can then consider 

probabilities 

YPO  
Co; it, 17) , 

Se(Yp) 
(5.6.6) 

which can be closely approximated by simulation for given values Of u and b. Using 
plausible values u, b, for Mich u wp b = ypo, simulation provides a check on 

the normal approximation used to obtain zo. The power at yp i can be estimated by 

generating data using values ut  and b such that u wp b = yp t. In each .case we 

generate samples according t , ) the experimental plan, and for each sample determine 

whether — y110)Ise(911)  s < CO. The fraction of samples for which this is true 

provides an estimate of the probability of rejecting the hypothesis Yp = YpO, given 
the parameter values in question. 

In the case of Type 2 centering we can base a test of Ho versus H1 on the exact 

pivotal quantity Z p  = yp)/S in Theorem 5.1,1. For given values of r and 

u, probabilities Pr(Zp  < zo; yp) can be obtained by simulation, as discussed in 
Example 5.1.2. In particular. samples can be generated from EV(0, 1), for which 
yp = tup = log(— log(I — TO), and the values of (i/ — w)/i; are then realizations 
ol' Z p . The power of the test is given by 

(fi — yp! , Y1' 	YpO b 	 zo; Ypi) Pr(Zp <  en;  V 1, = yid) = Pr 	 "1" 

(5.6.5) 

Note that if y p  = y p i , then 2's, = (T4 — yp i)/S and Z2 = b/b are pivotal quantities, 
so this probability depends ea (y p i — )'po)/b and thus on b. It can be estimated by 
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simulation, for any specified value of (YpI — yo)/b; Vp  and Z2 are precisely the 
pivotais in Theorem 5.1.1, and realizations (Z ip , Z2) can be obtained by generating 
samples from the distribution with u = 0, b = 1 and computing ((it — w)/h, G). 

A few tables have been determined by simulation in the case of the extreme value 
distribution: Thoman and Bain (1969) consider tests for u = y.632 and McCool 
(1974) considers y.10 and y.50. 

Two sample tests, as discussed in Section 5.4, can also be subjected to power 
considerations. Pivotal quantities such as (5.4.5) and (5.4.6) can be addreised in the 
same way as Z1, was earlier. More generally, the power for any of the tests discussed 
in Section 5,4 can be approximated by simulation. For normal distributions with 
uncensored data, power calculations based on noncentral t, x 2  and F distributions 
are of course available for various one, two, and  in sample tests (e.g., Johnson et al. 
1995, Chs, 29-31). 

5.6.3 An Example 

The reliability of electronic units is often assessed in accelerated life tests in which 
the units are subjected to thermal cycling over a wide temperature range, Let us 
consider the design of a test for which the primary objective is a demonstration that 
the 10th percentile tio for the distribution of time to failure in the extreme testing 
environment meets a certain minimum standard. It will be assumed that previous 
experience has shown the Weibull distribution to provide a reasonable model for 
time to failure. 

Consider first the question of confidence intervals for t,10, based on a life test in 
which n units are observed for a maximum of C hours; this will be the censoring 
time for any units that have not failed by the end of the test. Suppose further that 
we will be satisfied with a degree of precision for which the ratio of the upper and 
lower confidence limits (UCL(t.10)1LCL(1,10)) for a .95 confidence interval for t.10 
is about 2. To select a plan we will have to decide on values for n and for C; to 
do this, it will be necessary to have preliminary estimates of the parameters for the 
Weibull failure time distribution, as we now discuss. 

In estimating a pth quantile t p  or yp  = log(tp), the gains in precision for an 
uncensored sample of size n over a censored sample with the same n are not very 
great, provided the fraction of uncensored failure times is a bit larger (.05—.10 is suf-
ficient) than p. We can use tables and charts discussed by Meeker and Escobar (1998, 
Ch. 10), but we will take an alternative approach to illustrate how one can proceed 
when tables or charts are not available. As a first step, we consider  the asymptotic 
covariance matrix V = Asvar(il, g) for the extreme value parameters u and b, based 
on the Fisher information matrix (5.6.1) for an uncensored sample (corresponding 
to C = oo). This is derived in Problem 5.4 for the Weibull—extreme value model, 
which gives 

= 
G2  ( 1 1087 —.1087) 

V — 
n —.1087 	.6079 
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This depends on b, but not on u. The asymptotic standard error for 9,10 = 
2.25L is given by the  square r.)ot of Asvar(9,10) = (1, —2.25)V(1, —2.25 )'; this is 
se(5, ,i0) = 2.16b/V7. An approximate .95 confidence interval for  yin  is given by 
9.;0 ± .96se(9.10), for which UCL(y.w) — LCL.(y Jo) = 8.47b/Vii. 

Since 1,10 = exP(Y.10, to give (JCL(t.10)/LCL(t,10) = 2, we need u cL(y.10)— 
Lc Lc y.10) = log 2 = .693, making the sample size requirement approximately n = 
150b 2 , We therefore require au estimate of b. This may be available from previous 
experience; for example, the Weibull shape parameter /3 = b is roughly known in 
certain applications. Otherwise, we can estimate b (and u) by first estimating a pair 
of quantiles I i,.  For the sake of illustration, suppose that we estimated 1,10 = 168 
hours and t.50 = 672 hours, bvsed on previous experience. This gives y.I0 = 5.124 
and y_50 = 6.510, and since y,, = u blog(— log(1 — p)), we can determine that 

= 6.78 and b = .74, approximately. 
With the value b = .74, th 3 sample size requirement is n = 150b2  = 82, giv-

ing  .re(91o) = .17. Now, we prefer to use a test with limited follow-up time C, for 
obvions practical reasons. Since our prior estimate of 1,10 was 168 hours, let us con-
sider plans for which C is about 200-240 hours, assuming that test equipment can 
be made available for 8-10 days. At this point we could evaluate Fisher information 
matrices as given by (5.6.1)45.6.4) and corresponding asymptotic standard errors 
for 9,10; Escobar and Meeker (1994) give algorithms. A preferable approach, since it 
provides a  wider  range of information, is to simulate some samples. 

To be a little conservative, we considered a plan with n = 100 and C = 240 
hours. We generated 100 censored random samples from the extreme value distribu-
tion with u = 6.78, b = .74, using the log censoring time log(240) for Y = log T 
For each sample we computed ,9 ;0 and se (9,10) as obtained from the observed infor-
mation matrix / (û , .6) -1  in (5.2.5). The sample standard deviation- for 9,10 across 
the 100 samples was .20, but the values of se(9.10)  ranged from .11 to .41, with the 
widths of the .95 confidence intervals for y,10 consequently ranging from .44 to 1.62, 
and (IC 0,10)/LCL(t,I0) ran3ing from 1.55 to 5.05. An important point to take 
from this is that confidence-interval widths vary substantially across repetitions of 
the experiment, The 10th, 50th. and 90th percentiles of se(9,10) across the 100 sam-
ples were .13, .20, and .27, which give UCL(t,10)/LCL(t, [0) ratios of 1.66, 2.21, 
and 2.88. 

At this point, we might deci le to investigate the effect of variations in the values 
of ni and b on the precision of estimation for t,10. We might also want to look at 
the effects of increasing the sample size, n, in order to increase the chance that the 
.95 confidence interval ratio UCL(t,10)1LCL(1,10) is no greater than 2. We will not 
pursue this here, 

inay also be desired to test a hypothesis concerning 1,10, in order to demonstrate 
reliability. For  example. we might want a test of the hypothesis H:1,10 =168 (Y.i0 = 
5.124) to have high power aga -mist alternatives for which t,10 is small. A one-sided 
test of H with approximate size 0.05 is to reject H if 

9 to —5.124 
Z — ' 	< —1.645. 	 (5.6.7) 

(9. to) 	— 
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Suppose we consider the alternative hypothesis that to = 96 hours (y,i0 = 4.564). 
The power can be estimated by generating data from an extreme value model with 
the same value of b (.74) as before, but u = 6.23, chosen to make y, 10  = u —  2.25b = 
4,564. We generated 100 censored random samples with n = 100 and C = 240 as 
earlier, and found that 92 gave a Z-value satisfying (5.6,7); this estimates the power 
at t,to = 96 as .92. 

BIBLIOGRAPHIC NOTES 

Statistical inference for location-scale parameter models has been widely studied. 
The exact conditional procedures of Section 5.1.2 and Appendix E for complete or 
Type 2 censored data were suggested (in the complete data case) by Fisher (1934) and 
Bartlett (1937), and subsequently studied by Fraser (1968) and others. The accuracy 
of large-sample procedures in Section 5.1.1, and adjustments to improve accuracy, 
have been discussed by various authors; Barndorff-Nielsen and  Cox (1994) cover 
this area. ieng and Meeker (2000), Doganaksoy and Schmee (2000), Wong and Wu 
(2000), and Appendix E provide additional references, emphasizing lifetime data 
applications. Inference for the Weibull distribution was studied extensively from the 
mid-1960s onward, particularly for the case of Type 2 censored data Because of its 
connection with the extreme value location-scale model, it was possible to base pro-
cedures on the pivotais  Zi, Z2, and Zp  defined in Theorem 5.2.1. Early work (e.g., 
Lieblein and Zelen 1956; Mann 1968; Mann and Fertig 1973; Mann et al. 1974) 
focussed a good deal on linear estimators of the extreme value parameters u and 12, 
since they were more easily obtained than m.l.e.'s, Thoman et al. (1969, 1970), Bill-
manu et al. (1972) and McCool (1970, 1974), however, considered pivotals based on 
m.1,e.'s. Lawless (1972, 1975, 1978) developed the conditional procedures of Sec-
tion 5.2.2.1. In addition to methods based on the exact distributions of the pivotal 
'quantities Z1, Z2, and Z p , simple point estimators for u and b, and approximations 
for pivotal quantities were developed (e.g., Mann et al. 1974; Engelhardt 1975; Mann 
1977). 

Early researchers also proposed linear estimators of  .t  and a for censored normal 
samples (e.g., Sarhan,and Greenberg 1962; Persson and Rootzen 1977). Exact test 
and confidence interval procedures for complete data are well-known; Owen (1968) 
provides discussions of the noncentral t distribution and the  calculation of confidence 
limits for quantiles of a normal distribution. Nelson and Schmee (1979) gave tables 
of quantiles for the pivotals Z1, Z2, and Z p  defined in Theorem 5.1.1 for Type 2 
censored normal samples, using linear estimators of and a . Schmee and Nelson 
(1977) gave similar tables for pivotais  based on the m.l.e.'s. As with the extreme 
value distribution, various approximations to the distributions of pivotal quantities 
were developed in early work for the case of Type 2 censoring (e.g., Mann 1977). 

For the case of Type 2 censoring, some tables for comparing extreme value dis-
tributions have been obtained by simulation (e.g., Thoman and Bain 1969; McCool 
1970, 1974, 1975a,b; Schafer and Sheffield 1976). The comparison of normal distri-
butions based on uncensored samples is a well-known topic (e.g., Box et al. 1978). 
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Efron and Tibshirani (1993)    ane: Davison and Hinkley (1997) provide comprehensive 
treatments of bootstrap methodologies; Meeker and Escobar (1998, Ch. 9) consider 
lifetime data applications. 

Location-scale models (5.5,1) with additional parameters have been considered 
by numerous authors. Prentice (1974) and Farewell and Prentice (1977) considered 
maximum likelihood methods for the generalized log-gamma model. Lawless (1980) 
considered exact conditional methods for Type . 2 censored data; Balalcrishnan and 
Chan (1995) give simulation-based tables for unconditional confidence intervals. 
Earlier work on generalized gamma models for lifetimes (e.g., Hager and Bain 1970) 
used versions of the model for which the connection with location-scale models was 
not obvious, and the parameterizations used often led to difficulties in obtaining 
in.l.e.'s. The generalized log-Burr model has been used to some extent (e.g., Dubey 
1968; Lancaster and Nickell 1980), though the properties of maximum likelihood 
eSlimation do not seem to have been exhaustively studied (Gould 1986). Location-
scale models with two or more shape parameters have also been used, One prominent 
family is that where 5.0(z; k) is a standardized log F distribution (e.g., Prentice 1975; 
Kalblleisch and Prentice 1980, 3ec. 3.9). 

Experimental plans for log-location-scale models have been studied extensively; 
Meeker and Escobar (1998, C 1. 10) provide details and numerous references for 
estimation-based plans. Plans fc r reliability demonstration hypothesis tests have been 
considered by Fertig and Mann (1980), Schneider (1989), and Balasoorlya et al. 
(2000). Many government and professional organizations maintain reliability strui-
darcls that include life test plans for special purposes. Blischke and Murthy (2000, 
PP. 697-701) provide a listing a standards. 

COMPUTATIONAL NOTES 

Methodology for Weibull—exr eme value, log-normal-normal, and log-logistic-
logistic models is widely available in commercial software systems. In S-Plus see 
in particular, function censorRe;, and in SAS, procedure LIFEREG. Some packages 
also .handle log-Bun and log- ;amnia distributions. A variety of special-purpose 
packages exist, especially for Weibull analysis (e.g., Abernethy 1996). 

S functions for bootstrap methodology are given in the books by Efron and Tib-
shi rani (1993) and Davison and Hinkley (1997). Packages such as S-Plus implement 
some of the methods. 

Meeker (2002) has constructed SPLIDA, a comprehensive package for the anal-
ysis of reliability data. It implements most of the methodology discussed in this 
chapter. and provides tools for planning as well as analyzing studies. 

PROBLEMS AND SUPPLEMENTS 

5.1 Linear estimation of location and scale parameters. Let Yo) < 	Y(n ) 
be the ordered observations in a random sample of n from a location-scale 
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parameter distribution with p.d.f. of the form 

f (y; u, b) = -b-1  fo 	, 	<y < oo. 	(5.7.1) 

Let Zo) = (4) — u)/b, i = 1 ..... n be the standardized oreler statistics, and 
define 

cei = E(Z(o) 	Vif  = Cov (4), Zw) j 	1 	 

(a) Show that if Y = (11(1), 	Yoe, then E(Y) = AO and Var(Y) = b 2V, 
where 

1 at 

O  = (u, b)' 	V = (uu)nxn. 

_I oe„_ 

Thus show that the linear unbiased estimators of u and b that have minimum 
variance are given by 

ii  = (17,E)' = 	AT' A'V— I  Y 

and that the covariance matrix for (ii, -6)' is (kV—  I A)lb2 . Calculation of 
the best linear unbiased estimates (blue.)  of u and b for a given distribution 
therefore requires knowledge of the means, variances, and covariances of 
the standardized order statistics in samples from the distribution. 

(b) Let'  = / I u 12b and = 	12"; and suppose that  Var()  = Ab2 , 
Var(L) = Cb 2, and Cov(e4, = Bb2  Define new estimators 

Ci2 
A =  

bk = 

 

1 + C 

Prove that the mean-square errors of b* and 0* are less than those of i; and 
respectively. In fact, it can be shown that b* and 0* are the best linear 

invariant estimators of b and 0, 
(Lloyd 1952; Mann, 1969) 

5.2 Equivariant estimators of location and scale parameters, Consider a location-
scale parameter model with p.d.f. (5.7.1). 

(a) Consider a Type 2 censored sample from (5.7.1) and linear estimators of u 
and b of the form 

= Eaf(n, 	 = E b1 (n, OY(1)• 
i=t 
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Determine necessary ;aid sufficient conditions on the coefficients ai(n, r) 
and Mil, r) so that. fi and /3 are equivariant, that is, they satisfy (E2) and 
(E3) of Appendix E. 

(b) Show that the b.1,u.e.'s of u and b from Problem 5.1 are equivariant. 

(Hint: Show that EL ai = 0.) 

(c) Let fi and /3 he the 	of u and b from a Type 2 censored sample. Show 

that û and i; are equivt riant. 

(d) Show that the m.l.e.'s fi and i; from a Type I censored sample where each 

individual has a prespeci fled censoring time C; (i =  I 	n) are not equiv- 

itriant, What are the ramifications of this for the quantities Zi = 	— u)//'; 

and Z2 = /7̂//i defined in Theorem 5. I .17 

(Section 5.1, App. E) 
5.3 Bayesian inference with an improper prior. Consider a censored sample from a 

location-scale parameter distribution (5.7.1) and an improper prior distribution 

— 00 < 1.1 < 00 , 	 b > 0, 

(a) Determine the form of the marginal posterior distributions for u and b. 

(b) If the data are Type 2 censored; show that the posterior probability intervals 

in part (a) arc numerically identical to conditional confidence  intervals for u 

and b obtained by using the pivotal quantities Zi = (6— 01 -6 and Z2 = i;//, 
in Theorem E2, along with the results of Theorem E3. 

(Section 5.1.2; Bogdanoff and Pierce 1973) 

.5.4 Let 	b) be the contribution to the log-likelihood function (5,2.4) from an 
individual with potential censoring time Ci under a Type 1 censoring scheme 
and an assumed extreme valtie model (5.2.2). 

(a) Use the discussion leading to (5.1.10) to show that the Fisher (expected) 
information matrix Du, b) has entries that are the sums over j  = 	, 
of 

[

Trued = E 	pu2 	p• {i — exp(—eni)] 

8 [

.!@' b) 
;)b 2  

=L-2-1  Ef Ri , (1 -I- z2 e. z ) exp(z — e`) dz -I- lq exp(Ri — e Ri)] 

(u , [ 	01  
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1 Lf  

= ; 	exp(2z - e`) dz 	exp(R; - e Ri)] , 
b h  -co 

where Ri = (log Ci - u)/ b.  
(b) Determine 1(u, b) for an uncensored sample of n observations by letting 

-+ oc in part (a). Thus show that the covariance matrix for the asymp-
totic normal distribution of ..,F1(û - u,S - b) is 

1 -I- ---i(1 
g  ni(u, b) -1  = b2 ( 	

6 

6 

- y) 2 

 Y) 

- 7E-6--2 (1 - y) )  

6 
n2. 

(5.7.2) 

where y = .5772 is Euler's constant (see (B1 I) of Appendix B), 
(Section 5.2; Meeker and Nelson 1977) 

5.5 Consider complete samples of size n from the extreme value distribution 
(5.2,2). 

(a) Compare exact quantiles of S lb given in Table I of Thoman el al. (1969) 
with approximate quantiles obtained from (1) the asymptotic normal 
approximation /̂)/b - N(1, 6/(n 2n)), and (2) the approximation log(b/b) - 
N(0, 6/(ir 2n)), both obtained from (5.7.2). Also make comparisons with 
percentage points given by the x 2  approximation (5.2.17). 

(b) McCool (1974) gives the following quantiles for  Z,,  = (5) p  - 0/6 , deter-
mined by simulation, for the case n = 30, p = .10: 

.01 .05 .10 .90 .95 .99 

-.790 -.567 -.442 .706 ,915 1.389 

Compare these with approximate quantiles of Zp  derived from the normal 
approximation (û, /•;) « N2((u, b), 1(u, 0 -1 ], using (53.2), 

(Section 5.2) 

5.6 Show that the conditional methods developed in Section 5.1.2 apply to the case 
of progressively Type 2 censored data, defined in Section 2.2.1. In particu-
lar, show that under the sampling distribution (2.2.8) that applies to progres-
sive Type 2 censoring with two stages, the results in Theorems El and E2 of 
Appendix E are still valid. 

(Section 5.1.2; Viveros and BalnIcrishnan 1994) 

5.7 Generating a  Type 2 Censored San2ple, Let T(l) « T( .) be a Type 2 cen-
sored sample based on n lifetimes from a distribution with cumulative hazard 
funCtion H (t), and let E(j) = H(T(,)), i -  1,   

(a) Show that E(1) , 	 EN are the first r order statistics in a sample of size n 
from a standard exponential distribution. 
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(b) Use the representation in Theore 4.1.1, that is, 

i = 1, 

where W1, 	la', are independent standard exponential random variables, 
to suggest a way of generating T(1) 	 4.) for a distribution With easily 
invertible H (T). 

(e) Apply this methoi to the Weibull distribution (5.2,1). 
(Section 5.2) 

5.8 Table 5.9 shows resu1ts of an experim nt designed to compare the performances 
of high-speed turbine engine bearin s made out of five different compounds 
(McCool, 1979). Tho experiment tes ed 10 bearings of each type; the times to 
fatigue failure are gi. ,en in units of millions of cycles. 

(a) Assuming that tho failure times in each sample came from a Weibull distri-
bution (5.2.1), obtain m.l.e.'s for a and fi and find confidence intervals for 
the tenth percenti'e of each distribution (t.10 is used as a rating life). 

(b) Carry out a comp nison of the fivd failuré time distributions and, in particu-
lar, the tenth perc ,mtiles of the distributions, 

(c) Investigate whether a log-normal distribution also fits the data by consid-
ering a log-gamma model. Compare confidence intervals for t',10 under a 
log-normal model with those in part (a). 

(Sections 5.2, 5.3, 5.5) 

5.9 In Example 4.5.1 e3timates of 1.50 were given for a lifetime distribution 
assumed to be three-parameter Weibull, with different values y = 60, 100, and 
140 assumed, for the threshold parameter. Obtain .95 confidence intervals for 

Table 5.9. Flilure Times or Bearing Specimens 

Type of Compound 

11  Ill 	IV V 

3.03 3.19 3,46 	5.88 6.43 
5.53 4.26 5.22 	6.74 9.97 
5.60 4.47 5,69 	6.90 10.39 
9.30 4.53 6,54 	6.98 13.55 
9.92 4.67 9.1,6 	7.21 14.45 

12.51 4.69 9.40 	8.14 14.72 
12.95 5.78 10.19 	8.59 16.81 
15,21 6.79 10.71 	9,80 18.39 
16.04 9.37 12.58 	12.28 20.84 
16.84 12.75  13.41 	25.46 21.51 
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t,50 in each of these situations via the likelihood ratio method of Section 5.2.1. 
Comment on the extent to which the intervals depend on  y.  

(Sections 4.5, 5.2.1 ) 

5.10 The data below show the number of cycles to failure for twenty-five 100-cm. 
specimens of yarn, tested at a particular strain level: 

86, 146, 251, 653, 98, 175, 176, 76, 264, 15, 157, 220, 42, 321, 180, 198, 

38, 20, 61, 121, 282, 224, 149, 180, 325. 

Determine .95 lower confidence limits for the .01 and .10 quantiles of the fail-
ure time distribution, assuming a log-normal distribution. Check on the ade-
quacy of the model. Repeat the analysis using a log-logistic model. 

(Section 5.3) 

5.11 The observations below are survival times (in weeks) of male mice exposed 
to a 240-roentgen dose of gamma radiation (Furth et al, 1959; Kimball 1960). 
Brackets after a value indicate the number of observations with that value. 

40 48 50 54 56 59 
62 63 67(2) 69 70 71 
73(2) 76 77 80 81(2) 82 
83 84 86(2) 87 88(5) 89 
90(2) 91 93 94 95 96 
97(2) 98 99(2) 100(4) 101(3) 102(2) 
103(5) 104(3) 105(2) 106(3) 107 108 

109(2) 110(3) 111(3) 11 113(2) 114(2) 
115 116(2) 117 118(3) 119(2) 120(3) 
121(2) 123(2) 124(3) 125(2) 126(5) 127(4) 
128(4) 129(6) 130(4) 131(2) 132 133(3) 
134(4) 135(3) 136(4) 137(3) 138 139(2) 
140(2) 141(5) 142 144(5) 145(2) 146(4) 
147(4) 148(4) 149 150 151(4) 152(2) 
153 155 156 157 158(2) 160 
161 162(2) 163(2) 164 165(2) 166 
168 169 171(2) 172(2) 174 177(2) 

Assess whether any of the log-logistic, log-normal, or Weibull models fit these 
data. What do you conclude about the survival distribution and the shape of the 
hazard function? 

(Sections 5.2, 5.3, 5.5, 3.3) 

5.12 Prove that (5.4.14) is a pivotal quantity when the data are complete or Type 2 
censored. 

(Section 5.4.2) 

5.13 Suppose that two Weibull distributions have the same shape parameter but 
possibly different scale parameters cei and ce2. The ratio of the hazard func- 
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!ions then depends on (5 	(al /a2) 13 , and the survivor functions are related by 

(i) = 520Y5  

(a) Develop likelihood raro tests for (5 and show how to use these to obtain con-

fidence intervals for 8 Apply this to the data on leukemia remission times 

in Example 5.2.1, assuming that the lifetimes are mutually independent. 

(b) Develop an alternative procedure based on the approximate normality of the 

m.l.e.'s l'or cti, bl, 02, 22, and apply it to the leukemia data. 
(Section 5.4) 

5.14 The data below are Nitta times for two types of polyethylene cable insulation, 

obtained front an accelerz ted life test. Of the 10 specimens of each type tested, 

(1 failed, Ordered failure fines, in hours, are given below. The last time in each 

:itse is a censoring time. 

Type 1 	5,1, 9,2, .g.3, 11,8, 17.7, 19.4, 22.1, 26.7, 37,3, 60.0* 

Type II 	11.0, 15.1, 18.3, 24.0, 29.1, 38.6, 44,2, 45.1, 50.9, 70.0* 

Assuming that failure times  for each type have a Weibull distribution, compare 

the two failure time distributions  and assess the possible superiority of Type II 

insulation. 
(Section 54) 

5.15 Paired data. When respcnnse data are paired so that the two units in a pair 

received different treatmots A and B, a common method of analysis is to 

consider the differences in responses for each pair, However, this is problem-

atic when the responses are survival times subject to censoring. The data in 

Table 5.10 show log (ba.Fe 10) survival times Y of rats poisoned with carbon 

tetrachloride in a laboratory experiment (Sampford and Taylor 1959); time was 
measured in minutes. Paring was used to study whether injecting a rat with 
vitamin Bi2 had an effee'. on survival time. In the experiment, one rat from a 

pair of litter mates was injected with vitamin B12 and the other received no vita-

min. Observation was sw pended after 16 hours (y = 2.98), and three survival 
times were consequently censored. 

(a) Suppose that, given an effect ai specific to the ith pair of rats, the log sur-
vival limes Yu and  Y, for the vitamin B12 and control animals are inde-
pendent, with Y» of),  j =  1, 2. Hence Zi = 111( 

a 2), where (5 = — and a 2  = 2q. Note that if 111; and Y2i are 
both censored, then Zi is unknown. Explain why it would be improper to 
analyze the data by simply dropping doubly censored pairs and treating the 

rest as a random sample from N (ô , (7 2). 

(h) For the data in Table 5.10 only 3 times are censored, producing 2 left-
censored and 1 right-censored Zi value. Treating the Zi as arising from 
an independent eensoi ing mechanism, estimate (5 and thus the difference in 
median log survival, using the model in part (a). State any reservations you 
have about this approach. 
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Table 5.10. Logio  Survival Times for Rats 

y i ( 3 12) Yz (Control) z = yr - Y2 

2.73 > 2,98 < -.25 
2.80 > 2.98 < -.18 
2.01 2.84 -. 83 
2.19 2.76 -.57 
2.34 2.83 -.49 
2.61 2.73 -.12 
2.51 2.62  -II  
2.65 2,70 -.05 
2.72 2.76 -.04 
2.79 2.82 -.03 
2.90 2.79 .1 	I 
2,78 2.64 .14 
2.78 2,48 .30 
2.97 2.64 .33 
2.74 2.31 .43 
2.96 2.51 .45 

> 2,98 2.68 > .30 

(c) An extreme value model also turns out to be tractable. Suppose that indepen-
dent Y» have extreme value distributions (5,2.2) with location parameters 
up = 14j + Cei and scale parameters Gji = b. Show that the distribution 
of Zi =  Y11  - Y2/ is logistic, with location parameter 8  = u j  - u2, scale 
parameter b, and survivor function 

S(z) = [1 exp 	8 )] -1 
	

- 00 <  z  < C>3. 

(d) Estimate 8 using the model in part (c) under the saine assumption about 
censoring as in part (b). Compare confidence intervals with those in part (b), 
under the same assumption about censoring as in part (b). Why would you 
expect them to be similar? 
Paired data are discussed further in Section 11.2. 

(Sampford and Taylor 1959; Holt and Prentice 1974) 

5.16 Prediction of a future observation. Suppose that yi < 	< Yr are the r 
smallest observations in a sample of size n from the extreme value distribution 
(5.2.2) and let fi and ï; be equivariant estimators of the parameters in the model, 
based on ,,,,, yr . If Yj is the smallest observation in a future sample of size 
In from the same distribution, then prediction intervals for Yi" can be based on 
the quantity 
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(a) Show that U is a pivotal quantity. 
(b) Determine the joint distribution of W1 = (Yi" 	tt)lb, Z2 = r7/b, and 

Z3 = 	tt)lb, conditional on the ancillary statistics al = (yi — 

(i = 1, 	,r). Noting that U = (W1 — Z3)/Z2, show that the conditional 
survivor function for  U,  given a, can be written as 

co 

Pr(U 	= 	[1'2  exp Ea) 	(Ine' t  E eal t )idt, 
0 	 t =l 	 t=.1 

where Ei;* is defined as in Section 5.2.2. This allows conditional confidence 
intervals to be obtained for r. Mann (1977) discusses an approximation to 
the unconditional distribution of U, which can also be approximated very 
accurately by simulation. 

(Sections 4.6, 5.2.2; Lawless 1973) 

5.17 Prediction of o future observation (continued). Let (y;, 81), i =  1, 	n be 
a censored rankm sample of log-lifetimes, where Y = log T has a location-
scale distributi )n (5.1.1). Let a, b be the m.l.e.'s for u and b, and let Y* be an 
independent future observation from the same distribution. 

(a) Algue  that if the censoring is Type 2, then 

W = (Y* — ii)/6 

is a pivotal quantity, and that in general, W is pivotal in the limit as n 
increases. 

(b) The distribt tion of W can be approximated by simulation, as discussed 
in Section 4.6. A  parametric bootstrap approach is to generate values W.7 
(j = I „ /3) by simulating y* and samples (y7,  Sr), i = 1, 	, n, from 
El, (11, I;), g. ving 	a. , 6. and a realized W-value w* = (y* — 
The values n';' , . . , Oh provide an empirical estimate of the distribution 
of W When the censoring mechanism is not sufficiently specified that this 
approach can be used (see Appendix D.2 and Section 4.6), the pseudosam-
ple (4,87),1=1,...,n, can instead be generated by nonparametric boot-
strap saniplitT with replacement from the n  data pail's (ye, 8t),i = 1, 

Use this approach with the ball bearing failure time data in  Examples 5.3.2 
and 5.5.2 to btain a one-sided .95 prediction interval (yL, co) for Y*, based 
on both extreme value and normal models for Y Compare the values of 
with the naive or plug-in values obtained by treating û, i; as the true values 
of u, b and solving SUL; 	= .95 to get yL, 

(c) Based on the same data, use simulation to obtain a lower .95 prediction limit 
for the small( st observation Yii r in a future sample of 10 log-lifetimes. 

(Sections 4.6, 5.2, 5.3) 

5.18 Bayesian predic,ion. Suppose that Y has a location-scale distribution (5.1.1) 
with parameters u and b. Let D represent the observed data from a censored 
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random sample (ye, 81), i = 1, . . . , n, and post(u, hi D) the posterior distribu-
tion obtained from D and a prior distribution for (u, b). The Bayesian predic-
tive p.d.f. for a future observation Y* is then given by 

p(YID) = f f (ylu, b)post(u, bi D) du db, 

where f (ylu, b) = f (y; u, b) is the p,d.f. of Y* 

Using the improper prior /2 -1  for u and b in Problem 5.3, obtin p(y ip )  in the 
case of an extreme value model EV (u, b) for Y 

(Sections  4.6,5.2; Bogdanoff and Pierce 1973) 

5.19 Estimation of median residual lifetime. If lifetimes T have survivor function 
S(t; 0), then the median conditional lifetime at time to is the value to (0) satis-
fying 

S(t0(0))  
Pr(T to(0)IT L- to) =-5 . 

S(to) 

The median residual lifetime is t0(0) - to. 

(a) For a Weibull model (5.2.1) show that yo(0) = log to (0) is given by 

Yo(u, b) = u b log[- log(.5) e ()"" )/b ], 

where yo = log to and u, b are the extreme value parameters in (5.2.2). 
(b) Investigate methods of obtaining confidence limits for yo (u , b), for a given 

yo; assume that a censored random sample (ye, Se), i = 1, . . . , n from the 
distribution of Y = log T is available. 

(e) Consider the leukemia remission time data in Example 5,2.1 for the group 
of patients receiving the drug 6-MP. Assuming a Weibull distribution for 
remission times, obtain a .95 lower confidence limit for the median residual 
remission time, given T > 15 weeks. 

(Section 5.2) 

5.20 Failures can occur in microcircuits because of the movement of atoms in the 
conductors in the circuit; this is referred to as electromigration. The data below 
are from an accelerated life test of 59 conductors (Schafft et al. 1987; Nelson 
and Doganaksoy 1995). Failure times are in hours, and there are no censored 
observations. 

6.545 9.289 7.543 6.956 6,492 5:459 8.120 4.706 
8.687 2.997 8.591 6.129 11,038 5.381 6.958 4.288 
6.522 4.137 7.459 7.495 6.573 6.538 5.589 6.087 
5.807 6.725 8.532 9.663 6.369 7.024 8.336 9.218 
7.945 6.869 6.352 4.700 6.948 9.254 5.009 7.489 
7.398 6.033 10.092 7.496 4.531  7,974  8.799 7.683 
7.224 7.365 6.923 5.640 5.434 7.937 6.515 6.476 
6.071 10.491 5.923 
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Fit log-Burr and log-gan mn distributions to these data. The log-normal model 
has often been found sati :factory with such data; consider the support for it and 
also for Weibul I and log-logistic failure time distributions in the data here. 

(Sections 5.2. 5.3, 5.5) 

5.21 Planning a comparative , nperiment. Suppose that the distributions of lifetimes 
for two groups of individuals are adequately represented by Weibull distribu-
tions (5.2,1). The shape Farameter 13 can be assumed to be roughly 1.5 for each 
distribution. An experimont is to be planned to test the hypothesis 	= ce2 
or equivalently in terms of the extreme value parameters in (5.2.2), 	= 142. 
The study will include an equal number of individuals from each group. We will 
consider two-sided tests of H based on the asymptotically normal statistic 

— az) 
[se(ûi)2 + se (û 2)2]112' 

where fri and 712 are the m.l.e.'s of ui and uz  from the experimental data. 

(a) If there is no censoring, use (5.7.2) from Problem 5.4 and the value b = 
0 -1 =  .67 to construct tests of size .95. Determine the value of n (total. 
number of test indivieuals) needed to make the probability of rejecting H 
equal to .8, if lui — n :71 = log 2. 

(b) What additional information is necessary, if the experiment must be termi-
nated after time C? Discuss how you would choose n in this case. 

(Section 5.6) 



CHAPTER 6 

Parametric Regression Models 

6.1 INTRODUCTION 

In most studies there are covariates or explanatory variables such as treatments, 
group indicators, individual characteristics, or environmental conditions, whose rela- 
tionship to lifetime is of interest. This leads to a consideration of regression models, 

Examples 1.1.5 and 1.1.7 to 1.1.9 in Chapter 1 described situations in which 
covariates were present. The following are two further examples. 

Example 6.1.1. Krall et al, (1975) discussed a situation in which survival times 
for 65 multiple myeloma patients were examined in conjunction with :16 explanatory 
variables. The latter included physiological measures such as the white blood count 
of the individual at the time of diagnosis, qualitative factors such as the presence 
or absence of infection at diagnosis, and personal characteristics such as sex and 
age. A primary objective was to determine whether survival time was related to the 
explanatory variables. The data are discussed in Problem 6.9. 

Example 6.1.2. Hamada (1995) described a multifactor experiment designed to 
improve the reliability of drill bits used in the manufacture of printed circuit boards. 
Small-diameter holes are wanted, but small-diameter drill bits may break; this is a 
serious problem because broken bits leave material embedded in the board, which 
then has to be scrapped at a cost of several hundred dollars. The experiment was 
planned to identify factors affecting bit breakage and lifetime (measured as the num-
ber of holes drilled before breakage of the bit), and to design a bit that would be 
reliable under varying manufacturing conditions. Eleven factors were investigated in 
a fractional factorial design; they included physical characteristics a the bit (e.g., 
moment of inertia, type of material, point type) as well as external factors such as 
the type of material in the printed circuit board. 

Regression models were introduced in Section 1.4, where it was noted that both 
parametric and nonparametric methods are useful in the analysis of lifetime data. 
In addition, covariates may vary over time. This chapter concentrates on parametric 

269. 
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methods and mostly on fixed (nontime-varying) covariates; semiparametric methods 
are discussed in Chapters 7 and 8. Time-varying covariates are considered in Sec-
tion 6,4.3 and in Chapters 7 md 8. 

Regression analysis of li.'etimes involves specifications for the distribution of a 
lifetime, T, given a vector of covariates x. The most important parametric models 
are extensions of models in Chapters 4 and 5, to allow parameters to depend on x. 
For example, consider the Weibull distribution (5.2.1) with scale parameter a and 
shape parameter S: regressicn models for which either ce or 8 depend on x may be 
considered. Since a and 8 ate positive-valued, one pair of convenient specifications 
is a (x) = exp(p/x) and 6(x) = exp(y'x), where p and y are vectors of regression 
coefficients of the sanie  length as x; in this case, a (x) > 0 and 8(x) > 0 without any 
restrictions on p or y, 

A Weibull model that proves useful in mapy situations has only a depending on 
x, so that the survivor function (s.f.) of T is I 

SU Ix) = exp[—(t/a(x)) 6 ], 	t > 0. 	 (6.1.1) 

The log-lifetime Y = log T  ii this case has s.f. 

— 	, 
S(ix) = exp [— e;.p 	

u(x))] 
b 	 —oo <y < oo, 	(6.1.2) 

where u(x) = log a (x) and !; = B -1  This is an extreme value location-scale param-
eter distribution (5.2.2), with u = u(x). In ternis of T,-the model (6.1.1) is referred to 
as a log-location-scale or accelerated failure time model. These are the most widely 
used type Of parametric rcgre ssion model. Let us consider them in a bit More detail. 

(i.1.1 Log-Location-Scale "Accelerated F  hure Time) Regression Models 
I 

Location-scale regression inc dels take the distribution of Y given x to be of the form 
(5.1.1), with u = u(x) and 

Y = re(x) -11  bZ, 	 (6.1.4) 

where Z is a random variable with s.f. S'o(z). The family of models for which Z has 
a standard normal distributim. is a frequent basis of regression analysis; with lifetime 
data the use of extreme value logistic, and other distributions for Z is also common. 
As noted In Section 1.4, the s.f. for T given x corresponding to (6.1.3) is of the form 

Myjx) = 3 1
C' 

 — u (x)) 
—oo <)'  < 00, 	(6.1.3) 

j./where 50(z) is independent of x. Another wa to express this is as 

SON) = S('1[(t /a (x))r1, 	t ?_ 0, 	 (6.1.5) 
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Figure 6.1. Density and survivor functions for  location-scale regression models. 

where ot(x) = exp(u(x)), 8 =  b, and 4(0 = So(log t). The covariates effec-
tively alter the time scale and (6,1.5) is often referred to as an accelerated failure 
time (AFT) model. In particular, if o(x) > 1, the effect of the covariate vector is to 
decelerate time, and if cz(x) < 1, the effect is to accelerate it. 

Figure 6.1 shows the effects of covariates on the probability density and s.f.'s of 
log-lifetime Y Different covariate vectors xi and x2 give functions that are trans-
lations of one another; they have the same shape but are separated by a distance 
ti(xi) — u(x2). Such models are especially useful when lifetimes for different indi-
viduals can vary by orders of magnitude, as for the electrical insulating fluid failure 
times in Example 5,4.1. Many engineering models in which failure is accelerated 
by thermal, voltage, or other stresses are of this type, and have linear specifications 
ii(x) = p'x. For example, the model with te(x) = po flix, with x = log (stress) 
is often referred to as an inverse power law model, since is typically negative; 
this is often used with high-voltage stresses. For temperature as a stress factor, the 
Arrhenius model with  u(x) = /30 /3Ix  and x = d—I  is often used, where cl is the 
temperature in degrees Kelvin (i.e., degrees Celsius plus 273,15). 

Accelerated failure time, or log-location-scale models are also useful in other 
fields of application and, indeed, dominate many areas of regression analysis. Sec-
tions 6.3 and 6.4 deal with analysis based on (6.1.4), with u(x) = p'x, and extensions 
of this model. 

6.1.2 Proportional Hazards Regression Models 

There are two main approaches to regression modeling for lifetimes. One uses time 
transformations, assuming that the effect of covariates is equivalent to altering the 
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rate al which time passes; th AFT models just discussed are of this type. The sec-
ond approach adopts specifirations of the way that the covariates affect the hazard 
function for T The most common model of this type is the PH model, for which the 
hazard function  foi  T,  given x, is of the form 

h(tlx) = ho(t)r(x), 	 (6.1.6) 

where r(x). and /N (t ) are positive-valued functions, The function ho(t) is usu-
ally called the bascline hazard function; it is the hazard function for an individual 
whose covariatc vector x is such that r(x) = 1. A common specification for r(x) 
is exp(I3'7). in which case  'ü(í)  is the hazard function when x = O.  The name 
proportional hazards (PH) cc mes from the fact that any two individuals have hazard 
functions that are constant multiples of one another. 

Fully parametric PH models specify ho(t; a) and r(x; /3) in (6.1,6) paramet-
rically. It follows from (6.1.6) and the relationship S(tlx) = exp[—H(t Ix)] 
ex pi — f( 1, h (rill() dul that the sf, for T.  given x. is of the form 

s(t ix) = socor( N ) , 
	 (6,1.7) 

where  So(I) = expf— Hat)] is a baseline s.E Figure 6.2 shows hazard and survivor 
functions for two different covariate vectors, xi and x2 .  Note that one s.f. must lie 
completely above the other, by (6.1.7). 

A feature of PH models is that if So(t; a) is in some family  of parametric models, 
then .5 (t Ix) .  is not in general in the same family, though it is if ho(t) is of the form 
uti (1; a2) for parameters tti and eh. This is in contrast to the situation for AFT 

z 

 

3 

Figure 6.2. Hazrud and survivor functions for PH 'regression modcls. 
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models, and is perhaps one reason why fully parametric PH models are used less 
than semiparametric models where ho(t) in (6.1.6) is left arbitrary. A more important 
reason is the existence of simple, flexible methods for the semiparametric PH model, 
which is the topic of Chapter 7.  

One widely used parametric PH family is the Weibull; it is easily checked that 
(6.1.1) is a PH model since its hazard function is 

hoix) = —a [—t 	
= (81.6-1 )(1(x) -6  

a (x) a (x) 

This Weibull family is the only set of models that is in both the  PI-land AFT classes; 
see Problem 6.1. 

An important point concerning the specification of covariate effects in Weibull 
AFT and PH models should be noted. It is common with PH models (6.1.6) to use the 
specification r(x) = exp(I4 H x). For AFT models (6.1.1) the specification ce(x) = 
exp(f3:„yrx) is common; this corresponds to u(x) = /3' T  x in the corresponding AF 
location-scale model (6.1.2) for log-lifetime. Now, if the model is Weibull, as in 
(6.1.1), then (6.1.8) gives the hazard function, and by comparison with (6.1.6) we 
have that exp(Ppo) = exp(-43'AFrx). Thus the two sets of regression coefficients 
are not the same, but related by 

1 n  
PPH = —8 PAFT = —b PAFT, (6.1.9) 

where b is the scale parameter in (6.1.2). 
It often occurs that the distributions of T or Y for different covariate values xi 

and x2 are ordered in the sense that S(t ixi) > S(t(x2) for all t, or S(tlx1) < S(t lx2). 
In this case, we may seek a family of models for which the effect of covariates has 
a simple interpretation. The AFT and PH models are both of this type. For AFT 
models the effect of changes in covariates is to shift the distribution, as shown in 
Figure 6.1; this means, among other things, that the quantiles of Y are all translated 
by a constant amount and the quantiles of T are all multiplied by a constant amount. 
For PH models the effect of covariate changes is to multiply the hazard function by 
a constant amount. 

6.1.3 Other Regression Models 

The AFT and PH families accommodate settings where the distributions are ordered 
as in the preceding paragraph. Many other models also have this property. For 
example, additive hazards models with 

h(tlx) = 110(t; 	r(x; p) 	 (6.1.10) 

(6.1.8) 

are scimetimes useful. The s.f.'s for (6.1.10) are ordered because the cumulative haz- 
ard functions are ordered; H(tlxi) — H(tix2) =  [?'(XI) — r(xz)]t. This is also true 
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of any model for which S(t ix) satisfies 

1/45 (i Ix)] = 1/450(t)] 	w(x; p) 	 (6.1.11) 

for some specified monotonic function ifr(p). The PH family (6.1.7) satisfies (6.1.11) 
with 1/v (p) = log(— log p)  a id w(x; p) = log r (x). Another model of this type is 
the proportional odds family, For which (p) = log((1 — p)/ p); see Problem 6.3. 

In many applications the s. f.'s for different covariate values cross, and other mod-
els must be sought. Generalizations of AFT models that allow the scale parameter b 
in.(6. I .3) to depend on x are capable of dealing with this. Extensions to PH and other 
of the models just cited can also be used. 

Any of the models discw.sed in previous chapters can be extended to handle 
covariates. For example, in applications where long-term survivors are common, 
mixture models with s,f.', 

SON) = p(x; a)So(t Ix: 13) -I- I — p(x; a) 	(6,1.12) 

an be considered. These gen.:valize the cure-rate models (4.4.1), with 1. — p (x; a) 
representing the fraction of ling-term survivors among individuals with covariate 
vector x. Some other models are discussed in Section 6.5. 

Section 6.2 introduces scme general techniques for exploring and checking 
models, The remaining sections of this chapter deal with the analysis of data under 
specific types of models. As in Chapter 5, we consider right-censored data only. 
Extensions to deal with interval censoring or truncation are straightforward, since 
parametric models and likelilnod methods are employed for analysis. 

6.2 GRAPHICAL METHODS AND MODEL ASSESSMENT 

Graphical methods are useful for summarizing information and suggesting possible 
models, They also provide y ays to check assumptions concerning the form of a 
lifetime distribution and its relationship to covariates. Some procedures that help in 
formulating and  checking regression models for lifetime data are discussed in this 
section. 

6.2.1 Looking For Models 

One approach to the formula ion of models is to fit certain canonical models and 
Men to assess their suitability. This is reasonable when past experience or theory 
points toward certain types o models. However, it is often necessary to do some 
exploratory analysis in which the broad form of the lifetime distribution of T is con-
sidered, given covariates x. .s usual, the standard situation involves independent 
observations (ti,  S, . xi) on a i andom sample of n individuals, with ti a lifetime or 
censoring time and ri; = (t; is a lifetime). Censoring is assumed to be indepen- 
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dent in the sense of Section 2.2.2; this means that it is permissible for the censoring 
mechanism to depend on the covari ate values. 

In situations involving a  single quantitative covariate, x, plots of time, tj, or log 
time, yi, against xi or functions of xi may indicate the nature of any relationship 
between T and x. The presence of censoring is a problem, however. If the proportion 
of censored times is small, then it is usually satisfactory just to indicate which points 
in the plot correspond to censoring times, by using a separate symbol, but if there is 
substantial censoring, the opportunity to see a relationship between T and x may be 
destroyed. When there is more than one quantitative covariate and light censoring, 
plots of ti or log ti against the individual covariates are usually helpful, though if 
covariates display substantial association, then the individual plots may not indicate 
the sort of relationship found by fitting models with more than one covariate. The 
addition to a plot of smooth trend curves representing means or quantiles is often 
helpful. 

Another useful device is to group individuals so that within groups they have 
similar values of important covariates. Except when covariates are discrete with a 
fairly small number of values, this entails judgment and some loss of information. 
Computation of mean or median lifetimes or log-lifetimes for each group is helpful; 
the use of medians is preferable in most cases, especially when censoring is present. 
Graphical tools such as box plots are also valuable, but need modification to deal with 
censoring (e.g., Gentleman and Crowley 1991). For box plots, the empirical quantiles 
for a group of individuals may be defined in terms of the Kaplan—Meier estimate of 
survival for that group, provided a quantile is not beyond the largest observation. 

The distributions of lifetime within groups of individuals described in the preced-
ing paragraph can be examined and compared in more detail through nonparametric 
estimation of survivor, density, or hazard functions, as discussed in Chapter 3, pro-
vided there is sufficient data. Plots of Kaplan—Meier estimates S1 (t) of the survivor 
function for each of J groups, j — 1,  I, are often useful. One good proce-
dure is to use Weibull probability plots of log[— log :S1 (t)] (vertical axis) versus 
log t (horizontal axis) for each group. Alternatively, plots of Nelson—Aalen estimates, 
log[H (t)]  versus log t, can be used, The following points can be noted about such 
plots: 

1. For an accelerated failure time model, it follows from (6.1.4) that 

S(tix) = 
[lov — u(x)] 

So 

and thus 

{ 
[log t  —  u(x)]  

log[— log S(t Ix)] = log — log So 	 (6.2.1) 

Thus if u(x) is approximately constant for individuals within each group j = 
1 	/, and if an AFT model is appropriate, then plots of  log[—  log ,..)(1)] 
versus log t should be roughly parallel in the horizontal (log t) direction. Of 
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course, plots of Sj versus log t should also be parallel, but because of points 2 
and 3 below, we thatally choose to plot log[— log Si (t)i. 

2. For a proportional hazards model, it follows from (6.1.7) that 

logl — log S(t ix)) = log[—  log So (t)] + log r (x), 	(6.2.2) 

so if r(x) is appro;;imately constant within groups j = 1, . , J, then plots of 
log[— log S/(t)] vrsus log !  should be roughly parallel in the vertical direc-
tion. 

.3. If plots of log[— log Si (t)] versus log t are roughly linear, then Weibull lifetime 
models are suggested. If the plots are also roughly parallel, then (6.1.1) with 
constant shape parameter 8 is suggested; this is both an AFT and a PH model. 

Plots of a similar nature can be used to suggest other regression specifications. 
For example, plots of Si (0] versus log t or t would be useful in connection with 
models (6.1 .11)...Some cualifications should be noted about the assessment of par-
allelism In such plots, h.)wever. Parallelism in the vertical direction can be hard or 
impossible to assess when differences in the location of log-lifetime distributions 
are large relative to the dispersion of the distributions; right censoring may rule out 
comparisons at large t values; there is considerable variability in probability plots, as 
discussed in Section 3.3: the variability of plots is most extreme for small and large 
t, where the visual impa.:t may be considerable; splitting the data into several small 
groups leads to plots thx. are inherently very variable. 

The analysis of data is an iterative process involving exploration, model fitting, 
and model assessment. Model assessment is considered in Section 6.2.2, and model 
titling and inference in Ilections 6.3-6.5. First, however, we consider some simple 
illustrations of graphical model exploration. 

Example 6.2.1. (Leukemia Survival Times). In an early paper on regression 
analysis of lifetime data, Feigl and Zelen (1965) gave the data on survival times for 
33 leukemia patients shown in Table 6.1. Survival times are in weeks from diagnosis, 
and there are two covnriates: white blood cell count (WBC) at diagnosis and a binary 
variate AG that indicates a positive (AG = I) or negative (AG = 0) test related to 
white blood cell characteristics. The original data had no censored survival times, but 
for illustrative purposes three of the lifetimes have here been replaced with censoring 
times. 

A. plot of log(ti) versus log(wbci) is shown in Figure 6.3, with the symbols P and 
N denoting indiViduals with AG = I and AG = 0, respectively, and with the three 
censoring times (all wit1 AG = 1) designated with lowercase p. Two AG-positive 
subjects have ivbc = WO and t = 1, so their symbols are overlaid. The decision 
to plot log(ti) versus log(tubci) was based on a preliminary plot of log(ti) versus 
iubci and previous experience that indicates that biological counts are frequently best 
treated as covariates on a log scale, The plot shows considerable variation in survival 
times for individuals with similar covariate values, but suggests that survival times 
tend to be shorter for individuals with higher WBC and with AG-negative tests. 
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Table 6.1. Leukemia Survival Data 

AG  w bc  t AG  wbc 

65 1 2.3 56 0 4.4 
140" 1 .75 65 0 3.0 
100 1 4.3 17 0 4.0 
134 1 2.6 7 0 1.5 

16 1 6.0 16 0 9.0 
106" 1 10.5 22 0 5.3 
121 1 10.0 3 0 10.0 

4 1 17.0 4 0 19.0 
39 1 5.4 2 0 27,0 

121" 1 7.0 3 0 28.0 
56 I 9.4 8 0 31,0 
26 I 32.0 4 0 26.0 
22 I 35.0 3 0 21.0 

1 I 100.0 30 0 79.0 
1 1 100.0 4 0 100,0 
5 1 52.0 43 0 100,0 

65 1 100.0 

"Denotes a censoring time; wbc = WBC ÷ 1000. 
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Figure 6.3. Scatter plot for leukemia survival data. 
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The degree of association between wbc and AG is not strong, and we could also 
examine graphically the distribution of survival times for the AG = 0 and AG = 1 
groups, However. Figur3 6.3 displays most of the salient information in this simple 
setting. Regression models are fitted to the data in the next section. 

Example 6.2.2. (Insulating Fluid Failure Times). Example 1.1,5 gave data 
on the time-to-failure of electrical insulating fluid, subjected to various high-voltage 
levels in a life test experiment. Seventy-six insulating-fluid specimens were tested at 
seven voltage levels, u := 26, 28, 30, 32, 34, 36, and 38 kilovolts (kV); the data are 
given in Table I .1. Prim iry objectives of analysis are to relate failure time to voltage 
and to obtain a model that could be used for extrapolation to lower voltages. 

Engineering backgroand for this problem suggests what is referred to as a power 
law model. This is an AFT model (6.1.5) where the scale parameter a is related 
to the voltage y by a = cut' In terms of log failure time Y and the equivalent 
location-scale model (6.1.3), we have  u(v) = /30 + fit log y, where fib = log c and 

= p,  The cngineeriag background further suggests that a Weibull AFT model 
is appropriate. In Example 5.4.1 a test of constancy of shape parameters across the 
seven voltage levels was carried out, under the assumption of a Weibull model. 

Figure 6.4 shows plots of log[— log S(t)] versus log t, where St  (t) 	 (t) 
are the Kaplan—Meier estimates at voltage levels 26, 28 	 38 kV, respectively. 
We have used the adjust3d Kaplan—Meier values (3.3.1) in the plots, as described in 
Example 3.3,2. This shows a point for every failure time. To keep the plot uncrowded, 
only voltage levels 26, 3.3, 34, and 38 kV are represented. The one small failure time 

Figure 6.4. Weibull probabi , Ity plots of electrical-insulation failure times at different voltage levels. 
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Figure 6.5. Scatter plot for electrical-insulation failure data. 

at 26 kV should be noted as a possible outlier. Aside from this point, the plots are still 
not parallel, but are roughly so; they are also roughly linear. Bearing in mind that each 
plot is based on a small sample of failure times, we might consider Figure 6.4 broadly 
consistent with a Weibull AFT model. Formal hypothesis tests are indeed unable 
to contradict this model: Example 5.4.1 provides a test of the constancy of shape 
parameters, and Example 6.3.1 examines the power law and Weibull assumptions. 

Figure 6.4 shows that with small data sets it can be difficult to infer from plots 
whether the data are consistent with a specific type of regression model (in this case, 
an AFT model, perhaps of Weibull form), even when there is only a single covariate. 
When the data are stratified into small groups according to covariate values, there is 
considerable variability in nonparametric estimates such as :5'‘i(t), and it is asking too 
much to expect a clear picture to emerge. It may, however, b quite clear that there 
is a relationship between a covariate and certain characteristics of failure time, For 
example, Figure 6.4 clearly suggests that, although the  failure time distributions at 
different voltage levels might overlap, the median failure time t.50 or log failure time 
Y.50 decreases as voltage increases. Furthermore, a plot of yi(= log ti) versus log vi 
(i = 1, . . . , 76), shown in Figure 6.5, suggests a roughly linear relationship between 
y.50 and log voltage. Box plots of the log failure times at each voltage level would 
display similar information. 

Example 6.2.3. (Times to Pulmonary Exacerbation). Censoring was not a 
serious factor in the preceding two examples. We now consider data on times to a 
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pulmonary exacerbation for persons with cystic fibrosis, which were introduced in 

Example 1.1.8 and subsequently examined in Examples 3.2.4 and 3.2.5. The data 

arc from a clinical trial in %/hich patients were randomly assigned to receive daily 

closes of an experimental treatment, rhDNase, or a placebo. Patients were followed 

for approximately 169 days, and the response considered here is the time Ti (iti days) 
until the occurrence of a pulmonary exacerbation, or infection. Only 104 out of 321 
rhDNase subjects and 139 out of 324 Placebo subjects had exacerbations during. 

the study; for the remaining individuals Ti was right-censored at approximately 169 .  
days, aside from a few persons who withdrew early. 

Placebo 

-40 	 0 	 40 
	

80 
Baseline FEV (centered) 

rilDNase 

-40 	 0 	 40 
	

80 
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Figure 6.6. &liter plots for time io pulmonary exacerbation data. 
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Figure 3.4 showed the Kaplan—Meier estimates of survival (no exacerbation) for 
each treatment group. The estimates are well separated and suggest that either an 
AFT or PH model to represent the treatment effect might be reasonable. A continuous 
covariate, forced expiratory volume  (fey), was also measured on each subject at the 
start of the study; this is a measure of lung function, and one might expect higher 
fey to be associated with larger survival times. Figure 6.6 shows a plot of yi = log ti 
versus centered fey; (fevci) for each treatment group, with lifetimes and censoring 
times represented by different symbols. This is an honest plot in the sense that it 
shows all of the available data. It suggests a positive association between Ti and 
few, but the high degree of censoring makes it very difficult to characterize. The 
plot could be enhanced slightly by indicating numbers of censoring times at different 
fey values, since the overlaying of symbols makes this impossible to discern from the 
graph, but this does not help much in assessing the relationship between Ti and fey,. 

Plots that provide a bit more insight can be based on grouping subjects according 
to treatment and  fey.  For example, we could split the subjects in the two treatment 
groups into three subgroups by classifying their fey values as low, medium, or high. 
Figure 6.7 shows a transformed plot of the six Kaplan—Meier estimates of survival, 
::§:j(t), based on subgroups of approximately equal sizes. Following the discussion 
preceding (6.2.1), we first plotted log[— log g',/ (I)] versus log t. A Subsequent plot of 
F—I  (1 — .'i(t)) versus log t, where Fo(z) is the standard normal:cumulative distri-
bution function (c.d.f.) and  F 1  (p)  is the associated quantile function, gave more 
linear plots and is shown in Figure 6.7. This plot is somewhat "busy,"  but indicates 
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Figure 6.7. Normal probability plots for 6 treatment—fey groups for pulmonary exacerbation data. 
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the existence of a relationship between Ti and (trti, f eyi) which is reasonably con-
sistent with a log-location-scale model (6.1.4) in which Z is normally distributed. 

\ An alternative to Figure 6.7 that is less busy but sacrifices some information, is 
to show box plots or similar figures representing sample quantiles of lifetimes for 
the six subject groups. The sample quantiles are defined in terms of the Kaplan— ., - Meier estimates; Si (t), in view of the censoring; the pth quantile for a given group 
is the value tp  satisfying S../ (tp ) = 1 — p. For some values of p there may be no 
such sp , depending on the degree of censoring. In this example none of the gi (t) 
(j = 1, . , . , 6) reaches .5, so only quantiles with p < .5 are available. Figure 6.8 
shows a plot of estimated quantiles j51, for Y = log T. Sample quartiles  for p = .1 
and .3 are displayed. The estimates 51. 10 and 5730 in the plot are roughly an equal 
distance apart, consistent with a location-scale model for Y A treatment effect is 
suggested and, at least for the Placebo group, an effect due to fey.  

Confidence limits could be added to the points in the figure. An alternative graph-
ical approach to Figure 6.8 would be to impose nonparametric quantile regression 
curves on scatter plots, as in Figure 6.6. This shows the actual data and avoids the 
grouping inherent in Figure 6.8, but requires some form of smoothing; see Gentle-
man and Crowley (1991) and Bowman and Wright (2000). Note also that Figure 6.8 
summarizes only some of the information in Figure 6.6; it does not, for example, 
show that the fraction of persons experiencing an exacerbation within the 169-day 
follow-up period tends to decrease as fey increases. 

2 
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Figure 6.8. Estimated .10 and .30 quantiles for time to first pulmonary exacerbation, for 6 treatment:-fev 
groups. 
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As always, it is important to remember that these plotting procedures have varying 
and substantial degrees of inherent variability. Formal model fitting and analysis of 
these data are considered in subsequent examples. 

6.2.2 Assessment of Fitted Models 

Once a regression model has been fitted, it is important to assess the assumptions 
underlying the model in the face of the observed data, and to check on the sensitivity 
of conclusions to changes in the model or the data. Although model fitting and related 
inference procedures are not discussed until Section 6.3, let us consider some general 
aspects of model assessment. 

Plots described in the preceding section help to indicate whether certain mod-
els are plausible, and to identify extreme or influential data points (ti, Si, xi) or 
(ye, Si , xi). Once models have been fitted, several approaches to checking them can 
be considered. Model expansion, which involves adding parameters that represent 
specific types of departures from the current model, is very important; the need for 
the  extra parameters can be assessed via hypothesis tests. Some examples of model 
expansion are: (1) adding covariates representing interactions or nonlinear terms to 
check a linear model; (2) allowing b in a location-scale model (6.1.4) to depend on x, 
as a check on the constancy of b; (3) building time—covariate interactions into (6.1,6) 
as a check on the PH assumptions; (4) expanding the family of models Sa (z) for Z 
in (6.1.4), as a check on the assume51 error distribution. 

Model expansion techniques are considered in subsequent sections of this chap-
ter. Other model checking procedures based on hypothesis testing are considered in 
Section 10.4. The remainder a this section deals with graphical methods of model 
assessment, based on the examination of residuals and influence statistics. 

6.2.2.1 Residual Analysis 
Residual analysis is widely treated in books on regression (e.g., McCullagh and 
Nelder 1993; Weisberg 1985), though only uncensored data are usually considered. 
Residuals can be defined in various ways, but the key idea is that if a model for the 
distribution of Y given x, specified in terms of a parameter 0, is fitted to indepen-
dent data (ye, xi), i = 1, . . . , n, then residuals "di = g (yi , x, 6) should have specific 
properties if the model is correct. In most settings we seek residuals è,   "éi, that 
are approximately independent and identically distributed when the model is correct. 
The following discussion incorporates censoring into the definition of residuals. 

Let us first consider AFT or equivalent location-scale models (6.1.3) or (6.1,4), 
where u (x) depends on a parameter vector /3. Let  (ye, j, xi), i — 1 n represent 
a censored random sample from the distributions of lie given xi; the xi can be either 
random or fixed by the study design, but as usual in regression analysis we condition 
on their observed values. For convenience, write ui for u(xi; /3) in (6.1.3) and let 13, .1; 
be the maximum likelihood estimate (m.l.e.) obtained by fitting the data (yi ,  8,, xi) to 
(6.1.3). The standardized variables Zi = (Y1 — ue)lb are independent and identically 
distributed (i.i.d.) with survivor function So(z) under (6.1.3), and the standard way 
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to define residuals is as 

y, — ûj  

it — 	  

' 

=1„ ..,n, 	 (6.2.3) 

where ai  = u(xi ; i3). If there is no censoring, the  j  should, at least for large n, 
appear like a random sample from So(z), and therefore also be independent of the xi. 
Because they depend on /3 and 6, the 2 ;  are not of course exactly independent or 
identically distributed with distribution So(z). Adjustments to the definition of 
are sometimes considered, with the objective of making them look more like obser-
vations from So(z). This is mainly of concern when n is small and precise model 
assessment is difficult. 

Plots of the  j  against covariates or other factors such as the fitted values Ui can 
be used to check on the constancy of b in (6.1.3) or to look for systematic departures 
from the assumed specification u(x; p). Probability or other plots of the  j  can be 
used to assess the baseline distribution So (z). Departures from the location-scale 
form itself are harder to detect; this is best approached through model expansion, or 
the graphical methods in Section 6.2.1. 

The presence of censoring means that yi is either a log-lifetime or log censoring 
time. In this case one can argue that if the model is correct, the  2 in (6.2,3) should 
appear roughly like a censored random sample from So(z) and employ probability 
plots as discussed in Section 3.3. If censoring is light, then plots  ofj  versus covari-
ates are still useful, but censored and uncensored residuals should be designated 
with different symbols. However, as censoring becomes heavier, the usefulness of 
such plots is severely compromised. The essential problem is that when a censoring 
mechanism is operating, the distribution of yi is not given by (6.1.3), but depends on 
the censoring process.  For example, if log-lifetime Yi has distribution. (6.1.3) condi-
tional oil x,  and  log  Ci is a fixed log censoring time, then Yi* = min(Yi, log Ci) has 
distribution function 

j
r  [yi — ui  ] 

F* (yi) = ' 0 	b 
1 

yj 15, log Ci 

yi > logCi 

where Fo(z) = 1-50(z). That is, the possibly censored observation yi is a realization 
of Yi*, which does not have distribution (6.1.3) and, indeed, has a mass of probability 
at log Ci. Correspondingly, zi = (yi — ui)/b is a realization of zr  = (Y 1* — 
and has a mass Of probability at (log CI ui)/ b. 

Two approaches can be considered for dealing with plots of residuals Versus 
covariates when censoring is substantial. One is to use adjusted residuals, for which 
if corresponding to censored observations are adjusted upwards. These are usually 
defined for location-scale models as 

.adj 
= Sizi + (1 — 81)E(ZdZi > ), 	 (6.2.4) 
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where E(ZilZi > 	denotes the expected value based on the distribution 5'0(z) 
for Zi. This makes intuitive sense; we know that 2, for a censored observation is a 
lower bound on the true residual. It can also be noted that if Zi = (Yi — cii)/12 and 
Ri = (log Ci — u)/b, then 

Zadi = Ô1Z, + (1 — 3i)E(ZilZ1 > Ri) 

has expectation 

E(Zri) = f RI  ZfO(Z)dz So(Ri) fc° zfo(z)  dz 
—00 	 So(Ri) 

co 

=J  zfo(z)dz 

= E(Zi). 

Therefore the adjusted residuals (6.2.4) should behave roughly like the Zi in expec-
tation, and "smooths," or nonparametric regression mean curves passed through plots 
of versus covariates, should be roughly constant and equal to E(Zi) if the model 
is correct. It is important to note, however, that the distribution of the adjusted resid-
uals depends on the censoring times and may be very unlike the distribution of 
Zi. In particular, it may have probability mass on certain values or along certain 
curves when censoring times are roughly equal, as illustrated in the continuation of 
Example 6.2.3 that follows. An inherent problem is also that the adjusted residuals 
(6.2.4) are computed using the model that we are trying to check, and if censoring is 
heavy, then the ability of the plots to detect model inadequacies is very, limited. 

A second approach that is useful when most censoring times are large is to pass 
nonparametric quantile regression curves 5jp(.7C j) through plots of 2 versus specific 
covariates xif, as discussed in Example 6.2.3. If few of the smaller 2 are from cen-
sored observations, then it will at least be possible to obtain curves for smaller values 
of p, These should be roughly constant if the model (6.1.4) is correct, and approxi-
mately equal to the pth quantiles of Z in (6.1.4). 

Residuals can be defined for arbitrary lifetime regression models, not necessarily 
of location-scale form, by considering quantities 

	

ei = 	0) 	 (6.2.5) 

that are i.i.d. and whose distribution is known, given X1, 	 xi,. In (6.2.5). Ti is the 
lifetime and 0 is the vector of parameters that specifies the model in question. If' 1) is 
the m.l.e. of 0 determined from complete data Oh xi), i = 1, .. n, then residuals 
gi are defined by 

	

= 	6) 
	

(6.2.6) 

and for large n behave approximately like a random sample of size n from the dis- 
tribution of the ei. When the lifetimes Ti are subject to censoring then, as described 
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above, we can use the 'el as defined or choose to employ adjusted residuals for obser-
vations that are censored. 

Quantities ei are readily available with continuous models; for example, the prob-
ability integral transform values ei = F(T,Ix,; 0) or ei = S(Tilxi; 0) have uniform 
distributions on (0, 1). An equivalent quantity that is especially convenient with cen-
sored data is the cumulative hazard transform ei = H(Tilxi; 0), which gives residu-
als 

"éi = H(4I)4; Ô) 	i = 1, 	, 	 (6.2.7) 

Since H (TIN! ; 0) = — log S(Tilxi; 0), these ei are independent standard exponen-
tial random variables, so the "di should behave approximately like a censored sample 
of standard exponential variables if the model is appropriate. Adjustments to these 
residuals are straightforward since if ei Exp(1), then E (éile( > êi) =  ê  + 1. Thus 
it is customary to define adjusted exponential residuals as 

aadi _ H (1,• 1 x .. 6) + I _ 8i  (6.2.8) 

The residuals gi or "4. 4/  can be used in the ways previously described for the residuals 
in location-scale models, rind are subject to the same problems when censoring is 

heavy. Since the exponential distribution and the distribution of ai or a7di  values is 
defined on (0, co)  and very skewed, it is often preferable to use equivalent extern 

ios value residuals 	= log(ai) i)r = log(gdi ) , which should look roughly like a 
random sample from the standard extreme value distribution. 

Example 6.2.4. For an AFT model (6.1.4) the distribution of Y = log 7), 
given xi is of location-scale form  (6.1.3). The cumulative hazard function for 7) 
is 1-i(tlxi) = — log S(tixi) =  — log So[(y — /OM], where y = log t, and so the 
exponential residuals (6.2.7) are equal to 

= — log So[(yi — 

	

= — log  So (2,), 	 (6.2.9) 

where ê is the residual (6.2.3), The adjusted residuals given by (6.2.4) and (6.2.8) 
are different; the latter gives 

..adj 

	

ei = —108 S( j) 	1 — (51, 

and the corresponding extreme value residuals are 

.adi 
Zi = log[— log So (êr) + 1 — Bib (6.2.10) 

An advantage of (6.2,10) is the closed-form expression; the residuals (6.2.4), on the 
other hand, require numerical integration for some distributions of Z. 
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6.2.2.2 Influence Analysis 
In some cases a small number of points may have a strong influence on the fitted 
model. The topic of influence analysis is well developed for linear models with 
uncensored data (e.g., Cook ànd Weisberg 1982; Atkinson 1985), but more diffi-
cult with censored lifetime data. The main diagnostics for influence are based on 
a comparison of  O from the full data and the in.l.e. 0(_8 ), with a specified group 
g consisting of one or more observations dropped, When g consists of just the ith 
observation, it is customary to assess the global influence of the observation through 
O  — th_ i)  or the associated likelihood-drop (LD) statistic 

LD =2f(b) — Ze(k_i)). 	 (6.2. I 1) 

This can be calibrated by reference to 4p)  quantiles, where p is the dimension of O. 
In particular, we can see whether -0(_,) lies inside the q confidence region for 0 given 
by (O: 2(0)  2 ( 3) < 40,1  ). The influence on individual parameters hr  = g(0) 
is often measured by 

11;   V,/ —  —  
se(*) 

(6.2.12) 

It is generally infeasible to compute (6.2.11) or (6.2.12) for all observations in a 
large data set, so approximations have been developed. Mostly these are obtained by 
first- or second-order Taylor series expansion of the score function U(0) = a e /a 
or log-likelihood f(0) about  O. For example, letting U(_0(0) denote U(0) — (0), 
the score function with observation i dropped, we have 

U(.4) (0) U(_0 (b) — .4_0(0)(0 — 

	

Since U(_..0 	= 0 and U(0) = 	0, this gives 

	

—  O 	—1 (_0 (0) -1 u1 05). 	 (6.2.13) 

A drawback of this approximation is the need to evaluate and invert the information 
matrix /(_;) (6) with observation i dropped, and instead of (6.2.13) the alternative 
first-order approximation 

	

— 	 (6,2.14) 

is typically used. This approximation is usually accurate enough to indicate which 
observations have the largest impact when deleted. A corresponding approxima-
tion to LID; of (6.2.11) can be obtained from the quadratic approximation to £(0) 
around Ô: 

LDi 4-- (b(-0 — b)' 1 (b)(b(-ij — 6). 	 (6.2.15) 
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A practical guideline is that observations with especially large or small uncen-
sored lifetimes, or with large right-censoring times, are potentially influential; their 
residuals are also often large. Their actual influence depends as well on whether 
their. covariate value xi is extreme, and on the effects of other observations. For AFT 
models for which u (xi) in (6.1.3) is of the form p'xi, the leverage values 

= 	 (6.2.16) 

where X is the n x p matrix whose ith row is the vector x, is a, good measure 
of the extremeness of xi. This is also true for other models in which the covariates 
affect lifetime through the linear form /Tx. An alternative approach to using approx-
imations such as (6.2.14) or (6.2.15) is therefore to identify observations for which 
residuals and leverage values (6.2.16) are fairly large. Exact values of measures such 
as (6.2.11) or (6.2.12) can then be obtained by refitting models with certain individ-
ual observations dropped. Caveats for all methods are that influential observations 
may affect  O in Such a way that their residuals do not appear extreme, and that a 
small number of observations that are highly influential as a group may not show up 
when observations are dropped one at a time. 

In some settings certain observations 'night be considered as outliers, or values 
(yi, xi) that do not conform with the bulk of the data. Such values can arise 
because  of errors made in recording data, but they can also occur because a small 
portion of the datais governed by a different process then the rest, or because the dis-
tributions of Y ix or of x are very long-tailed. The extent to which observations might 
be considered as outliers is reflected in their residuals and leverage values (6.2.16); 
better measures are given by deletion residuals, in which, for example, (6.2.6) uses 
the estimate in place of I), and deletion leverage values (6.2.16), in which we 
replace X' X with  

6.2.2.3 Examples 
Example 6.2.1. (continued). Examination of the leukemia remission time 

data of Example 6.2.1 suggests that AFT models could be satisfactory. Here we con-
sider some diagnostic checks  on  ,a Weibull—extreme value model, in which (6.1.3) is 
used for Y = log T with So(z) = exp(—ez) and u(X;  13) . =  flo pixi + /31x2, where 
xi = AG and x2 = log(wbc). In other words, in the form (6.1.4), the model is 

Y = fio + Pixi 82x2 + 17Z, 

where Z has a standard extreme value distribution, Model fitting and inference for 
this model are discussed in Section 6.3.2; we merely note here that the m.l.e.'s, 
with standard errors in brackets, are 40 = 3.841(.534), f3i = 1.177(.427), fh = 
—.366(.150)  and!  = 1.119(.164). 

Figure 6.9 shows in its left panel a plot of (unadjusted) residuals j  given by 
(6.2.3) against values x2i of log(wbc). No trend creating doubt about the model is 
observed. Note when assessing the  plot that the standard extreme value distribution 
is skewed to the left (see FigUre 1.5) and that E(Z) = —.577. The right panel of Fig- 
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Figure 6.9. Residual plots for Weibull—EV model for leukemia data. 

ure 6.9 shows a probability plot of the residuals t,  designed to check on the regres-
sion specification combined with the assumption of the extreme value distribution 
for Z. This is obtained by treating the as a censored sample of 33 log-lifetimes, 
and using the probability plot based on the values (3.3.1) in Section 3.3. To do this, 
we compute the Kaplan—Meier estimate &. (z) based on the 2i and plot the points 

(ii,  log(—  log -Ili)), 

where  îij = 	+ .5,"(ir-1-), for the residuals that correspond to uncensored 
observations. The plot is roughly linear and provides no evidence against the model. 

We note from the plot of the data in Figure 6.3 that there are four observations 
that appear quite influential; three points  have high WBC's and long remission times, 
and one has a low WBC and a small remission time. The four pcints are those with 
(et, wbci) = (65, 100.0), (7, 1.5), (30, 79:0), and (43, 100.0). Individually their 
Omissions have quite substantial.effects; for example, values  for  (6.2.11) are 11.62, 
7.79, 10.97, and 15.04, respectively. The fourth point is especially influential. Noting 
that 4),  995  = 14.86, we see that its deletion moves the mie. of 0 = (130, 131, 132. h) 
outside the joint .995 confidence region for 0 based on the full data. This observation 
also gives values of (6.2.12) wit'', ilr = /31 and /32 of .51 and .83, respectively. If all 
four observations were omitted, then the effect of WBC would be increased signifi-
cantly. There is no reason to isolate these observations in the present setting, but it is 
useful to note their influence. 
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Figure 6.10. Residual plots for Weibull—EV model for electrical-insulation data. 

Example 6.2.2. (continued). Plots of the electrical insulating fluid failure 
time data in Example 6.2.2 showed an approximately linear relationship between log 
failure times Y and log voltage, x = log y, and as well that an AFT or log-location-
scale model (6.1.3) might be reasonable. Figure 6.10 shows plots of residuals 
given by (6.2.3) for the model 

Y = fin + filx +1,Z, 

where Z has a standard extreme value distribution. The m.l.e.'s, found later in 
Example 6.3.2, are (with standard errors in brackets) 40 = 64.8(5.62),  fi  
—17.7(1.61), andh = 1.29(.11). 

The left-hand panel in Figure 6.10 is a plot of  j  versus xi, with a mean curve 
provided by a local linear smoother. This gives more or less the same picture as the 
plot of yi versus xi in Figure 6.5, and there is no reason to doubt the model. Note that 
variation in the number of items tested at the different voltages creates variation in 
the dispersion of residuals, but that the mean curve, or curves passing through median 
points or other quantiles at each voltage, are roughly horizontal. One small failure 
time at y = 26 stands out as unusual and should be ricked. It also has the lowest value 
of x seen in the data, so is potentially influential. Dropping it and reestimating the 
parameters  fia,  fit. and 17 gives values for (6.2.12) of .30, —.30, and —.32 for if = fa, 

S, respectively, so it is only moderately influential. 
The right hand panel of Figure 6.10 is a Weibull probability plot of the 'it, pro-

duced in the way described in the preceding example; the plot is satisfactorily linear 
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and provides no evidence against the model. The six smallest residuals stand out 
slightly, but this is quite consistent with the degree of variatiOn expected in such 
plots under the model. 

Example 6.2.3. (continued). The data in Example 6.2.3 on the times to a first 
pulmonary exacerbation for subjects in a randomized clinical trial are heavily cen-
sored, but the discussion in Example 6.2.3 suggests that log-location-scale mod-
els with normal errors are reasonable. Such a model is later fitted to thé data in 
Example 6.3.4; it is of the form 

Y = flo + Pi + /32x2 

where Y is log failure time, xi = / (treatment = rhDNase),  X2  = .fevc, a cen-
tered form of fey, and Z has a standard normal distribution. The m.l.e.'s and 
standard errors for the parameters are 4.0 = 5.40(.10), 41 = .430(.137), 1;2 = 
.022(.003), and er = 1.45(.074); further details of the fitted model are given in 
Example 6.3.4. 

Figure 6.11 shows a normal probability plot of the residuals j  given by (6.2.3). 
This plot is based on the Kaplan—Meier estimate, ,§'(z), from these residuals and 
consists of the points 

(21, 4) -1 (1 — 

Figure 6.11. Normal probability plot of residuals for pulmonary exacerbation data, 
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Figure 6.12. Plot of adjusted normal residuals versus fey for pulmonary exacerbation data. 

where inui = 	.5:§(ii+) for the residuals that correspond to uncensored 
observations. The plot is very close to linear and does not suggest any problem with 
the model. 

Figure 6.12 is a plot of adjusted (adj) residuals isa. aj , given by (6.2.4) and the 
expression (6.3.21) from Section 6.3, against the fey covariate x21, with different 
symbols denoting censored and uncensored failure times. A pronounced pattern 
from the censored residuals is seen. This is because most of  the censoring times ti 
are close to 169 days, so = (log 169 — tii)/er for these individuals. The estimates 

42, and er given earlier then give approximately 2 i  = —.19 — .015x21  if 
xii = 0; and j — .48 — .015x2i if XII E Thus when we plot either or 
Z i  versus X21 for the censored observations, we get the approximate parallel line 
patterns shown in Figure 6.12; the  use of adjusted residuals merely introduces a little 
curvature.  An estimated mean curve obtained from a scatterplot smoother has been 
added to the plot. It is close to the zero line, and the plot as a whole gives no reason 
to doubt the model. 

6.3 INFERENCE FOR LOG-LOCATION-SCALE (ACCELERATED 
FAILURE TIME) MODELS 

6.3.1 Likelihood Methods 

Assume that a censored random sample consisting of data (yi,  Si,  xi), j  = I, 	, n 
is available, Where yi = log ti is a log-lifetime or log censoring time according 
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to whether 8; = 1 or 0, respectively. This section describes maximum likelihood 
estimation and related inference procedures for a general location-scale model for Y 
of the form (6.1.3) or (6.1.4), but with u (xi; 0) given by the linear specification 

u(x; ; /3) = tex; , 	 (6.3.1) 

where /3 and x; are p x 1 vectors. 
Most regression models (6.3.1) have an intercept term, so that fl'xi = fio+Pixil+ 

• • --1-13p_i Xi. p- . It is generally better for accurate computation to center (i.e.,  choose 
the origin for) quantitative covariates so that their means are close to zero. The choice 
of origin for a covariate only affects the definition of the intercept ;90, and does not 
affect  flu...... flu-u.  The intercept is a more relevant parameter when covariates are 
centered, and correlations between o  and the estimates of other regression coef-
ficients are reduced. For examples throughout the book we will sometimes center 
covariates, but if their means are fairly small, the original uncentered covariates are 
often retained for simplicity. 

The log-likelihood function W3, b) is of exactly the same form as (5.1.4), with 
zi = (Yi - ui)/b, u.; = u(xi 13), fo(z) = -4(z) the probability density function 
(p.d.f.) for Z; = (111 - tii)/b, and r = E 8; the number of uncensored lifetimes: 

71 

	

e (p,b) = -7' log b E[8; log fo(z;) + (1 - 8;) log So(zi )1. 	(6.3.2) 

Let x; = (x; „ , xip )' and X be the n x p matrix with (i, j) entry xii. Then 
az;/431 = .8z1/8/2 = , and the first derivatives of «fi e  b) are 
simple generalizations of (5.1.5) and (5.1.6): 

ae 	it [„ a 	log fo(zi) 
 + (1 8 

8 log Sa(zi)] — = -- 	,), 	 0 	 xij 	(6.3.3) api 	b 	dZi 	 aZi 

ae _ r 	1 	1 - _ . 8 log  fo(zi) 	a log So(ziri 
-87; - — T, — T, 2--,  ri 	azi 	+ (1 3' ) 	azi 	J z'. 	

(6.3.4) 
1=1 

The second derivatives of P(13, b) are 

0 2Z 	n a 2 1og fb(zi) 	82 log So (z 
8i 	 + (1 - 80 il  xiixik.. 	(6.3.5) 

 Dz iiL  
2 

	

api apk 	b2 	az, 

	

a 2e 	r 	2 
 = 	
r3  a log fo(zi) 	

(1 - 8  ) a log Si)(zil 

1=1 	
zi 

	

5 	 Z- 	az i 	 .8Zi 

1 " a 2  lOg 	fo(zi)  a2  lo .----, 	 g So (zr)  - 
+ -- 2_, [Si 	4- 0 	8i) 	s' , 	ii 	(6.3.6) 

b2 	. .6z2 	 az7 b1= 	. 	i. 	. 
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82,e 	1 n 	log fo(zi) + 	80 8 log So(zt)]  
api ab = b 2 	azi 	 azi 	

xii 

n 	82 log fo(zt)  + (1 	61) 8 2  log so(zi) 	J.  (6.3.7)  (5i 
a 2  

	

bz 	 z, az1 

The m.l.e.'s T3 and 1; are found by solving the equations ae/ap = 0, e/ab = 0 or 
by direct maximization of e(p, b). Software is available to handle specific models, 
as discussed in the Computational Notes at the end of the chapter. The observed 
information matrix is, in partitioned form, 

—8 2e/a pap' —8 2e/8138b\ 

1(f3,17)  = -- a 2e/abal3' —82q8b2  I 

The usual large-sample normal approximation to the joint  distribution  of s and f) 
is to treat them  as (p 1) -variate normal, with mean vector (f3',  h) and covariance 
matrix 1 (p,  L)-1. Since 13, S satisfy the eqUations'aeop = 0, at/ab =  0 given by 
(6.3.3) and (6.3.4), the first Sums in each Of (6.3.6) and (6.33) simplify at (A, 6). 

Tests  and interval estimates  for parameters can be obtained either by using 
likelihood ratio tests or the approximate normality of the m.l.e.'s, as described in 
Appendix C. Two impcirtant inference problems will be considered explicitly. The 
first concerns the regression coefficients, 13; Hypotheses about p can frequently be 
put in the form H: p, =p?, with /3 PartitiOned  as p' I3D, where 131 is 
k x 1 (k < p) and p? is a specifiedvector. To test H we  canuse the likelihood ratio 
statistiô 

A r-7-. 2e(j,  132. 6) — 	f32, b), 	 (6.3.9) 

where 132  and i"? are the m,l.e.'s of  132  and b under . H, and  &  and (A /1 , f3;. ) = A' are 
the m.l.e.'s under the full model. Large values of A provide evidence against H, and 
approximate p-values  can be calculated by using the fact that for large samples A is 
approximately distributed as 4)  under H.  

An alternative procedure for testing H:  13,  = /3? is to use 

Ai = 	— W171'7 1 (, 1 /3?) 	 (6.3.10) 

as the test statistic. Here V = I (it, h ) -1  is partitioned as 

(Yil Y12 
V = 

1/(2  Y22 

so that VII is the k  X k asymptotic covariance matrix for ill. For largésamples Ai 
is approximately  4)  under H.  The statistics (6.3.9) and (6.3.10) are asymptotically 

(6.3.8) 
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equivalent, but for small samples it is usually preferable to use (6.3.9). It requires 
the m.l.e.'s under both the full model and the model specified by H,  but given the 
speed of optimization software this is not a serious drawback. For indiVidual regres-
sion coefficients pj , estimates and standard errors are often used to test hypotheses 
H:  j  = 0 via Zi = (13.1 — 0)/ s e(gi), treating Zi as approximately  N(0, 1) if H is 
true. Standard software generates values Zi  for certain models. In the case of small 
samples, we can Compute likelihbod ratio statistics as an alternative to the  Z.  if 
desired 

A sect:aid important problem is the estimation of quantiles or  survival probabili-
ties. Consider the pth quantile of Y for a given x, which is 

yp  (x) = p ix + bw p , 	 (6.3.11) 

where wp  = F0-1  (p) is the pth quantile of the standard variable Z in (6.1.4), Tests 
or confidence intervals can be based on the approximate standard normal pivotal 
quantity 

Z — P(X) 	P(X)  
P 	se(9 p (X)) 

where Sip (X) = A'x 1;tv 1,  and, by the asymptotic variance formula (B2), 

(6.3.12) 

se(9p (x))= [(x', tbp)V(x', 	yi 1 /2 	 (6,3.13) 

with V = 	, Sr i  . Alternatively, confidence intervals Can be obtained via the 
likelihood ratio statistic by considering the hypothesis H y p  (X) 	y po. The statistic 
for testing H is 

A(yo) = 2E13, f2) — 243, F7), 	 (6,3.14) 

where jj, 1; maximize e(p, 12) under H; they can be found by maximizing C(13, (y po-
13 1X)/ w p ) to obtain f3, and thus 6 = (ypo — irx)/wp• 

Confidence  intervals  or tests for the survival probability S(Yelx), for specified YO 
and x, can be based on an approximate N(0, 1) pivotal quantity analogous to (5,1.14): 

(x) — 1i (x) 
Zo — 	, 

se(lf(x)) 
(6.3,15) 

where V! (70 = SiT 1  (S (yo(X)) = (Y0 —  p'z)/b. The asymptotic variance formula (B2) 
gives 

se*x)) = [(x' io) V (71 ' , io)1 	1 /2   (6.3.16) 
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where 20 = (yo — i'x)/I;. An alternative is to use the likelihood ratio statistic A (s0)  
for testing the hypothesis H: S(yojx) = so. This leads to a  statistic  of the form 
(6.3.14), and involves the same type of constrained maximization of P(0, b). 

Guidelines concernings the accuracy and use of the corresponding procedures for 
location-scale models with no covariates were given in Section 5.1.1, and apply here 
also. For small samples, improvements based on signed likelihood ratio square-root 
statistics are possible, as indicated in Appendix C. 

6.3.1.1 Exact Methods for Uncensored Data 
The exact test and confidence interval procedures introduced for location-scale 
parameter models in Section 5,1.2 can be extended to the regression model (6.1.4) 
for the case of uncensored data. Theorem E4 in Appendix E shows that if 1; are 
the m.l.e.'s in a model (6.1.3) or (6.1.4) with a specified distribution So(z) for Z, 
then 

Z1 = (13 — ( )16, 	Z2 = 6/b 	 (6.3.17) 

are exact pivotal quantitieS. The distributions of these pivotals or others that can be 
written in terms of  them  are  usually intractable, but are easily found to any desired 
degree of accuracy by simulation. To do this for a given sample size n and specified' 
covariate vectors xl, , x„, we. merely need to generate independent Y1  Yn 
from the models (6.1.3) with p = O, . b = 1 and the given . xi, obtain 13  and .6 by fitting 
the full model (this uses the xi), and then. obtain values for Zi and Z2. By repeating 
this procedure a large titimber of dines, we can accurately estimate the distribution 
of (Z1, Z1). This procedure has not been used a great deal, but is feasible and useful, 
especially in small samples with few covariates. 

Theorem E4 also indicates that the quantities ai = (yi — jj'xi)/6 are ancillary 
statistics; these are just the residuals (6.2.3),. An alternative approach to inference 
about parameters is. to consider the conditional distributions of Z1 and Z2, given 
a — (ai a,,). The form of this distribUtion is given in Theorem E5, but its use 
requires numerical integration in most cases. Problem 6.8 considers a simple setting 
involving an exponential regression model, where this approach is feasible. 

When the distribution of Z in (6.1.4) is standard normal, the m.l.e. 11 is the least-
squhre estimate (X' X) -1  ry, where y = ..... y.)'  and Z1 and Z1 have a mil-
tivariate t and a transformed chi-squared distribution, respectively. Normal models 
are considered in Section 6.3.3. 

6.3.2 Weibull and Extreme Value Regression Models 

In this section we consider Weibull and extreme value regression models in more 
detail. We will deal with the location-scale form (6.1.2) for the distribution of log-
lifetime Y, given x, where u(x) = B'x. Correspondingly, a (x) in the Weibull model 
(6.1.1) is exp((3 /x). The model for Y is therefore of the form 

Y = fex bZ, 	 (6.3.18) 
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Where Z has a standard extreme value distribution with p.d.f. and survivor function 

fo(z) = exp(z — ez), 	So(z) = exp(—ez) 
	

— 00 < Z < 00, 

respectively. The general expressions in Section 6.3.1 are easily utilized to get the 
log-likelihood function and its derivatives. Numerous software packages provide 
m.l.e.'s and related inference procedures based on censored data from this model, 
as indicated in the Computational Nixes at the end of the chapter. 

From (6.3.5)—(6.3.8), the observed information matrix evaluated at 13 , 1; has the 
partitioned form 

n 	. 

( 	

n E ezi x,.; E i, e' xi 
1 	i = i 	1=1 

b2 	" 	- 	n 

E ii ezi.; r + E îleid 
1=1 

 

(6.3.19) 

 

Approximate confidence intervals or tests can be obtained by treating (fr, (;) as mul-
tivariate normal with covariance matrix / (13 ,13)-1 or via likelihood ratio procedures, 
following the general treatment of Section 6.3.1. For the latter, we use the extreme 
value form of the log-likelihood (6.3.2), which is 

E(13, 17) = — r log b 	(6,z; — 	 (6.3.20) 
r=i 

with zi = (Y! — P'x1)/17. 
The following examples illustrate inference procedures based on extreme value 

and Weibull regression models. 

Example 6.3.1. (Leukemia Survival Times). Data on the survival times for 
33 leukemia patients were discussed in Example 6.2.1, with a binary blood cell 
characteristic AG and white blood cell count (wbc) at diagnosis as potential covari-
ates. It was suggested that a Weibull AFT model with covariates xi = AG and 
x2 = log(wbc) seemed reasonable. We therefore consider the model (6.3, I A) for 
log survival time Y, with x = (1,x1, x2)'  and  13 = (80, Ai , /32)', giving /35c = 
Ao + At xi + t 2x2. A summary of results from maximum likelihood estimation iS 
shown in Table 6.2. The.Z values in the table show the test statistics (flj — 0)/se(fii) 
for testing the hypotheses H: pj  = 0; for comparison, we also show the signed 
square-root likelihood ratio statistic, D. For example, the statistic D for testing 
H: fit =  Ois  defined as D = sign(4'1)A1(0) 1 /2 , where 

Ai (0) = 2 e(Ao, 41 ,  /32, 13) — 2e($n, 0, 42. L) 



298 	 PARAMETRIC REGRESSION MODELS 

Table 6.2. Fitted Weibull—Extreme Value Model 
(Leukemia Data) 

Parameter 	Estimate 	se 	Z 	D 

,50 (intercept) 	3.841 	.534 
Si (AG) 	1.177 	.427 	2.74 	2.63 
/32.(log /Dix) 	—.366 	.150 	—2.44 	—2.46 
b (sca le) 	1.119 	.164 

is the likelihood ratio statistic for testing H.  Standard software returns the values of 
the log-likelihood evaluated at the mie.,  so A1  (0) is easily obtained by fitting the 
model with p i  . 0, that is, with covariate xi dropped. 

P-values concerning H: p.;  . 0 can be calculated using the standard normal 
approximation for either Z or D. The effects of the covariates are clearly significant 
here, and the statistics Z and D are in close agreement. A positive AG test and 
low WBC are associated with longer survival. It can also be noted that there is no 
evidence against the hypothesis H: b = 1. This indicates that exponential lifetime 
distributions, with constant hazard functions for individuals, are plausible. 

The full asymptotic covariance matrix V = I (ii , S) -1  is 

(.2856 

V = 	
— .1302 
—.06710 

.00314 

—.1302 
.1824 
.01576 
.00596 

—.06710 
.01576 
.02238 

—.00528. 

.00314 

.00596 
—.00528 

.02689 

This can be used to obtain confidence intervals for quantiles y p  (x) = frx 
log(— log(1 p))b or survival probabilities 5(yo) = exp[— exp((ye — 13 /x)1b)j, as 

'described  in Section 6.3.1. For example, consider the probability of  survival beyond 
time to for an individual with covariate values xi = AG, .:c2 = log(wbc). that is 

5(log to Ix , x2) = exp(— exp((Yo — PO - filxi -  

where ye = log tel . This is conveniently handled by considering the parameter 

= log[— log 5(log to lxi x2)] 

= (Y0 — 130 — /9I XI — /32x2)/b 

along with the approximate standard normal pivotal quantity (6.3.15). Consider the 
values to = 52 weeks, AG = 1, .7c2 = log(10) for illustration. Then we find 
17/ = —2.00 and, using (6.3.16)„se(i) = .271. The approximate standard nor-
mal pivotal Z=  — 111)13e(1ir) then gives the approximate .95 confidence interval 
ITt/ ± I .96se(iii), or —.731 <ifr < .330. This transforms to the interval (.249, .618) 
for the probability of survival beyond 52 weeks, given AG = 1 and wbc.' = 10. 
The interval is very wide, as a consequence of the small data set and the amount of 
variability in survival times for persons with similar covariate values. 
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Example 6.3.2. (Insulating Fluid Failure Times). Failure time data on elec-
trical insulating fluids subjected to high-voltage stresses were given in Example 1.1.5 
and examined in Example 6.2.2, where it was suggested that a Weibull power law 
model was reasonable. This is an AFT model for which the location-scale model 
(6.3.18) for log failure time Y has fi'x =  o  + x, where x = log y (y is the voltage 
in kV), 

The parameter estimates (standard errors in brackets) are So = 64.85(5.62), 
= —17.73(1.61), b= 1.288(.113), and the asymptotic covariance matrix V = 

i(,  6) -1  for (fi0, fit, S) is 

V = (

31.5817  —9.0266 —.008889 
-9.0266 2.5819 .000924 
—.008889 .000924 .012849 

The main objective in this setting is to use the model to estimate quantiles of the 
time-to-failure distribution at specified voltage levels. This is considered below, but 
first we consider some hypothesis tests of the model, based on model expansion. 

A key assumption in (6.3.18) is that the scale parameter b does not depend on 
the voltage, and a second is that the location u(x) is given by pa  +  fix, for x = 
log(v). These assumptions seem reasonable from the plots in Example 6.2.2, but 
can be tested formally. Since there are several observations at each voltage level, we 
consider three models: 

: Y — EV (u(x), (x)), 	(14 parameters), 

where u(x) and b(x) are unrestricted; 

M2: Y — EV (u(x), b), 	(8 parameters), 

where u(x) is unrestricted; and 

M3: Y — EV (00 flix , b), 	(3 parameters), 

which is the power law regression model. The assumption that b(x) is constant can 
be examined by testing the null hypothesis of model M2 versus model MI. This was 
done in Example 5.4.1, where it was found that the  maximum log-likelihoods under 
M1 and M2 were i(1111)  = -295.26  and :e(M2) = —299.65. This gave the likelihood 
ratio statistic value A = 21(M)) — 2i(M2) = 8.78 and an approximate p-value from 
the distribution of .187; there is no strong evidence against the assumption of 
equal scale parameters. 

The regression specification u(x) My+ p i  x can be examined by testing the null 
hypothesis of model M3 Versus model M2. The maximum log-likelihood under M3 
is  P(M3) = —300.82, giving the likelihood ratio statistic A = 2i(M3) — g(M2) = 
2.34. The approximate p-value from the 45)  distribution is .80, and is consistent 
with model M3. 
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Figure 6.13, Pointwise .95 confidence intervals and rn.l.es (yhat, in log Minutes) for median log failure 
time for electrical-insulation at different voltages, 

An assessment of the assumption that Z in (6.3.18) has an extreme value distri-
bution is made in Example 6.4.1. 

Let us now consider the estimation of quantilcs of the log-lifetime and lifetime 
distributions, using the approximate N(0, 1) pivotal quantity (6.3.12), taking for 
illustration the median y,50(x). Figure 6.13 shows m.l.e.'s 9,50(x) and approximate 
.95 confidence intervals given by 9,50(x) ± 1,96se(9,50(x)), for different values of x. 
For descriptive purposes, we show the intervals in terms of the voltage level, v. The 
log failure times are also shown in the plot. The model-based confidence intervals 
for y,50(x) are narrow, relative to intervals based on nonparametric methods applied 
to each voltage level separately (Section 3.2.3). 

The standard error for 9.50(x) is computed using (63.13) with x' = (1, x) and 
wp = w.50 = log(— log .5)• = —.3665. The voltage level u = 20 (x = 2.9957) is 
of particular interest, since 20 kV is a standard operating voltage. For this value we 
have.9,50(log 20) = 11.262, with standard error .8225, and .95 confidence interval 
9.650 < y,50(log 20) < 12.87. This confidence interval is very wide, as we would 
expect from extrapolation well beyond the observed data. The interval is also subject 
to uncertainty regarding the validity of our model outside the range of the data. The 
interval for t,50(log 20) is (15,520, 390,077) minutes, or approximately (10.8, 270.9) 
days. 

Example 6.3.3. (Lung Cancer Survival Data). Example 1.1.9 described 
lung cancer survival data for patients assigned to one of two chemotherapy treat-
ments (Standard and Test). The data, given in Table 1.5, include observations on 40 
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Figure 6.14. Lung cancer survival stratified by PS and by treatment. 

patients, and are part of a larger study that is discussed in Example 6.4,3. In additi 
to treatment (trt), several factors thought to be relevant to an individual's progne 
are given: performance status (PS) at diagnosis (a measure of general medical cl 
dition on a scale of 10 to 90, with lower numbers indicating poorer condition); 
of the patient at diagnosis (age); the number of months from diagnosis of caned 
entry into the study (diag); the cell-type of the tumor, classified as being in one 
four categories, squamous, small, adeno and large. Survival times arc measure 
days from the date of entry to the study. 

Preliminary analysis suggests that tumor cell-type and PS may be important. f 
ure 6.14 shows, for example, Kaplan—Meier plots of the survival thnes stratifie .? 
two ways: (1) PS 10-50 versus PS 60-90, and (2) Standard treatment. versus 1 
treatment. Treatment is approximately independent of the other covariates, ane 
the right panel of Figure 6.14 suggests that treatment may not be a significant fac 
The left-hand panel of the plot suggests that performance status is important, llio; 
association with other factors may explain some of the differences in Kaplan4.1 
estimates. Note in particular that PS and cell-type display association; see Table I • 

As a next step we fit Weibull AFT models, which the exploratory analysis sugg 
may be suitable. Table 6.4 shows estimates and standard errors for the model (6.3! 
for log survival time, with 

u(x) = Po + Pt PS  /32age + /33diag + /34/ (cell — type = squarnous) 

+ /35 / (cell — type = small) +  1161  (cell — type = adeno) + /37/ art = 
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Table 6.3. Numbers of Individuals by PS and Cell-Type 

Cell-Type 

Squamous 	Small 	Adeno 	Large 

	

10-50 	5 	6 	3 	3 
PS 

	

60-90 	9 	5 	2 	7 

Table 6.4. Fitted Weibull —Extreme Value Models (Lung Cancer Data) 

Parameter Estimate se 

Full model fio (int) .818 1.219 — 
/31 (PS) .0542 .0096 5,64 
'52 (age) .0094 .0176 .53 
/33 (ding) .0041 .0104 .39 

,84 (squamous) .377 .400 .95 
/35  (small) —,125 .426 —.30 
Pa (adenn) —.877 .514 —1.71 
P7 (trt) .270 .348 .78 
b (scale) .874 .115 — 

Reduced model fio (int) 1.205 .556 — 
/31 (PS) .0604 .0095 6.38 
b (scale) .981 .123 — 

In this model /34, fis, and /36  measure differences between each of the cell-types 
squamous, small, adeno, and the baseline cell-type large. It seems that only PS is 
important, but it is prudent to check on interactions; this is readily done by adding 
defined covariates to the model. For example, a treatment by cell-type interaction can 
be examined by adding covariates 

x8 = I (trt = Test) * I (cell — type = squamous) 

X9  = I (trt = Test) * I (cell — type = small) 

x 10 = / (trt = Test) * /(cell — type = adeno). 

These checks do not reveal any significant interactions, and so as a next Step we 
fit reduced models where first cell-type differences and then all covariates except PS 
are dropped from u (x). The likelihood ratio statistics for testing these two submodels 
against the full model for u(x) above are, respectively, 

Ai = 21 00, 41, • • • ,  

and 

A2 = 2e(4o, 41, • • ., 47) — 244o, 41, 0, 	, co. 
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Figure 6.15. Residual plots for Weibull-EV model for lung cancer data. 

Observed values are found to be A1 = 4.89 and A2 = 5.87. Comparing these t 
quantiles for 43)  and X (26) , respectively, we find no evidence against the model i 
only PS included. 

Table 6.4 also shows the reduced model with only PS included. Diagnostic chi 

on both the full model and the reduced model, aS described in Section 6.2, da 
show any major problems. Figure 6.15 shows  plots  for the reduced model of cxti 

tl value residuals 21 (6.2.3) versus PSi.and an extreme value probability plot base 
the ii, constructed as for Figure 6.9 in Example 6.2.1. Note that our model  tien  
as a qbantitative covariate, though it is actually' art ordinal variate. Entering it 
linear term in u(x) provides a reasonable fit to the data in  this setting.  1 

We conclude that PS is the only factor strongly related to survival time. Its ei 
is roughly linear on the log time scale, with a PS increase of 10 giving an estini: .  
increase in  median log survival time of approximately .6 when time is in days. 

6.3.3 Normal-Log-Normal and Logistic-Log-Logistic Regression Models 

The log-normal and log-logistic AFT models have location-scale forms (6.1.2), 
Z having a standard normal distribution and a standard logistic distribution, re 
tively. As for the extreme value distribution in the preceding section, we con 
models where u(x) = so that 

=-7 13 1 X GZ, 
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with (i) Z 	N(0, 1) or (ii) Z — standard logistic, Logist(0,1). The p.d.f. and sur- 
vivor functions for Z in the two cases are 

1 
(j). fo(z) = 	exp(—z2 /2), 	So(z) = f co  fo(u) du, 	̂00 < Z  <00  

e Z  
(1 ) . fo(z) = 

(1 + ez) 	
So(Z) = 	 -00 < Z < 00. 

(1 + e z )' 

Many software packages provide m.l.e.'s and related inference procedures based 
on censored data from these distributions. Standard output includes the asymptotic 
covariance matrix 1(0, 6) -1  given by (6.3.8), and the value of the maximized log-
likelihood function E(ii.  , 6). This makes it easy to test hypotheses concerning nested 
models and to get approximate confidence intervals for parameters, quantiles, or sur-
vival probabilities by using the methods described in Section 6.3.1. Methods based 
on normal approximations for m.l.e.'s are sufficiently accurate for most practical pur-
poses if there are about 30 or more uncensored lifetimes. Likelihood ratio methods 
for obtaining confidence intervals can be used in circumstances where there are con-
cerns about the accuracy of the normal approximations. 

We note that the conditional expectations needed for the calculation of adjusted 
residuals (6.2.4) can be obtained in closed form for both the normal and logistic 
distributions .  For standard normal Z it can be shown that 

	

E(ZIZ 	z) = ça(z)/(1 — cp (z)) 	 (6.3.21) 

where (15 (z) and cD(z) are the N(0, 1) p.d.f. and c.d.f.. For Z a standard logistic 
random variable, 

1  

	

E(ZIZ ?. z) —   log (  ±ez ez 	(6.3.22) + ez j + e z 

In the case of uncensored data there are, of course, exact me hods for the nor-
mal model that are described in books on  regression analysis, and thus there is 
no need for the approximate likelihood methods. In particular, 11 = (X' X) -1 X /y, 
where X is the n x p matrix with (1, j) entry xjj  and y = (yi , , y„)', and 
/3 2  = (y — X13) / (y — Xibin give the m.I,e.'s. Confidence intervals and tests 
based on Student's-t and X 2  pivotal quantities follow from the fact that 1-3 — 
Np (P, b 2 (X / X) -1 ), nii2/b2  x(2n _ D) , and  j  and b are independent. Exact pro-
cedures for the logistic model can also be obtained via the pivotals (6.3.17) and 
simulation, as discussed in Section 6.3.1. 

Let us also note  how confidence intervals for quantiles can be calculated for the 
normal model when there is no censoring. This is based on a straightforward exten-
sion of the  procedure described in Section 5.3.1, in which the pivotal quantity (5.3.3) 
is merely replaced with 

5"(x) 	(X)  Z I,  
3 

(6.3.23) 
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where s 2  = n/32 /(n — p) is the standard unbiased estimate of b2 . Since (n — 
p ) s2 1,2 	(2,  x 	P/X 	.N[13/X, b2 A(x) 2]. where A (x) 2  = xi (X'Xr I  x, and 

and s 2  are independent, it follows that 

Pr(Zp  z) = Pr 
[  (P'x  — Pix)/bA (x) — w p /A(x) 	z — n p ] 

<  

s b 	 A (x)• 

Pr  [t , 	(—w p) < z — p 

(11-P)  A (x) — A (x) 
(6.3.24) 

where t'0)  (X) represents a noncentral I random variable, defined in Section 5.3.1. ( 
Confidence intervals for yp  (x) can be found from probability statements for Zp, 
exactly as described in Section 5.3.1 for the case of no covariates, with A (x) I 

replacing 	and n — p replacing n — 1 in (5.3.4). 

Example 6.3.4. (Times to Pulmonary Exacerbation). Example 6.2.3 exam-
ined clinical trial data on times to a pulmonary exacerbation for  persons  with cystic 
fibrosis, introduced in Example 1.1.8. There are two covariates, treatment and fey, 
and it was suggested by graphical examination that a log-normal accelerated failure 
time model would provide a good description of the data. This was verified in the 
continuation of Example 6.2.3 by diagnostic checks on a fitted log-normal model. 
We describe here the analysis of the data under a log-normal model, and under a 
log-logistic model, which is similar. 

In both cases the model considered for Y = log T has location-scale form (6.1.4) 
with it (xi) = po + PI xi! + 132x12, where xtt = /(treatment = rhDNase) and .v12 = 
fevci = fey, — fey, the mean fey across all subjects in the study. Before deciding 
on this model, the possibility of using different functions of fey, such as log(fev), 
was examined, and the linear specification was found satisfactory. The presence of a 
treatment—fey interaction was also checked, by fitting models in which f12 depends 
on treatment, but proved insignificant. 

Table 6.5 shows m.l.e.'s and standard errors for the parameters in each of the nor-
mal and logistic models. Note that the regression coefficients have the same inter-
pretations in the two models, but that the scale parameters b do not. As Would be 
expected, the estimates and standard errors under the two models are in close agree-
ment, and indicate significant effects for both treatment and fey. Diagnostic checks 
carried out in Example 6.2.3 supported the log-normal model, and similar checks on 

Table 6.5. Log-Normal and Log-Logistic Fits for Pulmonary Exacerbation Times 

Log-Normal Log-Logistic 
Parameter Estimate se  Estimate sc,  

fln  (hit)  5.403 ,105 5.353 .096 
13, (trt) .430 .137 .401 .130 
/32  (fevc) .0217 .0029 .0207 .0028 
b (scale) 1.446 .074 .796 .045 
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the log-logistic model support it as well . Because censoring is heavy and no failure 
times exceed 169 days, there is no information about the upper tail of the distribu-
tion of T or Y given x, and the data do not discriminate between the models. The 
maximum log-likelihood values t(1̂3, 6) under the two models for Y are —1625.04 
(normal) and —1626,32 (logistic), indicating slightly more support for the normal, 
but no significant difference. 

63.4 Some Comments on Least Squares, Robustness, and Efficiency 

When the data are uncensored, the estimates of p and I) in a location-scale regression 
model (6.1.4) with Z normally distributed are least-square estimates, and possess 
certain robustness properties. Linear location-scale models and estimates based on 
them also possess a weaker type of robustness. We will discuss these issues briefly. 

Let us change our notation slightly from previous sections and write models in 
the form 

= Po -I- 13'xi + bZi 1=1  

 

(6.3.25) 

 

where b > 0, xi and 13 are (p — 1) x 1 vectors, and  Z1, 	Z, are i.i.d. with.some 
specified distribution on (—oc,  cc), which we assume has mean 0 and finite variance, 
Note that writing the model so E(Zi) = 0 merely affects the intercept parameter. For 
example, the extreme value model (6.3.18) with Z 	EV (0, 1) has E(Z) = —y, 
where y = .5772 is Euler's constant. Thus Z; = Zi -I- y has mean 0, and rewriting 
(6.3.18) with Z' replacing Z simply changes the intercept from po to fio' =  o  - 
Assume also without loss of generality that the covariates are centered so that 

E 	=  O 	j — 1 	p  — 1. 	 (6.3.26) 

The m.l.e.'s of p and /30 when Zi — N(0,1) are also least-square estimates: 

P-o =  y 	ã = (X' IC) -1 X /y, 	 (6.3.27) 

where the n x (p — 1) matrix X = (xij) is assumed to be of full rank, and y = 
(yi , 	 y,)' It is well known that 710 and I:I are unbiased estimators of po and /3, 
and the covariance matrix of /-3* 	(po, 15')' is 

	

Var(*)  = h 2 Var(Z) (n —1 (X/X)—I) 
0 	\ (6.3.28) 

0  

These results hold true no matter what the distribution of Z, though the efficiency 
of the least-square estimates may not be high in some situations; this depends on 
the distribution of Z. The efficiency of least-square estimation  is considered in Prob-
lem 6.13, where the points below are developed in more detail. 

Suppose that the model (6.3,25) holds, but Zi has some other distribution than 
N(0, 1), still with E(Zi) = 0. The Fisher information matrix for the parameters 



Az = E 
az 2  1 -8 2  log f0(z)  

(6.3,30) 
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b,',80, and p when there is no censoring is easily seen by taking expectations of 
(6.3.5)—(6.3.7) to be of the form 

T (b , Po, 13) = [101 
o 

b -2 Az(X'X) ' 

(6.3.29) 

where I is 2 x 2, X i X is (p —1) x (p — 1), and 

This shows that the m.l.e.'s j.3' and 	/30) are asymptotically independent, and that 
the asymptotic covariance matrix for it is 

r. 	/2 2  
Asvar(p) = —(X / X) -1  

Az 
(6.3.3 )) 

This may be compared with the variance of the least-square estimator , which from 
(6.3.28) is /7 2  Var(Z)(X'X) -1  The asymptotic efficiency of the least-square estima- 
tor relative to the m.l.e, under the true distribution fo(z) for Z is therefore given 
by 

Asvar(f3j) 	1  

Var(j) 	Az Var(Z) 
. , p — 1, 	(6.3.32) 

Problem 6.13 outlines calculations showing that when Z has a logistic distribution, 
the asymptotic relative efficiency of least-squares is .91, and that when Z has an 
extreme value distribution, it is ,61. 

If a specific distribution for Z is assumed in the model (6.3.25), then we typically : 
use m.l.e.'s for that diStribution. Maximum likelihood under a normal distribution 
for Z, or least-squares, possesses the desirable robustness property that inferences 
about ri (or /30) are still valid when the distribution of Z is nonnormal. A weaker 
robustness property also holds for m.l.e.'s under other distributions for Z. First, note 
that when location-scale models are expressed in the form (6.3.25) with  E(Z1) = 0, 
there are interpretations of f30 and p that are independent of the actual distribu-
tion of Z. In particular, E(Ylix;) = tio P'x; so, for example, fli represents the: 
increase in the mean of Y when the jth covariate -v./ increases by one unit. It sim-
ilarly represents the increase in any quantile y p  (x) under the same condition. Note 
that the interpretation of b does depend on the distribution of Z through the fact 
that Var(Y/Ixi) = b 2  Var(Z), since we have not standardized Z to have variance 1,.! 
Silvapulle (1985) and Gould and Lawless (1988) show that the m.l.e. fi  obtained 
using a specific distribution for Z in (6.3.25) is still consistent  for the true regression 
parameter, provided that the true distribution is of the form (6.3.25). In other words, : 

 misspecification of the distribution of Z does not lead to inconsistency in the esti- 
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!nation of regression coefficients, provided the location-scale assumption is correct. 
On the negative side, however, is the fact that estimates of /30, b and the mean and 
quantiles of the distribution of Y given x are affected by misspecification, as is the 
estimation of standard errors for all parameters. 

Because of the robustness properties of least squares for uncensored samples, 
attempts to extend least-square Methods to censored data have been made. Other 
robust estimation methods for location-scale models can also be developed; this is 
discussed in Section 8.2. The robustness properties of least-squares and, more gen-
erally, m.l. estimation for (6.3.25) do not extend to censored data, though they hold 
approximately when censoring is light. 

All models are of course only approximations to reality, and it is worth repeat-
ing the recommended approach for dealing with concerns about robustness or model 
misspecification: first, carry out diagnostic checks that can provide support for bas-
ing inferences and conclusions on any specific farffily of models and, second, per-
form sensitivity analyses in which the effects of varying the model can be exam-
ined. The latter activity is aided by model expansion, and is discussed in Section 6.4 
for location-scale regression models, Earlier examples not involving covariates were 
provided in Examples 5.5.1 and 5,5.2. 

6.3.5 Experimental Design 

In studies where values of explanatory factors can be controlled, experimental design 
can be used to increase efficiency and reduce cost. The considerations for general lin-
ear location-scale models (6,3.25) are very much the same as for the classic normal 
linear model. When there is no censoring we can indeed use results directly from 
classic theory, in view of the similarity between the information matrix (6.3.29) for 
general models and that for normal (least-square) estimates in (6.3.28). Guidelines 
for multifactor experiments as in Example 6.1,2, or for the choice of covariate val-
ues in problems such as Example 6.2.2, can then be found in standard experimental 
design references. Problem 6.15 provides an illustration. 

The presence of time constraints that lead to censoring complicates matters. One 
problem is that when covariates affect lifetimes substantially the degree of censoring 
in fixed-time studies may vary considerably across different levels of the covariates. 
Another is that information about parameters has to be considered in the context of 
a specific distribution, since we no longer have the" direct link with least-squares. 
Moreover, trade-offs in the choice of covariate values and the duration of experimen-
tation can be made, in addition to the usual trade-offs between duration and sample 
size. A good approach is to explore designs or study plans by simulating data sets 
or by numerical evaluation of information matrices, as described for the case of no 
covariates in Section 5.6.1. 

The information matrix 1 (p, b) is given by (6.3,8), and a comparison of expres-
sions (6.3.5)—(6.3.7) with expressions (5.1.7)—(5.1,9) shows the close similarity 
to the information matrix in the no-covariate case. In fact, the Fisher information 
matrix based on (6.3.8) can be obtained directly from the analogous expressions for 
2-0.1t ,  2-0,12, and /0,22 in (5.6.2)—(5.6.4) for the no-covariate case. Taking expected 



71 

E E(ezi)xix; 
1=1 

	 E E(Zie z i)xi 

E Ecziezi,x; E F2(c51 + 4ez , ) 
1=1 	 1=1 ( 

(6.3.37) 
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values of (6.3.5)—(6.3.7) and noting that the first terms in square brackets in each of 
(6.3.6) and (6.3.7) simplify (since Eoe/813.0 = 0 and Eoe/ao= 0), we find 

X(13, 17) = EU (13, 0] 	 (6.3.33) 

is a (p + 1) x (p + 1) matrix with entries 

/(P, 	= 	E 2-„„ixuxm 	 (6.3.34) 
i.1 

1 	n 
1(0, b)j,p+1 = 2-(p, b) p+l, j = 	IO I2jXjJ 	 (6.3.35) 

1=1 

n 

	

.1(fJ 11 )17-1-1,p+1 = 	EI0.221 • 	 (6.3.36) 
" 	(=I 

In these expressions we have denoted terms kid ;  (k,E = L, 2), since they depend 
on (log C1-13'xi)/b, and thus they vary for i = 1, , n. Tables, charts, and general 
evaluations of the information matrix terms (5.6.2)—(5.6.4) discussed in Section 5.6.1 
can also be applied to models with covariates. 

We provide a simple example, following which some results that have been 
obtained for certain specific models are discussed. 

Example-6.3.5. Consider the extreme value regression model (6.3.1 8). Since 
8 2  log fo(z)/0z 2  = exp(z) = 8 2  log So(z)/az 2 , expressions •(5.6.2)—(5.6.4) and 
(6.3.34)—(6.3.36) give, in partitioned form, 

The expectations E(ezi), E(Zie z1 ), and E(61 	Z7,e zi ) are considered in Prob-i, 
lem 5.4 .  In particular, note that under a Type 1 censoring scheme where individual i 
has potential censoring time Cj, 

Zi = [min(Yi, log CO — 

= min(Z7, RI), 

where Z7 = (Yi — p/x,)/b is EV (0, 1) and Ri = (log CI — P'xi)/ b. In addition, 
E(31) = Pr(61 = 1) = 1 — exp(—e Rl). 

In many applications, such ai  comparative experiments, precise estimation ofli  
regression coefficients is of interest. Estimation of survival probabilities or of  dis  
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tribution quantiles y p (x) = /3'x + w pb may also be important. In either case it 
is necessary to specify working values for p and b for planning purposes. Then, a 
specific plan consisting of values for n, censoring times C1, , CH , and covariate 
values xi ..... x„ can be assessed through an examination of asymptotic variances 
for parameter estimates of interest, obtained from the asymptotic covariance matrix 
V = 2- ( 3 , by-1, We can obtain V by direct numerical calculation of (6.3.37) in 
the case of Type 1 censoring or, more generally, we can estimate it via simulation. 
Simulation also allows an examination of the observed information matrix I (fi, 1;) 
and how sampling variation affects variance estimates from / [7) -1 , and provides 
empirical estimates of the distributions of estimates or test statistics, 

Let us consider models with a single covariate, so that /3'xi = A + ppri . The 
observed information matrix (6.3.19) in this case, reduces to 

1 
Ei i 

E2;x7 	E 21e21  xi 	 (6.3.38) 
i=t 	 i=i 

E jex Da, + 216,4 ) 

and the Fisher information matrix /(flo, /31, b) is of the same form, with replaced 
by E (Z1),  j  exp(i.i) replaced by E (Zi exp(Zi)), and so on. Even if the censoring 
times Ci are equal, Zi depends on xi and so direct calculation of I or I depends 
critically on these values. Algorithms for evaluation of terms in 1(80, b) have 
been published by Escobar and Meeker (1994), as discussed in Section 5.6.1. The 
observed information matrix /(8o, /31, 6) is easily calculated for any simulated 
sample once the m.l.e.'s have been found. 

The evaluation of experimental plans that involve censoring is rather laborious, 
either by simulation or by numerical evaluation of Fisher information matrices. A 
good practical approach in many settings is first to consider plans with no censor-
ing (all Ci = oo). In this case, the Fisher information matrix has the form (6,3.29), 
and the covariance matrix for /3 is proportional to that for the least-square estima-
tor, which is b2 var(Z)(X I X) -1  Traditional design considerations can then be used 
to suggest sample size and choice of covariate values xi , , xn . The effect of cen-
soring is to reduce information and increase asymptotic variances of parameter esti-
mates. The amount of variance inflation is variable across parameters, and is difficult 
to judge because a given censoring time produces different censoring probabilities 
for different covariate values. However, an examination of variation inflation for the 
no-covariate setting of Section 5.6.1 often provides reasonable guidance and, at least, 
a starting point for simulation or further numerical evaluation. 

The special problem of accelerated life testing has received considerable attention. 
Here the objective is to estimate quantiles y p (x) for settings involving one or two 

= 
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covariates that represent factors such as voltage, temperature, or humidity. Meekcr 
and Escobar (1998, Ch. 20) and Nelson (1990) provide detailed treatments of this 
area. 

6.4 EXTENSIONS OF LOG-LOCATION-SCALE MODELS 

6.4.1 Families of Error Distributions 

Section 5.5 discussed extensions to location-scale parameter models in which a para-
metric family of standard distributions for Z = (Y — u)/ b was considered. The same 
extensions can be applied to settings with covariates; we consider models 

Yj = 	bZi 	i =  1, 	n 	 (6.4.1) 

for log-lifetime Yi given covariate vector xi, where Zi has a distribution with survivor 
function So(z; k), as in (5.5.1). Fitting such models allows a check on the sensitiv-
ity of inferences to variations in the error distribution in (6.4.1), provides increased 
modeling flexibility, and allows an assessment of common error distributions such 
as the extreme value and normal. Estimation is best carried out as described in Sec-
tion 5.5.1, by maximizing the log-likelihood function €(f3, b, k) for ft and b with 
k held fixed at different values .  This gives estimates P(k) and b(k) and the profile 
log-likelihood function 

p  (k) = £(3(k), 	k). 

Maximization of t p (k) gives the m.l.e. k and the m.l.e.'s = p(k),& = (T)  for 13 
and h. Plausible values for k can be assessed using L,, (k) or the equivalent likelihood 
ratio statistic 

A(k) = 2f(ff.  , k) — 2t(P.  (k), 1;(k), k). 

For interior values ko in the parameter space, the distribution of A (ko) is typically 

4)  in large samples if k = ko; this can be uSed to test  H:  k = Ica or to obtain 
confidence intervals for k. 

As discussed in Section 5.5.1, it is often reasonable to provide inferences about the 
distribution of Y with k treated as fixed, and to assess informally the effect of varying 
k on such inferences. When there is no censoring the estimate k is asymptotically 
independent of the m.l.e. for the regression coefficients. In particular, if we write the 
model (6.4.1) in the alternative form 

Yi  = 	+13/xi +bzi, 	I  —  I 	n 	 (6.4.2) 

and center covariates as in (6.3.26), then a simple extension of the development in 
Section 6.3,4 shows that (ijo, b , k) are asymptotically independent of A. This proves 
that k and  b are asymptotically independent of if regardless of whether the covari-
ates are centered or not, because centering affects only the intercept and not any of 
the other parameters or their estimates. When lifetimes are censored the asymptotic 
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independence no longer holds, but the correlation between fc and /3 is typically small. 
This means that inferences about /3 will usually change little as k is varied across a 
range of plausible values. The estimates /9.0, bare often rather highly correlated with 
k, but estimates of quantiles or survival probabilities are much less so, especially 
away from the tails of the distribution, These are usually of much more interest than 
/30 or 1) on their own. These points are illustrated in the examples that are presented 
later. 

Two useful extended families are the generalized log-Burr and generalized log-
gamma, discussed in Sections 5.5,2 and 5.5.3 for the case of no covariates. For the 
log-Burr regression family the p,d.f. fo(zi; k) of Zi in (6.4.1), is given by (5.5,6), and 
the log-likelihood from a censored random sample of lifetimes by (5.5.7): 

f(13 , b, k) = — r log b + E Si log fo(zi; k) E(i - Si) log So (zi ; k), (6.4.3) 
i=1 	 t=i 

where z., = (y; — P ixi)1 b. The extreme value regression model of Section 6.3.2 is 
given by the limit k co and the logistic regression model by k = 1, and stan-
dard software can be used for those cases. For other fixed values of k the general 
methods of Section 6.3.1 apply, and are readily implemented with general optimiza-
tion software. A plot of the profile log-likelihood e p  (k) or likelihood ratio statistic 
A (k) = lep(k) (k) can be used to assess plausible values of k. The behavior 
of e p (k) is the same as discussed for the no-covariate case in Section 5.5.2. 

The log-gamma regression model has likelihood functions (6.4.3), but with 
fn(z; k) and 50(z; k) given by (5.5.10) and (5.5.8), respectively. The special case 
k = 1 gives the extreme value regression model, and the limit as k oo gives 
the normal linear model. Standard software handles these cases, and general opti-
mization software will deal with other values of k. As discussed in Section 5.5.3, 
it is better to use the parameter X  = k-112  for estimation purposes, and the special 
case, X = 0, can be made into an interior point in the parameter space by a simple 
extension of the model to allow X < 0 as well as X > 0. In this case, the p.d.f. of Z1 
takes the form 

r(x -2 )  
fo(z; 	= 	1 

(27r) 1 /2 exP(—z2/2)  

for —co < z' < oc. 
The examples that follow illustrate the application of the generalized log-Burr and 

log-gamma families. It is possible to consider a log F model with two shape param-
eters that includes these as special cases (Kalbfleisch and Prentice 1980, Sec. 3,9; 
Gould and Lawless 1988), but experience suggests that the log-Burr and log-gamma 
models provide sufficient flexibility for most practical purposes. 

1A1  (X — )X_ 2  exp[X -2 (X.z — X = 0 
(6.4.4) 

X = 0 

Example 6,4,1. Let us reconsider the data on failure times of electrical insulat-
ing fluid subjected to high-voltage stresses, introduced in Example 1.1.5. A Weibull 



EXTENSIONS OF LOG-LOCATION-SCALE MODELS 	 313 

accelerated failure time model, or extreme value location-scale model with u(x) in 
(6.1.4) given by /30+ j3ix and x = log(voltage), was fitted in  Example 6.3.2. Checks 
on the model there and in Example 6.2.2 did not reveal any significant evidence 
against it. Nevertheless, let us push the data a bit further and  examine a generalized 
log-gamma regression model given by (6.4.1), with the errors having the density 
function fo (z; X) of (6.4.4). The extreme value—Weibull model is represented by the 
special case X = 1, so this provides a check on that model, and allows a sensitivity 
analysis of conclusions based on it. 

.- Values of the profile log-likelihood function 	 q p (k) = e3(k), 13(k), k), where 
k = X -2 , are easily obtained by maximizing (6.4.3) with respect to p and b. The 
rn.l.e. IC is found by maximizing p  (k), or E(I3, b, k), and the associated likelihood 
ratio statistic takes Values A(k) = 6, —  2 (k). We find that fc = 1.818, 

'4o = 64.328, 4, = -17.631, & = 1.348, and that the extreme value model (k = I) 
has A (k) = .72; assessing this relative to a 4 3  distribution indicates that there is no 
evidence whatsoever against the model. The normal location-scale model (6.4.1), on 
the other hand, corresponds to X = 0 (k =  oc), and we find that A (oo)'= 6.306. This 
gives a p-value of .012 with the 4 )  approximation and provides evidence against 
the model. 

Confidence intervals for quantiles y p  (x) were given under the extreme value 
model in Example 6.3.2. Inferences about central quantiles, y IAA:), are insensitive 
to varying k away from the extreme value model (k = 1), provided we consider k 
values that are well supported by the data. Quantiles for p close to 0 or 1 and for 
x-values beyond the experimental data are more sensitive to variations in k, as illus-
trated for some data with no covariates in Example 5.5.2. We reiterate the remark 
made there that confidence limits based on a specific parametric model are often 
optimistically narrow, given uncertainty about the model. 

Crowder et al. (1991, p. 82) and Farewell end Prentice (1977) noted that separate 
log-gamma models fitted for units with a< 32 kV and those with u > 32 kV gave 
rather different estimates of k. Fitting a model with separate parameters /30, /31, b, and 
k for the two voltage categories gives fc = .55 for the lower voltages and 'lc = 9.81 for 
the higher ones. However, a likelihood ratio test of this eight-parameter model versus 
the four-parameter model dispussed earlier gives the likelihood ratio statistic A = 
5.0, which yields a p-value from of .29, and thus no evidence of a difference 
in parameters for the two voltage categories. A five-parameter model in which only 
k is different for low and high voltages gives a likelihood ratio statistic A = 3.57. 
which gives a p-value from 4i )  of .06. This provides mild but inconclusive evidence 
regarding a possibly different shape for the failure time distribution at low and high 
voltages. Separate extreme value probability plots of the residuals from the four-
parameter extreme value model (k = 1) fitted in Example 6.3.2 for units with ir < 32 
and u > 32, respectively, similarly do not show pronounced evidence against the 
extreme value model, nor does a plot of residuals against voltage levels. 

Example 6.4.2. Crowder (2000) discussed some data of Watson and Smith 
(1985) on the breaking strengths T of single carbon fibers of different lengths; the 
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data are given in Appendix G. Generalized log-Burr models have often been found 
to fit breaking strength data rather well, and we consider them here. 

For the log-Burr distribution with location and scale parameters u(x) and b and 
shape parameter k, the survivor function for log-lifetime Y given x is from (5.5.5), 

S(y1x) = [I -I- . 1- exp ( Y 	(x)  )1 
k 	b 

—k 

- co <y <00, 	(6.4.5) 

In the current example "lifetime" is breaking strength T, Y = log T, and the only 
covariate is fiber length. Probability plots described in Section 6.2,1 can help to see 
whether models of the form (6.4.5) are plausible for given fiber lengths. The data 
involve approximately 60 fiber specimens for each of four lengths, .E = 1, 10, 20, 
and 50. Let  Se  (t) represent the Kaplan-Meier estimate of the survivor function for T 
for liber length e = 1,10, 20, 50). For a model of the form (6.4.5) with a specified 
value of k, we have 

log [k (s(yix)-iik _ 	y  - u(x) 
b ' 

so if the model is plausible, then plots of log[k(&(t)" lik - 1)] versus log t should 
be roughly linear and parallel. 

Figure 6.16 shows such a plot using the value k = 2. This value was found to give 
quite linear plots, as shown. The logistic model given by k =1 also gave reasonably 
linear plots, but the extreme value model (k = oc), for which the left side of (6.4.6) 

• length = I 
• length = 10 

length = 20 
• length = 50 

 

-3 - 

-5 - 

01.2 	 01 6 	 1.0 	 1 1.4 	 1 1.8 
log(t) 

Figure 6.16. Log-Burr probability plots (k = 2) for fiber breaking strength data. 

(6.4.6) 
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becomes the limit log(— log S(y1x)) does not and is considerably less plausible. A 
slight anomaly for the breaking strengths with e = 10 is noted, with the left tail of 
the distribution being a little shorter than the log-Burr model suggests. 

The probability plots for the four lengths E = 1, 10, 20, 50 are reasonably close 
to parallel, which suggests that a common value for the scale parameter b should 
suffice, as in (6.4.5). Breaking strengths tend to be lower when the fiber length is 
longer, and it is of interest to see whether a simple relationship exists. 

There is considerable theory concerning length effects for the breaking strength 
of strands or fibers. One simple model relies on weakest link arguments and leads to 
log-Burr models for Y (e.g., Crowder et al. 1991, Sec. 7.3; Watson and Smith 1985) 
where the survivor function for fibers of length € is of the form 

S(Y = [1 + exp y — 
u 	

(6.4.7) 

This can be written in the form (6.4.5) with x = log t and 

u (x) = Po + /31 x , 	 (6.4.8) 

where p l  = —b. As a check on this model we fitted three models to the data: 

Mo: Model (6,4.5) with (6.4.8) and p i  not constrained to equal b; this has four-
parameters (/3o, fit, b, k). 

Mt: Model (6.4.5) with u(x) = ue for t = 1, 10,  20,50; this has six parameters 
(ut, uto, u20, u50, b, k). 

M2: Log-Burr models with common k but distinct location and scale parameters; 
this has nine parameters (ut, u to, u 20, 1150,  b1, b1 0 . bzo, bso, k). 

Parameter estimates and maximized log-likelihood values loge under the three mod-
els are as follows: 

Mo:  $o =  1.47,$  = —.167, 6 = .139, k = 2.046, loge = —219.59 

MI: û 	= 1.47,  û 10  = 
loge = —215.29 

1.14, 1220 = .926, ii50 = .839, 1; = .140, k = 2.275, 

M2: :2 1 = 1.47,  û10 = 1.138,  û20  = .927, a50 = .843, 1;1 = .141, 610 = .147, 
= 	Sso = .133, = 2.365, loge = —215.03. 

The likelihood ratio statistic for testing M1 versus M2 is A = .52 on three degrees 
of freedom, with an associated x 2  p-value of .915. The analogous test for Mo versus 
Mi gives A = 8.62 on two degrees of freedom, and a x 2  p-value of .013. A third 
test of M2 against a 12-parameter model in which the k's were allowed to vary with 
length gave a likelihood ratio statistic of 2,24 on four degrees of freedom. Thus, 
there is considerable support for a log-Burr model (6.4.5) for log breaking strength, 
in which u(x) varies with fiber length, L. However, the model (6.4.8) with x = 
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log E is contradicted to some degree by the data, though not exceptionally strongly. 
It can also be noted that in model Mn the  estimates  and -6 are similar, as the 
weakest link model suggests, though the observed difference is significant. These 
results agree broadly with empirical work that suggests that the weakest link model is 
approximately correct in some circumstances, but that with sufficient data, departures 
from it are frequently discernible. In this instance a plot of values fie from model M2 
versus log e suggests mild departures from linearity, but data at more than four values 
for e are needed to provide a clearer picture. 

Example 6.4.3. Examples 1.1.9 and 6.3.3 considered data on the survival of 
40 lung cancer patients. These were part of a larger study involving 137 patients, 
which we discuss here. The covariates include those in Example 6.3.3, labeled as 
before: performance status (PS), age in years at diagnosis (age), number of months 
from diagnosis to entry into the study (diag), tumor cell-type (squamous, small, 
adeno) with large as baseline, and /(treatment = Standard) (trt). The 40 patients in 
Example 1.1.9 and.Example 6.3.3 are those who received prior therapy; the remain-
ing 97 patients did not. This is represented here by the additional covariate /(prior 
therapy), denoted below by "therapy." Survival times are measured in days from 
the date of entry to the study. The full data are available in electronic form (see 
Appendix G). 

Preliminary analysis as in Example 6.3.3 suggests that the covariates age and 
months since diagnosis are not important, and this is confirmed by fitting separate 
log-Burr models (6.4.5) to the patients who received and did not receive prior ther-
apy. These variables were then dropped and models with only treatment, performance 
status, cell-type, and prior therapy were examined. Models fitted with interaction 
terms suggested that only interactions involving prior therapy needed consideration. 
This leads to Table 6.6, which shows fits of three log-Burr models (6.4.5): a model 
with main effects for  PS, trt, cell type,  and therapy for all 137 patients, plus sepa-
rate models with main effects for PS, trt, and cell type for patients with and without 
therapy. A likelihood ratio test of the model with only a main effect for prior therapy 

Thble 64. tog-Burr Models Fitted to Lung Cancer Data 

Parameter 
Full Data (n = 137) 
Estimate 	se 

Therapy (n = 40) 
Estimate 	se 

No Therapy (n = 97) 
Estimate 	se 

/3 (int) 2.74 .41 1.49 	.63 3.29 .46 
13 (PS) .034 .005 .053 	.0095 .027 .005 
p (squamous) .133 .277 .366 	.387 .193 .316 
/3 (small) -.649 .248 -.050 	.408 -.739 .275 
/3 (adeno) -.760 .265 -.868 	.511 -.671 .293 
p (nrt) -.090 . I 78 .255 	.306 -.276 .201 
s (therapy) -.082 .197 - 	- - --- 
b .665 .092 .886 	.116 .625 .096 
k 1.63 .79 4,179 	- 1.72 .94 

/ = -192.34 £ = -56.57 1 = -129,95 
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versus the model stratified on prior therapy gives an observed value A = 11.64 and 
a p-value from 47)  of .1. There is no conclusive evidence of a prior therapy inter-
action effect, though it is interesting to note that the error distributions suggested 
for the two prior therapy groups is different; essentially extreme value (k = co) for 
the prior therapy group and closer to logistic for the no prior therapy group. For the 
group receiving prior therapy the log-likelihood is flat in the region of /C = 4179, and 
for larger values of k, so no standard error is given in Table 6.6. 

The picture regarding covariate effects is quite clear. Performance status has a 
strong effect in both therapy groups (slightly more so for those with prior therapy), 
treatment has no significant effect in either case, and there is a suggestion of a  dif-
ference  for the small and adeno cell-types versus•the squamous and large types, the 
evidence being primarily due to the no prior therapy group. 

The results given here agree with those of Farewell and Prentice (1977), who 
fitted log-gamma models to these data. Diagnostics do not cast doubt on either the 
log-Burr or log-gamma models. 

6.4.2 Variable Scale Parameters 

Standard location-scale models (6.1.3) and associated AFT models (6.1.5) have a 
scale parameter b that does not depend on the covariates. This assumption is some-
times unsuitable, and we may seek to retain the location-scale form but specify some 
form of dependency of b on x. Since b has to be nonnegative, a common specification 
is b (x) = exp(y/x), where y is a vector of parameters. In some cases we may wish 
to use different covariates in b(x) than in the location model u(x). For example, it is 
often adequate to let b depend on the levels of a small number of discrete factors. The 
term heteroscedasticity is sometimes used in regression analysis to describe settings 
where Var(Y Ix) is not constant. 

We can carry out graphical diagnostic checks on the constancy of b, as for 
ordinary linear regression models with uncensored data. For example, plots of log 
failure time y against single covariates as in Section 6.2.1 may directly suggest 
nonconstancy; the probability plots in Section 6.2.2, which are based on grouping 
individuals according to covariate values, may suggest nonconstancy through non-
parallel plots; plots of residuals (6.2.3) versus covariates or fitted values, Ûf, may 
show nonuniform dispersion patterns. 

Formal tests of the constancy, of b can be carried out through model expansion. 
The electrical insulating fluid failure time data in Example 6.3.2 was considered 
through a set of location-scale models that allowed a check on whether b(x) = b. It 
should be noted that strong evidence of heteroscedasticity is often absent even when 
plots suggest it; a good deal of data are needed to reach clear conclusions. For the 
insulating fluid data, for example, the probability plots in Figure 6.4 suggest that an 
extreme value location-scale model may be reasonable, but the variation in slopes. (or 
the nonparallelism of the plots) raises doubts about the constancy of b. However, the 
formal hypothesis test in Example 6.3.2 gave a p-value of about .19, thus providing 
no significant evidence of heteroscedasticity. Detecting heteroscedasticity in data sets 
with several covariates is even more difficult. 



318 
	

PARAMETRIC REGRESSION MODELS 

Regression models with survivor functions of the form 

[ y — u(x;  
sulx) = So 

b(x; -y) j 
(6,4.9) 

can be fitted by maximum likelihood using general opt . mization software. The  log 
likelihood function from a censored random sample is a direct generalization of 
(6.3.2), 

71 	 71 

= — E 5, log bi +EV; log fo(zi) + (1 — Si) log So(zi)i, 
t=1 	i=i 

(6.4.10) 

where 2; = (y; — ui)/bi, ui = u(x: p) and bi = b(xi; y). For the model with 
specifications ui = 13'x, and bi = exp(y'xi), the derivatives of e (p, y) take simple 
forms: first derivatives are, for j = 1, . • • , p, 

VI; = — 	L 81 	azi 	+ (1 Si) 	azi 	j bi 
ae 	n  r a log fo(zi) 	a log So (z,/ )1 xi/ 	

(6.4.11) 

at 	n 	 n 

 = 	6. x . _V .6  a log fo(zr)  + (16i) 
a log So(zr)1  

	

— 	1 0 	z..., [ r 	azi 	 zixii. 	(6.4.12) \--' 

1=1. 	i=i 	 8zr 

Second derivatives are, for j and k =1 	P, 

0 2 e 	j 	a 2  log f0(Zi) 	D 2 log So (zi)  I  xiixik 6; 	+ (1 	Si) 	 (6.4.13) 
al3Jat3k 	i=l 	

8-2 az 4i 	 7 	17F.  

8 log so (zi) 
 ZiXijaik 

8 2: 	[ s a log fo(zi) + (1 	Si)i 
azi 	 azi 

	

, 	a2  log fo(zi) 

	

+(1 	Si) 
8 2  log So (zi) 	2 

d 
zi xiixik 	(6.4.14) 

az 	
,.. 

Zi 
 2 

1=1 • 

a2 e 	" a  log fo(zi) 	g 	o xiixik ] 	_ E [8i 	+ (1 Si)
a lo 	

bi 

	

ap;  a lik 	1=1 	aZi 	
azi 
so(z  

a2 log So(Z/) 
n 	8 2 log fo(Zi)  + (1 	bi ) - 	2 	 b, 	. 

+E 6, 

[ 
az 	 azi 	

zixiixik  

1=1 
(6.4.15) 

Example 6.4.4. Kimber (1990) and Crowder (2000) discuss data on the times 
to failure of steel specimens subjected to cyclic stress loading of various amplitudes. 
The data given by Crowder are reproduced in Appendix G; they are for 20 specimens 
at each of the 14 stress amplitudes 32.0, 32.5, 33.0, , 38.0, 38.5. Failure times t 
are in numbers of thousands of stress cycles. None of the 280 times are censored. 
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38.5 38.0 37.5 37.0 36.5 36.0 35.5 35,0 34.5 34.0 33.5 33.0 32.5 32.0 

stress (amplitude) 

Figure 6.17. Box plots of steel-specimen log failure times at 14 stress levels, 

Figure 6.17 shows box plots of the log failure times at each stress amplitude. This 
suggests that log failure times tend to be smaller at higher amplitudes, and also that 
the dispersion decreases as the amplitude increases. Further preliminary examination 
of the data suggests that a log-Burr distribution may provide a satisfactory descrip-
tion. Fitting separate log-Burr models as well as models in which k is the same across 
amplitude levels indicates no need for different k's, so we next consider models of' 
the form (6.4.9) with So(z) of the form (5.5.5). 

The specifications 

u (x) Po + x, 	log b(x) = yo yix 	(6.4,16) 

with x = log (amplitude), are suggested by plots of the data and by numerical sum-
maries of location and spread such as y.5(x) and sd(x), Figure 6.18 shows plots 
of log  û,j  and log bj versus xj for the log-Burr model with constant k, but different 
parameters (u j, bj),  J  — 1  14. The models with 29 parameters (different u and 
b but the same k at each value of x), 5 parameters ((6.4.16) and constant k), and 4 
parameters ((6.4.16) with yi = 0 and constant k) give maximized log-likelihoods 

= —211.12, —214.26, and —243.43, respectively. This provides strong support for 
the model (6.4.16) with both location and scale effects. The m.l.e.'s for this model 
are fio = 47.92, fit = —11.92, Po = 22.13, pi = —6.61, and k = .643. 

Finally, we remark that a log-Burr probability plot of residuals from the fitted five-
parameter log-Burr model shows a strong linear pattern, but with a few residuals at 
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Figure 6.18. Location and scale estimates at 14 stress levels for steel-specimen failures. 

either end departing from this. This is not unusual with large data sets, but one could 
refine the  model,  for example, by allowing some mild nonlinearity in u(x) or by 
Considering other distributions So (z).  Crowder  (2000) considers a larger family that 
includes the log-Burr, but his.results do not reject the log-Burr model used here. 

6.4.3 Time-Varying Covariates 

Time-varying covariates can be incorporated into accelerated failure time or time-
transformation models. The key idea is that the covariate x(t) effectively alters the 
rate at which time t passes. This leads to models In which the survivor function for 
T, conditional on an external covariate path X = (t), t 0} , is of the form 

S(ti X) =  S0 
[f 

 g(x(u)) du] , 	 (6,4.17) 

where g(,) is a positive-valued function and So0 is a survivor function on (0, oo). 
If x(u) = x is constant over time, then (6.4.17) reduces to So(g(x)t), which is the 
standard accelerated failure time model. 

A common procedure is to specify g(x(u)) parametrically as exp(y'x(u)), in 
which case (6.4.17) becomes 

= so  yi e"" du]  
Lia  

-1.1 

(6.4.18) 
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Fully parametric models assume further that So(.) has a specific form; a Weibull 
model, for example, would take So(z) = exp [—(z/t1) 8 ]. Fully parametric models 
have been used in engineering applications such as variable stress accelerated life 
tests (e.g., Nelson 1990, Ch. 10). It is also possible to develop semiparametric pro-
cedures in which S0(.) in (6.4.18) is left arbitrary. This topic is discussed briefly in 
Section 8.2. 

Example 6.4.5. Step-Stress Accelerated Life Tests. 'In some accelerated life 
tests the covariate x(t) represents a stress that is varied over time, so that 

x(t) = xe 	ae—i < < ae 

for E = 1, 	, k, where ao = 0 and ak =  oc. Suppose that the model (6.4.18) 
applies, with y'x(u) = yx (u). Then, given a stress history X = (x(t), r > 01, the 
survivor function for failure time T is 

S(t IX) = So [f ex(")  du] 
0 

= 
 So[

EeYxf At(t)], 
e=i 

(6.4.19) 

where, as defined in (1.3.26), te  (t) = 0, t —ae-1, or  at  — ae—i according to whether 
t < ae_i, ae_i < t < at, or t > ae, respectively. With a Weibull model for So(z), 
(6.4.19) becomes 

8 

S(tIX) = exp [ — 

h 
— E ex' Ae(t)] 
a  e=i 

(6.4,20) 

The variable z(t) = 	g (x(u)) du in (6.4.17) can be thought of as a generalized 
time scale on which units have survivor function So (z), Such time scales, which can 
depend on-time-varying covariates, appear in various theories about the physics of 
failure. This concept is considered more generally by Duchesne and Lawless (2000). 

6.5 SOME OTHER MODELS 

Location-scale or AFT models provide considerable flexibility in fitting data, are 
easily interpreted, and in many settings are plausible with respect to knowledge of 
the underlying failure process. However, other formulations are often necessary. This 
section provides a brief discussion of some other models. First we consider specifica-
tions based on hazard functions, then models derived from mechanistic assumptions 
about failure, and we finish with some comments on models that are linked to certain 
transformations. 
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6.5.1 Hazard-Based Models 

Section 6.1 indicated that the two main approaches to regression modeling of life-
times are time-transformation and hazard-based modeling. In the latter, models are 
specified in terms of the way that covariates x affect the hazard function for T Flex-
ible but easily interpreted models are sought, and the most common is the PH or 
multiplicative model (6.1.6). Additive models with h(tlx) of the form (6.1.9) are 
also useful, This section outlines some parametric hazard-based specifications for 
lifetime regression. Semiparametric multiplicative models are considered at much 
greater length in Chapter 7. 

If there is a sufficient number of failures and not too many different covariate 
values in the data, then nonparametric estimates of the hazard function for different 
groups of individuals can be examined for insight into potential models. Estima-
tion of hazard functions was discussed in Section 3.4. Insight can also be gained 
through the examination of Nelson—Aalen plots of cumulative hazard function esti-
mates fi(t lx), as described in Section 6.2.1. More generally, we rely on a combi-
nation of data exploration, model fitting, and model assessment. For the latter, the 
cumulative hazard residuals (6.2.7) and (6.2.8) are useful. 

Software for fitting parametric models is not widely available, except for spe-
cial cases such as the Weibull PH model, which is also in the accelerated failure 
time family. However, estimation and inference is generally easy to implement using 
optimization software. If a parametric model h(z Ix; 0) is considered, then the log-
likelihood function based on a censored random sample (ti; 51) 1 =  I, n of life-
times, given covariate values  xi.....  x,, can be written in the form (2.2.17), giving 

e(e) = E (5, log h(t, 'xi; 0) — H (ti 'xi ;  O)),  
1=1 

(6.5.1) 

where H (t ix) = fo  h(ulx) du is the cumulative hazard function. This can be maxi-
mized directly, with or without the use of analytic derivatives for (0). 

Multiplicative models are convenient and flexible. Consider models (6.1.6) with 
fixed covariates x, in which 

h(t Ix; 0) = hat; a) exp(/3'x), 	 (6.5.2) 

where 0 = (a, /3) and ho(t; a) is a positive-valued baseline hazard function. The 
specification r (x; (3) = exp (13'x) in (6.1.6) is convenient, but other specifications are 
also easily handled. The log-likelihood function (6.5.1) becomes 

P(a, /3) = E Si { log ho (ti; a) + 13'xi — E Hp(ti; a) exp(/3'xi), 	(6.5.3) 
1=1 	 i=i 

where Ho(t; a) = fol  ho (u) du is the baseline cumulative hazard function. First and 
second derivatives of (a, (3) are of simple form; the latter are, in particular, 
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 — 	8 2  log ho(tt; a) 	a 2 110(ti; a)  exp(0 , x1)  E aajacrk 	1.= ,   

a zt  
E

' 
	a)  

xi k exp(P ixr) 
aceiat3k 	i=1 	act./  

a z e  	_ ExuxikHo(11; a) exp(13ixt), 
afijaf3k 	i=i 

from which the information matrix 1(a, /3) and estimated asymptotic covariance 
matrix I (et, 11) -1  for 	1̂3) can be obtained. 

Models for which 110(0 or log ho(t) are linear in parameters a; 	, a,. are often 
useful; this includes polynomial or regression spline models, as discussed in Sec-
tion 4.2.3. A very simple model to handle is one with piecewise-constant ho(t); 
although the hazard function is not smooth, this can be quite flexible and useful. 
The following example outlines maximum likelihood estimation. 

Example 6.5.1. Models with Piecewise -Constant Hazard Functions. Con-
sider (6,5.2) with ho(t; a) piecewise-constant: for a specified set of points al, 
with ao =  O.  ak = co,  we have 

ho(t; ce) = 	ai _1 5_ t  <a1 	(j = 1, 	. , k). 	(6,5.7) 

The baseline cumulative hazard function is 

	

1-10(1) = E cei 	(t), 	 (6.5.8) 
1=1 

where Ast(t) = 0, t — ai_i, or ai — ai_.; if i < 	a1_i 	t < al, or t 	ai, 
respectively, as defined in (1.3.26). The log-likelihood (6.5.3) can then be written as 

n 
 «a,
[ k  

a, (3) = E 8, E I (ai _1 .  t, < ai) log ai /3'xi 
1=1 	J=1 

n [ k — E E (Oa 
1=1 j=i 

n 
= Ed;  log ai E Si p ixi —Eaj 

[ 
E (t1)6.0 'xi , (6.5.9) 

p.1 	 1=1 	J=1 	1=1 
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(6.5.4) 

(6.5.5) 

(6.5.6) 

where di = Ei  Si I (ai_i < ti < ai) is the number of lifetimes that lie in [ai_;, aj). 
Maximization of (6.5.9) can be simplified by noting that for a given p, the equation 
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a e a'a = 0 has 'the closed-form solution 

di  

(P) = E1 _, 	(toeP'x i 
(6,5.10) 

Insertion of these values into P(a, /3) gives the profile log-likelihood for p, 

--- Ed, log [E 	(t t)eP'xe] c, 	(6.5.11) 

where c = E(di log di — di) does not depend on p, and can be omitted. 
An easy way to obtain the m,l.e.'s is therefore to maximize (6.5.11) to get /3.  

and then to determine ex = 6 (/3 ) from (6.5.10). The asymptotic covariance matrix 
I (:1) -1  is easily obtained from the information matrix 1 (a,  /3), whose entries are 
given by (6.5.4)—(6.5,8) as 

_ a 2 e 	 dj 

acriaam — 1(i  = • 

_a 2e 	k 

— E [t a 	Pra f33 	
A, coxir xis eP'xii 

i=1 	i=i  • 

8 2 e  
	 E 	(4 	e  )xfr P'xi  , a cei 	1=1  

Inference procedures for a, /3 and characteristics of the lifetime distribution for 
T given at are easily implemented using the standard approaches described in 
Appendix C. We will find in Chapter 7 that there is a close Connection between 
these procedures and ones developed for the semiParametric PH model. 

The assumption of PH is strong and it is important that it be checked. The multi-
plicative model (6.5.2) pan be expanded to allow for nonproportionality. One way is 
through the u$e of time—covariate interactions, as, for example, in 

h (t 	= ko(t; 	exp[fix y x g (0], 	 (6.5,12) 

where g(t) is a specified function. Such models are easily fitted, though depending on 
the form of g(t) it may be necessary to use numerical integration in the computation 
of the log-likelihood (6.5.1). Another way to interpret (6.5.12) is as a model in which 
/3 is allowed to vary with t: 

h(rix) = ho(t,; a) exp[p(t)'xi, . 	 . (6.5.13) 
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where /3 (t) is a parametrically specified vector. The model (6.5.12) has a single 
covariate, with /3(0 = ,63 y g(t). 

Models like (6.5.12) are log linear for h(t Ix); they are of the form 

log h(tlx) = go(t; a) + gi (x; p) + g2(x, t; 7). 	(6.5.14) 

Additive models for which h(tfx) has the form on the right-hand side of (6.5.14) are 
also useful; they are generally easier to work with in terms of likelihood computa-
tions, but on the other hand, may require constraints on parameters to make h (t 
positive. In addition to polynomial specifications for go, gi, and ,g2 in (6.5,14), piece-
wise functions such as regression splines can be used to achieve a great deal of flex-
ibility. The Bibliographic Notes reference some work in this direction. 

6.5.2 Mechanistic Models 

Sometimes there is knowledge about the mechanics of the failure process that points 
to certain types of models. Some of the accelerated failure time models used when 
testing materials or products at high temperature or voltage stress levels are moti-
vated by such considerations, for example. A discussion of physical failure processes 
is beyond the scope of this book, but we will note a pair of settings that motivate 
classes of modols. 

The first setting concerns situations where failure is largely determined by a pro-
cess of deterioration within individuals or items. In that case covariates may affect 
rates of deterioration, and thus times to failure; they may also affect the strength 
Or (conversely) the susceptibility of an individual to failure. The following example 
illustrates this type of situation. 

Example 6.5.2. The inverse Gaussian distribution was introduced in Sec-
tion 1.3.7, and can be motivated as the distribution for the time T until a Wiener 
diffusion process with positive drift coefficient y and dispersion parameter Cr crosses 
a threshold level d. The lifetime distribution I G (g, X) given by (1.3.23) has param-
eters defined as p. = d/y, X = d2 /o-2 . Regression models of different types can be 
considered. One form takes the distribution of lifetime T, given a vector of covariates 
x, to be IG(g(x), X), with p(x) = /3'x. A more plausible model in many cases is 
one with p,(x) = (Xx) -1 , as considered by Whitmore (1983). This can be motivated 
by allowing the drift rate y in the corresponding Wiener process to depend linearly 
on covariates; the choice y = /3'x leads to kr(x) = (p'x) -1 , provided that d and 
o. do not depend on x. A third model is one that assumes that the threshold level cl 
associated with failure depends on x; this gives a model /G(p., X) in which both lz 
and X vary with x. 

As an example we consider the data on times to failure of 20 aluminum-reduction 
cells given in Example 4.2.2. There was actually a covariate x associated with the 
units: the failure times (repeated from Example 4.2.2) and corresponding covariate 
values are as follows. 
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.468, .725, .838, .853, .965, 1.139, 1.142, 1.304, 1.317, 1.427 
1.554, 1.658, 1.764, 1.776, 1.990, 2.010, 2.224, 2,279*, 2.244*, 2.286* 

51, 64, 90, 83, 61, 78, 91, 88, 12, 42, 95, 92, 92, 76, 19, 34, 6, 7, 42, 0 

Asterisks denote censoring times. Both types of models for g(x) just described fit 
the data quite well. The model with ii(x) = (po  + pl x) --1  is readily fitted by maxi- 
mizing the log-likelihood function .e(fio,  fis,  X) given by (4.2.8), with g. replaced by 

=  (fib  Pixt) -1  This gives estimates and standard errors fib = .360(.132), 
fl  = .00515(.00207), 5.1  = 7.453(2.546), and asymptotic correlation estimates 
corr(tio,  fi) = —.844, corr(fin, = .216, corr(iii , = —.163. 

Model checks can be carried out by using uniform residuals ûj  = F(ti; 114,5 )  
where the c.d.f. F(t; g, X) is given by (1:3.24) and Ai  = (So + filx1) -1 . A plot 
of al versus xi (noting that three residuals correspond to Censored lifetimes) and 
a uniform probability plot of the  u both give no reason to doubt the model. Note 
that the uniform probability plot is carried out as described in Section 3.5.1. That 
is, we plot the 17 points (uy, 1 — j = 1, . , 17, Where uy is  the jth smallest 
value among the uncensored residuals ill 	 11 20, and 	= .5[8'(u*.) ± g (le +)] J 	 ' 
with ,'S(u) the Kaplan—Meier estimate obtained from 4 1 	fin and the censoring 
indicators. 

The second setting we mention is where background knowledge suggests that 
individuals vary considerably in terms of their susceptibility to failure, to the extent 
that a mixture model is considered. An extreme but important case is where some 
individuals are immune from failure. This leads to a mixture model (6.1.12) for the 
distribution of T given x. Here, p(x) is the fraction of individuals with covariate 
vector x who are susceptible to failure, and So(t Ix) is the s.f. for such individuals. 
Both p(x) and So(t lx) can be specified as parametric models. 

Example 6.5.3. (Example 4.4.1 Revisited). In Example 4.4.1 we fitted sep-
arate mixture models of the form (4.4.1) to the Control and Therapy groups for the 
time to recurrence of colon cancer in patients entered in a randomized clinical trial. It 
is of some interest to consider whether the two groups differ mainly in the probabil-
ity of recurrence, or whether the times to recurrence are also distributed differently. 
The only covari ate is the treatment indicator x = I (Therapy group), and log-logistic 
models were found to fit the data well in Example 4.4.1, so let us now consider the 
model (6.1.12) with 

So(t ix) = [I + /a  (i)))9(4)-1 . 	 (6.5.15) 

The separate models fitted for the two treatment groups iii Example 4.4.1 correspond 
to (6.5.15) with six independent parameters p(x), ce(x), )9(x), x = 0, 1; let us call 
this model M2. It is clear from plots of the data in Figure 4.8 that p(0) and  p (1)  are 
different, but let us fit models MI, with /3(0) = fl(1), but a(0) and  Œ (1) allowed to 
be different, and Mo, with )3(0) = fi(l)  and  Œ(0) = 
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lhble 6.7. Estimates and Maximum Likelihood Values for Three Models 

Model p(0) p(1) a(0) a(1) fi(0) /3(1) 

—2564.66 .610 .426 444.5 444.5 1.61  1.61 
—2564.01 .605 .430 415.9 485.6 1.62 1.62 

M2 —2563.91 .608 .426 419.5 479.0 1.58 1.68 

Table 6.7 shows m.l.e.'s and maximum log-likelihood values emax  = ea), 
for the three models. It is clear from the log-likelihoods that neither of the models 
Mo and Mi is contradicted by the data, when compared with M2. In particular, the 
likelihood ratio statistic for testing Mo versus M2 gives the observed value 

A = 2(-2563.91) — 2(-2564.66) = 1.50 

and a p-value on x (221  of .47. 
A model in which persons in either treatment group who experience recurrence 

have the same time-to-recurrence distribution is therefore supported by the data. The 
proportion of persons who experience an eventual recurrence is, however, signifi-
cantly lower for the therapy group. Plots of the survivor functions for the two groups 
under model Mo are nearly indistinguishable from those in Figure 4.8, and approxi-
mate the Kaplan—Meier estimates of ,S(t) very closely. 

6.5.3 Transformations and Some Other Models 

Transformation families can be used to define families of lifetime models, We will 
comment briefly on two such approaches. 

First, the log-location-scale family of models can be expanded via transforma-
tions. In particular, we might consider a parametric family of monotonic transfor-
mations g(t; a) that maps (0,  oc)  onto (—co, co), and assume that g(T; a) has for 
some a a location-scale distribution. This gives a survivor function for T given x of 
the form 

SON) = So E g(t;  a)  —
6

14(x; 
	

(6.5,16) 

where So(z) is a survivor function on (—co,  oc). The log-location-scale models are 
given by the special case g(t) = log  t.  In terms of the plotting techniques discussed 
in Section 6.2.1, this model has the property that if we plot S(t !xi) or any monotonic 
function of it against g(t; a) for two covariate vectors xi and x2, the plots will be 
(horizontal) translations of one another. The extended power family of transforma-
tions g(x; a) = (xa  — 1)/a is sometimes useful; it includes g(x; 0) = log x as the 
limit of g(x; a) as a -÷ 0. 

Another family of models is obtained by considering transformations 1/, (s) that 
map (0,1) onto (—co,  oc), and assuming that for some Itt the survivor function S(t Ix) 
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satisfies (6.1.11): 

1/1 [S(tlx)] = *ISo(Ol 	u)(x; /3), 	 (6.5.17) 

where So(t) is a baseline survivor function The PH family is given by the special 
case where *(s) = log(—  log s).  The case where *(s) = log((1 — s)/s) is called 
the proportional odds (PO) family (see Problem 6.3). A broader class of models is 
based on the parametric family of transformations *(s) = log((s —a — 1)/a); the 
special cases a co and a = 1 give the PH and PO families. A way to think about 
the models (6.5.17) is that we seek a function *  such that plots of *[S(t NO] and 
*[S(t1x2)] versus t (or any monotone function of t) are vertical translations of one 
another. 

Fully parametric versions of (6.5.16) are obtained by assuming parametrically 
specified or known functions g(t) and So(t). Similarly, fully parametric versions 
of (6.5,17) assume known or parametrically specified functions *(s) and So(t). 
Semiparametric models, which are considered in Chapters 7 and 8, leave some of 
these functions unspecified. For example, we might assume in (6.5.17) that V/ (s) = 
log(— log s) and that So (i) is unspecified; this is the semiparametric PH model con-
sidered in Chapter 7. 

In spite of their seeming flexibility, models of the form (6.5.16) and (6,5,17) make 
the strong assumption that the survivor functions S(t Ix) are ordered in the sense 
that SU lx ) and S(11x2) do not cross. As for log-location-scale or PH models, this 
can be relaxed at the cost of more complexity, for example, by letting b in (6.5.16) 
depend on x. When models with one or more  shape  or transformation parameters are 
considered, there is'generally a range of models that fit the data adequately, and there 
is a natural inclination to choose models that yield simple interpretations. As a result, 
the AFT, PH, and PO models are widely used, and the broader families (6.5.16) or 
(6.5.17) much less so. 

The carbon-fiber breaking strength data of Example 6.4.2 provide an illustration 
of the points just made. In this case, there are only four levels for the covariate x 
(log fiber length) and a relatively large number of observations at each level, so it is 
feasible to examine both the shapes of the distribution of T given x, and the effect 
of x on these distributions. The probability plots based on the log-Burr AFT (log-
location-scale) model shown in Figure 6.16 indicate that a model with parameter k 
in (6.4.5) approximately equal to 2 provides a'good fit to the data. The data for E = 10 
(x = log 10) display a mild departure from the log-Burr distribution, and the four 
plots in the figure indicate the possibility that k varies with x, but formal hypothesis 
tests for the dependence a k or the scale parameter b in (6.4.5) on x do not provide 
significant evidence against the basic model. Because of its simplicity and the fact 
that the AFT model with a log linear effect for fiber length t is physically plausible, 
we are inclined to base our conclusions on it. However, other models that fit the data 
well can be found. An examination of Figure 6.16 suggests, for example, that models 
of the form (6.5.17) with a suitably chosen function *(s) would be satisfactory; the 
choice * (s) = log((s — 1)/.5) corresponds to the vertical scale in Figure 6.16, 
and so gives a good fit. The figure also indicates, however, that no choice of So(t) in 
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(6.5.17) will provide a substantially better fit than the log-Burr AFT model. We are 
consequently reluctant to replace it with a model (6.5.17) in which the interpretation 
of the length effect is less natural. 

BIBLIOGRAPHIC NOTES 

Numerous books discuss linear and nonlinear regression models based on normal 
error distributions and on least-square procedures, for example, Weisberg (1985), 
Ryan (1997), and Seber and Wild (1989). Cox and Oakes (1984, Ch. 5) discuss 
various ways in which covariates might affect lifetimes. General discussions of 
methodology for accelerated failure time and location-scale models were given by 
Kalbfleisch and Prentice (1980), Lawless (1982), Cox and Oakes (1984), Nelson 
(1990), Crowder et al. (1991), and Meeker and Escobar (1998), the last three empha-
sizing accelerated life testing and reliability applications. Gentleman and Crowley 
(1991) and Bowman and Wright (2000) are useful additional references on graph-
ical methods. The use of nonparametric regression techniques such as generalized 
additive modeling (Hastie and Tibshirani 1990) should also be mentioned as an 
exploratory tool. 

Cox and Snell (1968) gave an early discussion of generalized residuals, Lawless 
(1986) considered probability plots and relationships between families of models 
such as accelerated failure time, proportional hazards, and proportional odds. There 
has been relatively little detailed study of the properties of residuals under censoring, 
though see Baltazar—Aban and Pena (1995). Influence analysis for censored lifetime 
data has been considered by Hall et al. (1982), Weissfeld and Schneider (1990), and 
Escobar and Meeker (1992). Atkinson (1985) and Cook and Weisberg (1982) are 
basic references for uncensored data. 

Lawless (1982, Ch. 6) was the precursor to the treatment of log-location-scale 
models given in Section 6.3, especially for the extreme value and normal models. 
Bennett (1983a) considered log-logistic models, Farewell and Prentice (1977) the 
log-gamma models of Section 6.4.1, and Lancaster and Nickell (1980) the log-Burr 
models of the same section. Kalbfleisch and Prentice (1980, Ch. 3) and Ciampi et al. 
(1986) discussed a log—F family that includes all of the aforementioned models as 
special cases. 

Cox and Hinkley (1968) developed most of the results in Section 6.3.4; Gould 
and Lawless (1988) and Silvapulle (1985) dentonstrated robustness properties of 
m.l.e.'s  13  within location-scale families and considered efficiency. Experimental 
designs for linear and additive models are described in many books (e.g., Box et al. 
1978; Wu and Hamada 1999). Many of the key ideas of experimental design and 
analysis of variance are applicable to the analysis of log-lifetimes, though censor-
ing complicates matters and destroys properties such as parameter orthogonality. 
Early work on accelerated life test designs was done by Nelson and Kielpinski 
(1976) and Nelson and Meeker (1978). Meeker and Escobar (1998, Ch. 20) and 
Nelson (1990) are invaluable 'references for accelerated life tests, with many ref-
erences to the literature and practical guidance for designing studies. Chaloner 
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and Lamtz (1992) discuss design from a Bayesian perspective; also see Chaloner 
and Verdinelli (1995). Hamada (1995) and Hamada and Wu (1991, 1995) consider 
fractional factorial life test experiments; Wu and Hamada (1999) give many refer-
ences. Lawless and Singhal (1978) discuss all-subsets regression for location-scale 
models. 

Location-scale models with nonconstant scale parameters have been considered 
many times in the literature (e.g., Nelson 1984; Smyth 1989; Anderson 1991). 
Meeter and Meeker (1994) discuss life test design for this case. So-called parameter 
design studies for reliability improvement (e.g., Taguchi 1986; Condra 1993; Wu and 
Hamada 1999) often involve nonconstant scale parameters. Nelson (1990, Ch. 10) 
discusses time-varying covariates in the context of accelerated life testing. Bagdon-
avicius and Nikulin (2002) give a thorough account of many models for dealing with 
time-varying covariates. 

Other regression models, like those in Section 6.5, have been considered by many 
authors. Most hazard-based modeling tends to be semiparametric, but parametric 
methods are very flexible. Models with piecewise-constant hazard functions have 
been studied by Holford (1976), Laird and Olivier (1981), and Friedman (1982). 
Carstensen (1996) and Kim (1997) fitted such models to interval censored data, and 
Lindsey and Ryan (1998) considered piecewise-constant and piecewise-polynomial 
models in the same setting. Kooperberg et al. (1995) and Kooperberg and Clark-
son (1997) consider regression spline hazard-based models for right-censored and 
interval-censored lifetimes, respectively. Additive hazards models for discrete or 
grouped data have been considered by Aranda-Ordaz (1983), Breslow and Day 
(1987), and others. Inverse Gaussian regression models are considered by Whitmore 
(1983) and others, and mixtures like those in Example 6.5.4 by Farewell (1982), 
Mailer and Zhou (1996), and Sy and Taylor (2000). Other types of mechanistic mod-
els arising, for example, from physics of failure considerations, can he found in many 
fields of application, See, for example, LuValle (1993), LuValle et al. (1988), and 
Meeker and LuValle (1995). Transformation models such as (6.5.17)  have also been 
considered quite widely; for parametric approaches, see, for example, Mackenzie 
(1996) and Younes and Lachin (1997), 

COMPUTATIONAL NOTES 

Methodology for the  accelerated failure time or log-location-scale regression models 
discussed in Sections 6.1 to 6.3 is available in many commercial packages, including 
S-Plus (see function censorReg) and SAS (See procedure LIFEREG). The reliability 
data-analysis system SPLIDA (Meeker 2002) has many special features, including 
experimental design capabilities. Some packages also handle the log-Burr or log-
gamma models of Section 6.4.1.  Software  for dealing with variable scale parameters  
is not available in the major packages, nor is methodology for time-varying covari-
ates. The models in  Section  6.5 are likewise not handled by major  packages, although 
the models with piecewise-constant hazards in Section 6.5,1 can be implemented  
using log linear generalized linear model software. 
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PROBLEMS AND SUPPLEMENTS 

6.1 Show that the only models in both the proportional hazards family (6.1.6) for T 
given x and the accelerated failure time family (6.) .5) for T given x are Weibull 
distributions of the form (6.1.1). 

(Section 6.1; Lawless 1986) 

6.2 Consider accelerated failure time models (6.1.5) in the case of a single indicator 
covariate, x = 0 or 1, and examine the ratio of the hazard functions h(t ix) for 
x = 0 and I for the following two models: 
(a)4(0 =  (1 +  t) 	(6.1.5) is Of log-logistic form. 
(b) 4(0 = exp(—t) in (6.1.5) is of Weibull form, but depends on x. 

In each case assume that ce(x) = exp(/30 /31 x). 
(Section 6.1) 

6.3 Proportional odds models. The proportional odds family of regression models 
is of the form (6.1.11), with 1,.r(p) = log((l—p)Ip). Note that for such models 
the odds ratio for the probability of survival past time I, for any two.covariate 
values., xj and x2, is indepehdent of t: 

— S(tixi)]/S(tixi) 
 — exp[w(Xt ; (3) — w(x2;  13 )1. [1 — suix 2 )]/s(11x2) 

(a) Show that the survivor function S(t lx) for proportional odds (PO) models 
can be written in the form 

S(t ix) = [1 + exp(A0(t) 	w(x; (3))] -1 , 	(6.6.1) 

where Ao(t) = log[(1 — So(())/So(t)]. 
(b) Show that the log-logistic regression model for which 

	

SO Ix) = [1 + (t/a (x)) 6 ] -1 	 (6.6.2) 

is both a PO and an accelerated failure time (AVE) model. Show that any 
regression model that is in both the PO and AFT families must be of the 
form (6.6.2). 

(Section 6.1; Bennett 19830; Lawless 1986) 

6.4 Derive the.results (6,321) and (6.3.22) concerning the mean lifetime of left 
truncated normal and logistic random variables. 

(Section 6.2.2) 

6.5 Concavity of the log-likelihood for location-scale models. Consider the log-
likelihood function (6.3.2) for a location-scale model with u .(x; p) gx and 
right-censored data. Rewrite the log-likelihood as C(7, 0), where the parame-
ters y and çb are defined as 
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Note that zt = [yi — frxi]/b = 0yi — y'xi is linear in 0 and y. It then 
follows from results on convex functions (Rockafellar 1970) that f(.y, 0) is 
always concave with respect to y and 0 if log fo(z) and log S0(z) are concave 
with respect to z. 
• a) Prove that if log fo(z) is concave, that is, d2  log fa(z)/dz 2  < 0 for all z ,  

then log Sa(z) is also concave. 
(b) Show for the standard extreme value, normal, and logistic p.d.f.'s that 

log ,fn(z) is concave. This implies that e(y, 0) is concave for these models 
and that if the m.l.e. eb) exists it is unique. 

Burridge (1981) shows that these results hold more generally for interval cen-
sored y's. 

(Section 6.3; Burridge 1981) 

6.6 Nonexistence of the mix. for a regression coefficient. With location-scale mod-
els and censored data as in Problem 6.5, it is possible for some components 
Of the m.l.e.'s j§ or ,f)% to be at +co or —co. That is, the log-likelihood is 
strictly increasing in some direction, so there does not exist a maximum at 
any finite i3 or To illustrate; suppose that Y is extreme value with  li = 1 and 
t (x ; 0) = po  fix, where x takes only values 0 and 1. The log-likelihood 
(63,2) in terms of ti = exp(yi) and censoring indicators Bi is then (with 
r =  E S,) 

e (So, Pi) = — r)5o — E 8ixt — 

Show that if E Bixi = 0 (and not all,xi are 0), then niapi > 0 for all finite 
(fin, p i ). Thus, the m.l.e.141 does not exist, 

Silvapulle and Burridge (1986) provide general conditions for the nonexistence 
of /.3 in location-scale models, as well as other models. 

(Section 6.3) 

6.7 For the location-scale regression model (6.1.3).with u(x) = I3'x, prove that the 
m.l.e.'s I) and 6 from a complete random sample (yilxi), i = 1, . , n satisfy 
the equivariance conditions (E7) of Appendix E, Show that the least-square . 

 estimator of /3 and the corresponding residual mean square estimator of b are 
also equivariant. 

(Section 6.3; Appendix E) 

6.8 Exact inference for exponential regression models. Consider the exponential 
regression model where S(tlx) depends on a scalar covariate and is of the form 
(6.I.1), with (1 = 1 and a (x) = exp(80 -I- fix). Note that this corresponds 
to an extreme value location-scale model for Y = log T given x, with scale 
parameter b = 1, Let  Bo and  fit be the m.l.e.'s from an uncensored random 
sample (yilX;), i — 1 n  and recall from Problem 6.7 that A) and A are 
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equivariant. Let a = (ai, 	 an),  withai = yi — 	— f3ixt, and define the 
pivotal quantities Zo = 	— flo, Z1 = /31 -  fi.  

Use (E9) of Appendix E to show that, given a, the density function of (Zo, Z1). 
is of the form 

Il 	 fl  

	

g(zo, zi la) = k(a,x,n)exp nzo Eca, + z 	— e zo Ee  . 0--Frixr] 

where —co < zo <  oc,  —co < zi <  cc,  and x = (xi , 	, x„). Thus show that 
the p.d.f. of  Z1, given a, is of the form 

gl(zi la) = (a, x, n)enzli/ (Ecaftzixi 
i=t 

(Section 6,3.1; Lawless 1976) 

6.9 The data in Table 6.8 are from a more comprehensive set given by Krall et al. 
(1975). The problem is to relate survival times for multiple myeloma patients 
to a number of prognostic variables. The data given here show survival times, 
in months, for 65 patients and include measurements on each patient for the 
following five covariates: 

xi Logarithm of a blood urea nitrogen measurement at diagnosis 
x2 Hemoglobin measurement at diagnosis 
X3 Age at diagnosis 
X4 Sex: 0, male; 1, female 
X5 Serum calcitim measurement at diagnosis 

Asterisks denote censoring time's. 

Examine the relationship of these variables to survival time by fitting Weibtill 
regression models of the form (6.1.1) with ce(x) = exp(P'x). Assess the fit  of 
the models on which you choose to base your conclusions. 

(Section 6.3; Lawless and Singhal 1978) 

6.10 McCool (1980) gives the failure times for hardened steel specimens in a rolling 
contact fatigue test shown in Table 6.9; 10 independent observations were taken 
at each of fourvalues of contact stress. 

(a) Engineering background suggests that at stress level s failure time should 
have approximately a Weibull distribution with a scale parameter ci related 
to s by a power law relationship a =  cri'  and with a shape parameter 
that is independent  oi s.  Assess this model graphically and by a formal test 
of it against the alternative that failure times at the ith stress level have 

Weibull distribution with parameters at and 6 (i = 1, 2, 3, 4). Are you 
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TMle 6.8. Survival Times and Covariates for Multiple Myeloma Patients 

X1 	X2 	X3 	X4 	X3 	I 	X1 	X2 	X3 	X4 	X3 

	

I 	2.218 	9.4 	67 	0 	10 	26 	1.230 	11.2 	49 	1 	11 

	

1 	1,940 	12.0 	38 	0 	18 	32 	1.322 	10.6 	46 	0 	9 

	

2 	1.519 	9.8 	81 	0 	15 	35 	1.114 	7.0 	48 	0 	10 

	

2 	1.748 	11,3 	75 	0 	12 	37 	1,602 	11.0 	63 	0 	9 

	

2 	1.301 	5.1 	57 	0 	9 	41 	1.000 	10.2 	69 	0 	10 

	

3 	1.544 	6.7 	46 	1 	10 	42 	1.146 	5.0 	70 	1 	9 

	

5 	2.236 	10.1 	50 	1 	9 	51 	1.568 	7.7 	74 	0 	13 

	

5 	1.681 	6.5 	74 	0 	9 	52 	1.000 	10.1 	60 	1 	10 

	

6 	1.362 	9.0 	77 	0 	8 	54 	1.255 	9.0 	49 	0 	10 

	

6 	2.114 	10.2 	70 	1 	8 	58 	1.204 	12.1 	42 	1 	10 

	

6 	1.114 	9.7 	60 	0 	10 	66 	1.447 	6.6 	59 	0 	9 

	

6 	1.415 	10.4 	67 	1 	8 	67 	1.322 	12.8 	52 	0 	10 

	

7 	1.978 	9.5 	48 	0 	10 	88 	1.176 	10.6 	47 	1 	9 

	

7 	1.041 	5.1 	61 	I 	10 	89 	1.322. 	14.0 	63 	0 	9 

	

7 	1.176 	11.4 	53 	1 	13 	92 	1.431 	11.0 	58 	1 	11 

	

9 	1.724 	8.2 	55 	0 	12 	4 	1.945 	10.2 	59 	0 	10 

	

11 	1.114 	14.0 	61 	0 	10 	4* 	1.924 	10.0 	49 	1 	13 

	

11 	1.230 	12.0 	43 	0 	9 	7* 	1.114 	12,4 	48 	1 	10 

	

11 	1.301 	13.2 	65 	0 	10 	7' 	1.532 ; 	10.2 	81 	0 	11 

	

11 	1.508 	7.5 	70 	0 	12 	8* 	1.079 	9.9 	57 	1 	8 

	

II 	1.079 	9.6 	51 	1 	9 	1 2 	1,146 	11.6 	46 	1 	7 

	

13 	.778 	5.5 	60 	1 	10 	11* 	1.613 	14.0 	60 	0 	9 

	

14 	1.398 	14.6 	66 	0 	10 	12* 	1,398 	8.8 	66 	1 	9 

	

15 	1.602 	10,6 	70 	0 	11 	13' 	1.663 	4.9 	71 	1 	9 

	

16 	1.342 	9.0 	48 	0 	10 	16' 	1.146 	13.0 	55 	0 	9 

	

16 	1.322 	8,8 	62 	1 	10 	19* 	1.322 	13.0 	59 	1 	10 

	

17 	1.230 	10.0 	53 	0 	9 	19* 	1.322 	10.8 	69 	1 	10 

	

17 	1.591 	11.2 	68 	0 	10 	28* 	1.230 	7.3 	82 	1 	9 

	

18 	1.447 	7.5 	65 	1 	8 	41* 	1.756 	12.8 	72 	0 	9 

	

19 	1.079 	14,4 	51 	0 	15 	53" 	1.114 	12.0 	66 	0 	II  

	

19 	1.255 	7,5 	60 	1 	9 	57' 	1.255 	12.5 	66 	0 	11 

	

24 	1.301 	14.6 	56 	1 	9 	77* 	1,079 	14.0 	60 	0 	12 

	

25 	1.000 	12.4 	67 	0 	10 

Table 6.9. Failure Times for Steel Specimens at Four Stress Levels 

Stress (psi ÷106 ) 	 Ordered Failure Times 

	

.87 	 1.67, 2.20, 2.51, 3.00, 2.90, 4,70, 7,53, 14.70, 27.8, 37.4 

	

.99 	 .80, 1.00, 1.37, 2.25, 2.95, 3.70, 6.07, 6.65, 7.05, 7.37 

	

1.09 	 .012, .18, .20, .24, .26, .32, .32, .42, .44, .88 

	

,18 	 .073-098, .117, .135, .175, .262, .270_350, .386, .456 
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Table 6.10, Failure Times for Epoxy Insulation Specimens at Three Voltage Levels 

Voltage (kV) 	 Failure Times (min) 

	

52.5 	 4690, 740, 1010, 1190, 2450, 1390, 350, 6095, 3000, 1458, 6200*, 
550, 1690, 745, 1225, 1480, 245, 600, 246, 1805 

	

55.0 	 258, 114, 312, 772, 498, 162, 444, 1464, 132, 1740*, 1266, 300, 
2440*, 520, 1240, 2600*, 222, 144, 745, 396 

	

57.5 	 510, 1000% 252, 408, 528, 690, 900*, 714, 348, 546, 174, 696, 
294, 234, 288, 444, 390, 168, 558, 288 

Note: Censored observations are indicated by asterisks. 

satisfied that 5 can be considered the same for all four stresses? Are you 
satisfied with the assumption of a Weibull model? 

(b) Fit a log-logistic distribution (6.6.2) to the data, with a = csP and cl  
constant. Compare the fit and conclusions under this model with those in 
part (a). 

(Section 6.3; McCool 1980) 

6.11 Stone (1978) reports an experiment in which specimens of solid epoxy 
electrical-insulation were studied in an accelerated voltage life test. In all. 20 
specimens were tested at each of three voltage levels: 52,5, 55.0, and 57.5 kV. 
Failure times, in minutes, for the insulation specimens are given in Table 6.10. 
(a) Examine whether the data at each voltage level might have arisen from a 

Weibull distribution. It may be necessary to consider three parameter dis-
tributions, since with the failure process involved here there is an initiation 
period during which failure does not normally occur. In this case, examine 
the possibility that each of the three parameters might depend on voltage. 

(b) Does a Weibull model in which there is a constant threshold and shape 
parameter and a scale parameter related to voltage by a power law rela-
tionship a = cvP appear plausible? 

(Section 6.3.2; Stone 1978) 

6.12 Consider the extreme value regression model (6.1.2) with  u (x) = a ± /3.x. Let 
«, 4, and  b be the m.l.e.'s from a random sample yt, 	y,, corresponding 
to covariate values  XI,..  .,X,,. Obtain the p.d.f. of Z = (a - a)/h, 	= 
(4 -  45)/S, and Z3 = 6/b, given the ancillary statistics ai = (yi - & - fhti)/t2 
from (E9) of Appendix E. Show that zi can be integrated out of this density, to 
give the p.d.f. of Z2 and Z3, given a, as 

it n 

 ai 	
n 

k(a, x)z3 	(-2  exp z3 E 	E 6.'11431-Xi Z2Z3  ' - 00 G z2 < co, z3 > O. 
i=1  

Note that double numerical integration is required to evaluate probabilities for 
or Z3. 

(Section 
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6.13 Efficiency of least-square estimation. Consider the linear location-scale regres-
sion model in the form (6.3.25), and assume that the covariates xi xp ....1 
are centered as in (63.26). Let h, f3, denote the m.l.e.'s based on an uncen-
sored random sample from (6.3.25), and  let floe 13  denote the least-square esti-
mators of po  and /3, given by (6.3.27). 
(a) Derive (6.3.29) and thus prove (6.3.32). 
(b) Calculate A z in .(6.3.29) for the cases (i) where Z has an extreme value 

distribution with mean 0, that is, with p.d.f. 

expRz — y) — exp(z — y)], 	-00 < Z < CO, 

Where y = .5772 is Euler's constant, and (Li) where Z has a standard 
logistic distribution with p.d.f. exp(z)/[1 exp(z)1 2 . Thus show that when 
Z  in (6.3.25) has an extreme value distribution the. efficiency (6.3.32) is 
.61, and that when Z has a logistic distribution it is .91. 

(c) Outline how you &mild extend your investigation to estimation of the scale 
pararneter b and intercept Op; assume that with least-squares you will use 
the estimator of o2  = Var(Zi) given by 

= 1 	" 
E(Y1 — fit) — .1"3'xi) 2  

(Section 6.3.4; Cox and Hinkley 1968) 

6.14 The data in Table 6.11 show the lifetimes (in km) of front disk brake pads on a 
randomly selected set of 40 cars (same model) that were monitored by a dealer 
netWork. Three factors are shown for each car: 

Model Year 
Driving Conditions 

Geographic region 

1 or 2 
A = predominantly city, 
B = predominantly highway, 
C = mixed 
N Northern, 
S = Southern 

Assess whether any of the factors appear related to lifetime. Provide a predic-
tive model for brake-pad lifetime. Give a confidence interval for the median 
lifetime on a car used for mixed city and highway driving, taking the model 
year and region into account only if you feel it necessary. 

(Section 6.3) 

6.15 Table 6.12 shows the design for a multifactor experiment to improve the life-
times of fluorescent lamps ('Paguchi 1987). There are five two-level factors A, 
B, C, D, E, whose effects on lifetime are to be investigated. The proposed 
design is a 25-2  fractional factorial with defining relations D = AC, E = BC 
(see Box et al. 1978). The experiment was replicated twice, so there are 16 runs. 
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'Bible 6.11. Lifetimes of Disk Brake Pads on 40 Cars 

Pad Life 
(1,000 km) 

Car 
Year GR DC 

Pad Life 
(1,000 km) 

Car 
Year GR DC 

86.2 1 S C 48.8 2 S C 
45.1 1 N C 81.7* 2 S C 
52.1 1 N C 61.5 2 N C 
54.2 1 S C 53.6 2 N C 
59.0 1 S C 50.7* 2 S C 
38.4 1 N C 42.8* 2 S C 
41.0* 1 S C 102.5*  2 S C 
56.4 1 S C 42.7 2 N B 
81.3* 1 S B 80.6 2 N B 
614 1 N B 64.5 2 S B 
45.5 1 N B 73.1* 2 S 	13 
36.7 1 S B 28.4 2 S B 
42.2* 1 S B 46.9 2 N A 
51.6 1 S A 45.9 2 S A 
34.4 1 S A 33.8 2 S A 
22.7 1 5 A 59.8* 2 S A 
22.6 1 N •A 31.7 2 S A 
40.0 1 S A 33.9 2 S A 
38.8 I S A 50.6 2 S A 
50.2 I S A 56.7 2 N A 

Note: Censored observations are indicated by asterisks. 

Table 6.12. Design and Lifetimes for Fluorescent Lamp 
Experiment 

A  B 
Factor 

C D  E Lifetime 

I 1 1 1 I (14,16) (20,co) 
I. 1 2 2 2 (18,20) (20,co) 
1 2 1 I 2 (8,10) (10,12) 
1 2 2 2 1 (18 4 20) (20,00 ) 
2 1 1 2 1 (20,  oc)  (20, co) 
2 1 2 1 2  (12,14) (20,00) 
2 2 I 2 2 (16,18) (20,co) 
2 2 2 1 I (12,14) (14,16) 

The lamp lifetimes were interval censored; they are also shown in Table 6.12 
and are examined further in Problem 6.18. 

Discuss what factor effects or contrasts can be examined in this study. 
•• (Section  6.3.5, Hamada 1995) 

6.16 The S-Plus software system includes some data on the times (in months) to 
recurrences of bladder cancer in 85 patients; the data set is contained in the 
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data frame bladder. Some individuals actually experienced several recurrences 
over the period of the study, but consider here only the time to first recurrence. 
Covariates included in the data are 

rx: Treatment group (1 = Placebo, 2 = Drug Thiotepa) 

number: The number of tumors present at the initial diagnosis of cancer 

size; The size of the largest initial tumor 

(a) Investigate the relationship of these covariates to the time to the first recur-
rence, using the AFT models of Section 6.3. Assess the fit of the models 
used. 

(b) Repeat the analysis using a proportional hazards model with piecewise-
constant baseline hazard, as in Example 6.5.1. Use models with three to 
five pieces. 

(Sections 6,1-6.5; Wei et al. 1989) 

6.17 Consider the fluorescent lamp experiment of Problem 6.15. The purpose of the 
study was to determine a combination of factor levels (i.e., levels 1 or 2 for 
each of factors A—E) that would maximize lifetime. 

Engineering background suggested that the main effects of factors A—E and the 
AB interaction might be important. 

a. Use a combination of plots and the AFT models of Section 6.3 to assess 
the factor effects. Comment on the precision with which the effects are 
estimated. 

b. Make recommendations concerning the choice of levels for factors A—E in 
order to maximize median lifetime. 

(Section 6.3; Hamada 1995; Wu and Hamada 1999) 

6.18 Consider the data set of Problem 6.9. Fit a log-Burr model (6.4.5) and deter-
mine plausible values for the shape parameter, k. Does the  evidence  about 
which covariates are important vary much with k? 

(Section 6.4) 

6.19 A factorial carcinogenicity experiment. The data in Table 6.13 are from a 
nine-month study on the effect of known carcinogens DES and DMBA in the 
induction of mammary tumors in female rats (Shellabarger et al. 1980). The 
experimental animals were allocated to four treatment groups: Control (no 
carcinogen), DES only, DMBA only, and DES and DMBA. After treatment, 
the times to tumor appearance for the animals were noted; they are given in 
Table 6.13. All of the response times in the control group, and some in the 
other treatment groups, are censored. 

Carry out an analysis of these data with a view to comparing the effects of 
the carcinogens on the time to tumor distribution. It is of special interest to 
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Table 6.13. Times to Mammary Tumor Appearance on Censoring 

Control DES only DMBA only DES and DMBA 

112* 
266*(19) 

64° 
88 

107 
129(4) 
163(2) 
191*(2) 
192* 
200* 
210*(2) 
21 7(3) 

218* 
224* 
231*(2) 
238* 
238 
256* 
263* 
266*(2) 
266 

94 
101 
113* 
120* 
163 
169* 
170 
184* 
190 

192*(3) 
214* 
224 
229 
235 
252* 
260* 
•266*(13) 
266(2)  

57* 
67' 
88 
94 

100 
107 
113 

 123(2) 
1 25 

129(3) 
136(2) 
143 
144 

•191(2) 
192 
21 1  
218  
266*(2) 

Note: Censored observations are indicated by asterisks: multiplicities are in parentheses. 

ascertain whether there is an interaction, or synergistic effect, between DES 
and DMBA. 

(Sections 6.1-6.4; Machado and Bailey 1985) 

6.20 Collapsible time-scale models. Let x(t) be a vector of external time-varying 
covariates associated with the lifetime variable T. A collapsible model (Oakes 
1995) is one for which 

Pr(T > xIX) 	Soft,x(t)l, 	 (6.6.3) 

where X = (x(t),t > 0). That is, the probability that lifetime exceeds t 
depends only on the covariate values at t, and not prior values. For the case 
of a single covariate x(t), several authors  have considered linear time scale 
models for Which 

	

So[t, x(t)] = G[aot + x(t)i, 	 (6.6.4) 

where G is a survivor function that may involve additional parameters p. 
(a) Show that a time transformation model (6,4.17) is not in general express-

ible in the form (6.6.3). Give an example in which it is. (Note: x(t) in 
(6.6.3) could be defined as a function of the x(t) process in (6.4.  17).) 

(b) Investigate maximum likelihood estimation for the model (6.6.4) in the 
case where either failure or censoring times are observed for n independent 
individuals. What information is needed to obtain the likelihood function? 

(Sections 6.4.3, 6.5; Duchesne and Lawless 2000) 





CHAPTER 7 

Semiparametric Multiplicative 
Hazards Regression Models 

7.1 METHODS FOR CONTINUOUS MULTIPLICATIVE 
HAZARDS MODELS 

Models in which covariates have a multiplicative effect on the hazard function play 
a prominent role in the analysis of lifetime data. Proportional hazards (PH) models 
were described in Section 6.1 and some parametric versions were considered in Sec-
tion 6.5. The present chapter deals with semipararnetric PH models in which 50 (t)  in 
(6.1.7) or ho (t) in (6.1.6) is left arbitrary. Extensions to (6.1.6) are also considered, 
in which the multiplicative form is retained but the PH property is not; we refer to 
such models generally as multiplicative or log-additive hazard models. 

Let T be a continuous lifetime variable and xap x 1 vector of fixed covariates. 
We will consider the PH model (6.1.6) in the case where r (x; p) = exp(fi /x), so that 
the hazard function for T given x takes the form 

h(t Ix) = ho(t) exp(pix), 	 (7.1.1) 

with Pap x 1 vector of regression coefficients. The procedures in this chapter can 
be applied to models With other forms for r (x; p) with obvious modification, but the 
exponential form is convenient and flexible enough for Many purposes. Later. (7.1.1) 
will be extended to allow x to be time-Varying, but we assume for now that it is 
fixed. Finally, it should be noted that with the semiparametri'c PH model (7.1.1)- no 
intercept term is included  in /3/x, because it is subsumed in  ho(t). 

The methods in this chapter are distributitni-free in the sense that their validity 
and certain properties do. not depend on the true form  of ho(t), provided the mtil-
tiplicative form (7.1.1) is correct. However, the form (7.1.1) is a strong assumption .  
and requires careful checking in applications. The remainder of this section deals 
with inference procedures for the model and with methods of model assessment; 
examples are given in Section 7.2. Subsequent sections consider grouped or discrete 
lifetimes, and incomplete data. 

341 
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The model (7.1.1) has two components, p and IWO. Equivalently one can con-
sider the baseline cumulative hazard function Ho (t) =f13  h o (u) du or survivor func-
tion So(t) = expr—Ho(1)) in place of ho(t). The survivor function for T given x is 
then 

(7.1.2) su ix) = [so (o]pqrx) 

Given a censored random sample of lifetimes  (te, 8e), i =  1,...,  n, and correspond-
ing covariate vectors xi, we want to estimate p and So(t). Cox (1972a) introduced 
an ingenious way of estimating p without having to consider 50(t) explicitly; this 
is now known as the partial likelihood method. Because of its great simplicity and 
usefulness, methodology related to this approach will be described first, and the esti-
mation of Ho(t) and So(t) after that. 

7.1.1 Estimation and Tests for p 

Suppose that a censored random sample (re, Se),  i —  1, 	n  yields k distinct 
observed lifetimes t(I) < 	< to,.) and n — k censoring times. Let Ri = RO (I))  
denote the set of  individuals who are alive and uncensored just prior to time t(); this 
is referred to  as t e rfi—MiTe-tice it consists of thosFindiViduals who could 
be observed to die at t(e), given what has occurred up to that  time. Cox (1972a) sug-
gested the follOwing likelihood function for estimating p in (7.1.1): 

L(P) =  J•   

i=1 	teRt 
(7.1.3) 

where x(i) is the covariate associated with the individual observed to die at t(). The 
motivation for (7.1.3) was that given R (t) and that a death occurs at t, the probability 
it is individual i E 17(t) who dies is 

h(tixe)  

E h(titte) 	E ew.c 
W (s ) 	 eeR(1) 

directly from (7.1.1). However, as presented (7.1.3) is not .a likelihood in the usual 
sense, since it does not arise from the probability of some observable outcome (see 
Appendix C). It turns out that L(13) can be treated as an ordinary likelihood, though: 
maximization of (7.1.3) yields an estimator it which is consistent and asymptoti-
cally normal under suitable conditions, and score, information, and likelihood ratio 
statistics based on L(13) behave as though it is an ordinary likelihood. 

Formal justification of L(p) will be taken up in Section .7,1.3. For now its validity 
is assumed, and likelihood inference procedures based on it will be considered. In 
doing this it is convenient to rewrite (7.1.3) in a slightly different form. For individual 
i, define as in Section 2.2.2 

(t) = I (te > t) 	i — 1 	 (7.1.4) 
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Then Yi (t) = 1 if and only if t E R(t), and (7.1.3) can be rewritten as 

L(13) = 	
eP'xi 	) 

1=1 	

81 

(EL1 re (ti )eP'xe  

Note that (7.1.5) is also defined when ties in lifetimes occur, that is, when two or more 
individuals (with bi = 1) have the same observed lifetime. Additional discussion of 
ties is provided in Section 7.1.3, but for now we assume they are  accommodated 
under (7.1.5). 

The log-likelihood function from (7.1.5) is 

e(13) = E Si[p'xi — log ( E ye 0.,,,o)] 
e=1 

(7.1,6) 

	

The score vector U(P) = (8e/a13 1 , 	, &two and information matrix take 
simple forms. Define for any t > 0 the p x 1 vector 

Ent—i 	Ye (t)xeeP ix e  
13) — 	 (7.1.7) 

Et=i Ye (t)e /Yxe  

which is a weighted average of the covariate vectors of individuals at risk at time t. 
Then it is easily seen that 

U(13) = E 8r [xi — g(ti P)]. 	 (7.1.8) 
1.1 

In addition, the p x p information matrix 1(p). —8 2 e/a pa (3' is easily seen to be 

I( 	61 
E2_, Ye  (4)eP'xe 	— Fc(ii  , p))[xe — g(ti , 	1 . 	(7 .1.9) A) = ELI Ye (ii)e"' r=i 

The maximum likelihood equations U(p) = 0 are easily solved by Newton-
Raphson iteration (see Appendix D) or other methods. Numerous software packages 
give the maximum likelihood estimate (m.l.e.) P and standard errors, tests, or confi-
dence intervals based on the standard asymptotic normal approximation 

Inferences can also be based on likelihood ratio statistics such as A(j3) =  2e(P) — 
2e( 3), or on the score statistic, just as described for ordinary likelihOods in Appen-
dix C. Score procedures lead to especially simple tests for comparing distributions. 
We consider this topic next since it also provides a simple illustration of inference 
under the PH model. The validity and properties of L(13) will then be considered in 
Section 7.13. 

(7.1.5) 
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7.1.2 Comparison of Two or More Lifetime Distributions 

Regression models can be used for ,comparing or testing the equality of distributions. 
The PH model gives distribution-free tests for the equality of distributions that are 
effectiVe at detecting differences when the distributions in question have roughly pro-
portional hazard functions. Consider to start twc; distributions,  and a test of equality 
of their survivor functions, 

H Si(t) = S2(t). 

This can be approached through a regression model that includes an indicator covari-
ate x taking on the value 1 or 0 according to whether an individual is associated with 
the first or second distribution: 

x = I (individual' lifetime comes from S1 (t)). 

One then tests H by testing for the absence of a covariate effect. 
If the PH regression model (7.1.2) with Irx = fix is adopted, then S2(t) = So (t) 

and SI (t) = So(t)"P(P) , so that 

	

(t) = S20)"P (fi ) . 	 (7.1.10) 

A test of fi = 0 is a test of the hypothesis H; the alternative hypotheses (7.1.10) with 
fi 0 0 are sometimes referred to as the Lehmann family of alternatives, 

The hypothesis H: p = 0 can be tested by fitting the PH model with survivor 
function 

	

S(t ix) = So (t)"P(flx) 	 (7.1.11) 

and applying standard large-sample procedures based on the m.l.e. fi and its standard 
errbr, or on the likelihood ratio statistic A (fi); these approaches are illustrated later 
in Example 7.1.1, However, the score function u(p). leads to an especially simple 
test that does not require 8.  to be obtained, as we now describe. 

Assume that we have independent censored random samples of lifetimes from 
Si (r) and Sy(t) of sizes N1 and  N2.  For the model (7.1.11) the score function (7.1.8) 
is 

dirtiie09  
U(I3) = 	 (7.1.12) 

rtuefi i=i 

where N = 	+ N2, and we introduce the notation 

= =  I  (ti is a lifetime) 

d11 = 8ixi = 1 (ti is a lifetime from Si (t)) 
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iv 
n1; = E Y.I (toxe = number at risk from Si (t) at time it 

1.1 

nv = E Ye(ti )0 — xe) = number at risk from S2(t) at time ti. 

The information (7.1.9) is correspondingly 

N 
csinlin2jefl " (8) = 
Ile + n2i 

(7.1.13) 

Confidence intervals or tests for p can be obtained from the approximate pivotal 
quantity 

	

Z(I3) = LI (8 )/1 (9) 1/2 . 
	 (7.1.14) 

As described in Appendix C, this has an asymptotic standard normal distribution 
when /3 is the true Value of the parameter. 

The approximate pivotal Z(0) provides a very simple test of the hypothesis 
H: p= 0, and hence of SI (t) = S2(t). We have from (7.1.12) and (7.1.13) that 

d 	 dv  
U(0) =E(dii 	

oi; 
 . 	), 	I (0) = 	

n  n2i E 	2  , 	 (7.1.15) 
1.1 ni 	 1= 	ni 1 

where ni = n + n2i. The test statistic is Z =  U(0)/!(0)'/2 ,  and evidence against 
St (t) = 2(t) is provided by large values of I Z I or Z 2 . 

Several points can be made about this test. First, we can think of the terms in U(0) 
as being of the form "observed number minus expected number of failures at t; that 
are from SCOT." '10 see this note that only times traF'wEib- h—a–fallure occurs (i.e., 

--= 1)  contribute to U(0) and 1(0), and that if si (ty= 52(t), then the conditional 
expectation Of di h given di = 1 and the numbers nil, nv at risk, is din]; / ni, This 
shows directly that E[U(0)] = 0 under H:13 = O. A second point is that if ties 
can occur among the observed lifetimes, then (7.1.12)–(7.1.15) still apply. Finally, 
equivalent expressions are given by redefining the t; as the distinct times at which 
failures occur across all n individuals, and di and di; as the total number of failures 
at th and the number of these failures from S1 (t), respectively. 

Tied failure times are impossible under continuous lifetime distributions, but 
occur frequently in data sets because actual measurements are discrete. When there 
are substantial number's of ties, it may be preferable to switch to a discrete model. 
This is discussed in Section 7.3, where a model is given that leads to the score statis-
tic U(0) in (7.1.15) for testing St (t) = S(t), but with the information 1(0) replaced 
by 

k oz, — (0,02 . 

	

/, (0) = E 	. 

	

1. 1 	q(ni — 1) 
(7.1.16) 
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In (7.1.16), i indexes the k distinct times at which failures occur, and di is the total 
number of failures at the ith time to). 

There is a close connection between the two-sample test given here and two-
sample rank tests discussed in Section 8.1. In particular, the test here is a generaliza-
tion to censored data of a rank test proposed by Savage (1956), and because of this, 
it is often referred to as the log rank test. Many software packages include this test. 

Example 7.1.1. The data below show remission times, in weeks, for 40 leukemia 
patients randomly assigned to two treatments A and B. Asterisks denote censoring 
times, 

Treatment A 

Treatment B 

I , 3, 3, 6, 7, 7, 10, 12, 
29, 34, 40, 48*, 49* 
1, 1, 2, 2, 3, 4, 5, 8, 8, 
38*, 44 

14, 15, 18, 19, 22, 26, 28*, 

9, 11 , 12, 14, r6, 18, 21, 27*, 31, 

Plots of Kaplan-Meier or Nelson-Aalen estimates for the two groups suggest that a 
proportionality assumption is reasonable for the two hazard functions. Let us there-
fore use ,(7.I .15) to test that the remission time distributions are the same for patients 
on the two treatments. 

The statistics U(0) and 1(0) in (7.1.15) are easily computed from the preceding 
raw data, or are available from software packages. We find U(0) = -3.323 and 
I (0) = 8.409, giving the test statistic Z(0) 2  = U(0)2,// (0) = 1.31. The approxi-
mate x(i)  distribution of Z(0) 2  under the hypothesis gives the p-value .25, so there 
is no evidence of a difference in distributions. 

There are several ties in the data, and one might use (7.1.16) in place of  1 (0); this 
gives 8.196 and Z(0) 2  = 1.35, very close to the  previous value, The test could also 
be carried out by fitting the PH model (7,1.10) and  using either the Wald statistic 
Z 2  = Ise(j3) 2  or the likelihood ratio statistic A = 2E03) - 2 (0), We find here 
that /3.  = -.388, se(A) = I (A) -112  = .341, e($) = -103.30, and t(0) = -103,95. 
Thesè give Z2  = 1.30 and A = 1.30. All four tests give essentially identical results. 

Tests of the equality of three or more lifetime distributions are also readily 
obtained. To compare in distributions Si (t) 	 S,(t) we define a vector  of  ,n - 1 
indicator covariates, x = (xi , 	, x„,_1)', where 

Xr = I (individual's lifetime is from  Sr  (t)), 	- 1 	nt -  I.  

If a PH model (7,1.2) is assumed, then S,, (t) = So(t) and 

Sr  (t) = So(t) ex P( fir )  , 	r = 1 ..... 	-1. 	(7.1.17)  

The hypothesis H:  S1 (t) = 	= S„,(1) is equivalent to H:  13 = 0, where 13 = 
(/31, 	, /3„,_j); a test of 13 = 0 will be effective at detecting differences among 
survivor functions that are roughly of the form (7.1,17). 
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A score test of p = 0 is very simple, as in the two-sample case. Assume that 
there are independent censored random samples of lifetimes from SI (r) 	 Sin (I) 
of sizes Ni 	Nm  Let N = N1 + • • • + N,„ be the size of the combined sample, 
which has observations (ti, 3t, xi), with xi = 	.. • , xi,m— )', and 

xi r  = I (individual 's lifetime is from Sr  (t)). 

Define for r = 1, 	, m — I 

= bixir  = I (ti is a lifetime from Sr (t)) 

ti r!  = E Ye(ti)xe r  = number at risk from Sr  (t) at time 

and similarly define dm i and nm i as the numbers of deaths and individuals at risk 
from distribution Sm (t). Also let di = E dri, ni 7= E nri. The elements in the score 
vector (7.1.8) and information matrix (7.1.9) when p = 0 can then be written as 

N 
Ur (0) = E (dri — ) dinri 

i=i ni 

N dinri 
Irs (0) = E — (8rs — —nsi) ni 	ni i=i 

	

r = 1, 	 (7.1.18) 

	

r, s = 1, 	 (7,1.19) 

where 15, = I (r = s). 
Under the hypothesis H: p = 0, U(0) = [U1(0), • • • , Um - 1 (0)Y is asymptotically 

normal with mean 0 and covariance matrix I (0) 4  by the results in Appendix C. A test 
of H can be based on the statistic 

W  =u(o)/1 (0) —I U(0). 	 (7.1.20) 

Large values of W provide evidence against the equality of the ni  distributions; under 
if the distribution of W is approximately 4_1)  for large samples, and p-values can 
be based on this. 

When m = 2, this test is the same as that based on (7.1.15) and Z2  =  U(0) 2 /! (0). 
The comments following (7.1.15) apply here as well. In particular, the test can be 
used when there are substantial numbers of ties in the data, but it is advisable to 
replace /rs  (0) in (7.1.19) with 

(ni — di)nri o 	nsi) ,  
ni(ni — 1) 	r3 	ni 

r,s =1,...,m— 1. 	(7.1.21) 

An advantage of tests of distributional equality based on regression models is that 
the regression coefficients fir  provide measures of the differences among distribu- 
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tions. Under (7.1.17) 

H,(1) 	(() _ r = 1, . , 	— 1 	(7.1.22) 

is the ratio of the hazard or cumulative hazard functions for the distribution Sr  (t) 
and the baseline distribution So(t) = S,,, (t). These measures and the test based on 
(7.1.20) are, of course, useful only in so far as the model (7.1.17) on which they 
are based is satisfactory. This can be checked by using probability plots based on 
Kaplan—Meier or Nelson—Aalen estimates for the m distributions, as described in 
Section 62.1. Other tests of distributional equality based on a more general multi-
plicative hazards form are considered in Section 7.1.8. 

7.1.3 Justification and Properties of the Likelihood Function L(p) 

It was noted at the start of Section 7.1 that L(p) in (7.1.3) is not in general an 
ordinary likelihood function, but that under quite mild conditions it can be treated as 
such for inferences about p.. In particular, the estimate P obtained by maximizing 
L(I3) is consistent and in large samples can be treated as approximately p-variate 
normal with mean vector 13  and covariate matrix I (11) -1  . Concomitantly, likelihood 
ratio statistics A (p) based on L(13) can be treated as approximately chi-squared in 
large samples, and score statistics U(p) as approximately normal with mean vector 
0 and covariance matrix 1(13). In this section we outline some frameworks within 
which .L(p) and its properties can be studied. 

7.1.3.1 L(p) as a Marginal Likelihood 
When there is no censoring, (7.1,3) can be derived as a marginal likelihood function 
based on the rank statistic for the data. Specifically, suppose lifetimes j1 . .... t, of n 
individuals with covariates  x,   x„ are observed. The probability density function 
(p.d.f.) of 7) given xi under the PH model (7.1.1) is 

f (1.' 1)0 = h(:)(t)ePfx t exp[—Ho(t)etrxl, 	(7.1.23) 

where 110(t) is the baseline cumulative hazard function. Let r =  [(1),...,  (n)] 
denote the rank statistic for the data; that is, (i) is the label of the individual with 
the ith  smallest lifetime. The possibility of ties is ignored, since they have probabil-
ity 0 under the continuous model. The distribution of r is discrete, with n! possible 
rank vectors. Its probability function is found as 

co f oo 
Pr{r 	[(1) 	 (n)]) = Pr[T(i) < T(2) < 	<T(,,)]  = j:. 11(1).  

f (1(1)1x(1)) • • • f (to)1x0)) dt(,,) • • • dt(I). it(

co  

n — 1) 
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Straightforward integration of this expression using (7.1.23) yields 

Prfr = [(1) • • • (n)]) = 	(e131x0 ) 	E 
1=1 	 feRy(0) 

which is the likelihood function (7.1.3). In obtaining this result, we have used the 
fact that R(t(i)) = [(f), (i +  I),..,,  (n)1, since there is no censoring. 

In the simple noncensored case, therefore, (7.1.3) is a legitimate likelihood func-
tion arising from the probability distribution of the rank statistic, Under suitable 
assumptions concerning the xi such as those given in Hajek and Sidak (1967), L(I3) 
behaves in the usual way, with i3 being asymptotically normally distributed with 
mean p and covariance matrix , where I has entries Z., = E(—d 2  log Liapr )p,). 
2" is consistently estimated by I(A) as given by (7.1.9). It can be noted that L(p) is 
a marginal likelihood in the sense of Fraser (1968) or Kalbfleisch and Sprott ( 1970). 

If the data are subject to Type 2 censoring, an extension of the preceding argu-
ment shows that L(0) is once again a legitimate marginal likelihood function based 
on a rank statistic. For more general types of censoring the argument breaks down, 
however. In general the rank statistic is in fact unknown, because censoring makes it 
impossible to know the exact ordering of the actual lifetimes. 

7.1.3.2 L(I3) as a Partial Likelihood 
Cox (1975) introduced the concept of partial likelihood and used it to obtain (7.1.3) 
and study its properties. Partial likelihoods are described in Appendix C. They are 
based on factoring a likelihood function via the multiplication rule for probabili-
ties, and then discarding certain pieces that involve nuisance parameters. To develop 
(7.1.3) this way we return to the notation used in Sections 2.2.2 and 3.2.4, which 
describes the dynamic evolution of lifetime data. 

As in Section 2.2.2, discretize time into short intervals [t,  t + At) and consider a 
random sample of n individuals with discrete hazard functions h(tixi), i = I , 
Let (ti, 	i =  1, 	n denote the observed times and status indicators. Define 

dNi(t) = 1(7'j E [t, t 	At), Si = 1) 

= 1 (ti > t) 

dN .(t) = E dNi(t), 

and let dN(t) = [dNi(t), 	, dNn (t)]. Denote the history of failure and censoring 
that has occurred over (0, t) as 'H(t). Following the arguments in Section 2.2.2 and 
assuming that the censoring process follows the independence requirements there, 
we have, analogous to (2.2.9), that 

L = 	Pr[dN(t)N(t)] 	 (7.1.24) 
1=0 
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provides a partial likelihood for estimation of the parameters specifying h(t Ix). We 
think of (7.1.24) as a discrete product across all times :  defining the intervals [t, t 
At) that partition the time axis. 

Suppose now that the hazard function h(t Ix) is of the PH form (7.1,1), and factor 
the terms in (7.1.24) as 

	

Pr[dN(t)IdN .(t),7-((t)]Pr[dIV ,(t)17-1(1)]. 
	 (7.1.25) 

Keeping only the first of these two probabilities yields another partial likelihood that 
to order At depends only on 13 and not on ho(t), To see this note that for At suf-
ficiently small any interval contains either 0 or 1 failure with probability approach-
ing 1. If dN.(t) = 0, then the first term in (7.1.25) is null, but if dN.(t) = 1, then 
dNr(t) = 1 for some individual i. This gives the conditional probability 

Pr[dNi(t) = lid N .(t) = 1, 7- (t)) — 	n
Yr(t)11(tlx;),61  

0- - (At) Ef=i  Y(t)h(tx) At  

ep'xi  Y1  (0 

E';= , Y e (t)eP'xf 

The partial likelihood 

oo 
L = 	Pr[dN(t)I dN .(1),H(t)] 

	
(7.1:26) 

r=o 

therefore gives exactly (7.1.5) in the limit as the At's approach O. 

7.1.3.3 1.(13) as a Profile Likelihood 
The full likelihood function based on (7.1.24) is the standard censored data likelihood 
function (2.2.14). Under thé PH model with hazard and survivor functions (7.1.1) and 
(7,1.2), this becomes 

Li (9, Ho) = n[hatOeP''11161somexp(P'xi). 	(7.1.27) 
i=1 

The Ho in  L (13, Ho) stands for the unknown baseline emulative hazard function 
Ho (t), We write Li (13, Ho) rather than  L1(8,  ho) because it is simpler to work with 
Ho in a maximum likelihood approach. Nonparametric maximum likelihood estima-
tion of a cumulative hazard or survivor function Was dismissed in Section 3.2. This 
can be extended to deal with the semiparametric PH model ;  in which case we seek to 
maximize L1  (p, Ho) jointly for /3 and Ho. This is considered in Section 7,4, where it 
is shown that the likelihood (7,1.3) equals a profile.likelihood function L(13, flo(13)), 
where 17/0(13) is a nonparametric m.l.e. of Ho with /3 given: 

7.1.3.4 Properties of L(f3) 
Properties of (7,1.3), the estimator 13.  that maximizes it, and associated quantities can 
be studied using results from martingale theory (see Appendix F). With the counting 
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process notation  N, (t)  = I (4 < t,  .81 = 1), the score vector (7.1.8) can be rewritten 
as 

U(g) = t f oe [xi 	p)] d / V I (t). 	 (7 .1.28) 
fr.-.1 

If we define 

d Mi(t) = d NI (t) — 1 );(t)eP''" d Ho(t), 

where dHo(t) = ho(t) dt, then we also find that 

U(/3) = 	f cc [xi — Tc(t, /3)] dMi (t). 	 (7.1.29) 
i=„ 1  o 

To see this latter result, note that 

E
f  

- 51(t, )5)] Yi(t)eP' x' d Ho(t) 
° 

00 	 71 	 11 
= 	

f 
 f E Yr(1)xle" — 5E(t )9) E Y1 (t)e 04 } d Hon 

1=i 

and by (7.1.7) the term inside the curly brackets is. zero. Therefore, although (7.1.29) 
appears to involve Ho(t), it does not. Note also that the equality of (7.1.28) and 
(7.1.29) does not extend to the individual terms for i = 1„ , n. Moreover, the ith 
term in (7.1.29) has expectation 0, but that in (7.1.28) does not. 

The 'terms for the different individuals i =  1,,..,  n in (7.1.29) are not inde-
pendent, but the Mi (t)'s are mean 0 martingales, and the terms in square brackets 
are predictable processes. As indicated in Appendix F, it therefore follows imme-
diately that E[U(p)] = 0, and it is possible to use martingale central limit theory 
to show that n — I/2U(13) is asymptotically p-variate normal. The covariance matrix 
for U(13 ). is given in Problem 7.2, and 1 (0) from (7.1.9) is shown to estimate it. 
The estimator ./.:1 can be shown to be consistent and asymptotically normal, and the 
asymptotic covariance matrices of n — I/2U(p) and n 112 (13  p) are estimated con-
sistently by 1(13)/n  and n 1 (#) -1 , respectively. Finally, the likelihood ratio statistic 
A(13) = 2t(11) --Mg) is asymptotically 4)  when p is the true value of the .param-
eter vector. 

A rigorous development of this area is provied in the books by Andersen et al. 
(1993) and Fleming and Harrington (1991). Further references are given in the Bib-
liographic Notes at the end of the  chapter.  

7.1.4 Adjustments for Tied Lifetimes 

In the preceding discussion it was assumed that if ties occur among the lifetimes, 
then we merely continue to use the likelihood function (7.1.5). If there is a substan- 



352 	SEMIPARAMETRIC MULTIPLICATIVE HAZARDS REGRESSION MODELS 

tial number of ties, the discrete nature of the lifetimes should be considered. Ties 
can occur because the underlying lifetimes are discrete or because of rounding or 
grouping in continuous data. In either case, models that recognize the discrete mea-
surements can be used; this topic is discussed in Section .7.3. If there are only a few 
ties, it is convenient to retain the continuous-time model and use a simple adjustment 
to the likelihood (7.1.5), because the discrete data likelihoods lead to more complex 
procedures; we consider this now. 

Peto (1972) suggested that if  t(i) < 	< t(k) are the distinct lifetimes, and if d 
deaths are observed at some time to), then the times of these deaths are in reality 
distinct, Thus instead of the d terms in (7.1.5) corresponding to the deaths at to), we 
should have 

E ewx4) (erx(2/ E eoe) 

,

f 
eeR 	 teR,Heo 

(eP'. ,d/ 	E 	e13'.t), 	(7.1.30) 

	

teR)—(ei 	 

reflecting the fact that the individuals who died at t(j) did so in some order: first Li,  
then £2,  and So on. We do not know the correct order; hoever, So cannot use (7.1.30). 
Peto and others suggest that it be replaced with its average across the d! permutations 
of the labels for the individuals who died at t(j ). This is computationally forbidding 
When a data set  has many ties; and a  simpler. adjustment suggested by Efron (1977) 
is to weight the terms in the denominators of (7.1.5) as follows: if d deaths occur at 
the time toi, then let  Li,   ed be the  individuals who died at to), and replace the 
product of the d denominators for those individuals  in (7.1.5) with 

d 

FlE 	
d — r,  

d L.4  
r-70 	fERfru)) — (ti.....ed) 	 il  

(7.1.31) 

The motivation for this is that each of the d individuals is in the risk set R (t(J)), 
has probability (d — 1)/d 'of being in the next risk set with the individual dying first 
dropped, and so on. 

If there are relatively few ties, then the use of (7.1.31) and of (7.1.5) as it stands 
give close to the same results, as does the ad hoc approach whereby ties are broken 
by randomly adding small values to certain lifetimes. Our preference is for (7.1.5), 
but some software packages use (7.1.31) as the default procedure. If the number of 
ties is large enough that the two approaches give substantially different estimates, 
then a discrete model as in Section 7.3 can be considered, 

7.1.5 Estimation of Ho(t) or So(t) 

Estimates of Ho (t) and So (t) are generally wanted. For example, an estimate of So(t) 
is needed to estimate S(t Ix) or quantiles for T via (7.1.2). In addition, nonparametric 
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estimates  Ro(t) or go(t) can be examined with a view to parametric modeling. A 
simple intuitive estimate of Ho(t) is 

s,  
flow --= E 

<, { EL, Ye(ti)efrxe} 

This is motivated by the fact that 

(7.1.32) 

E E[eiNe (t )  — Ye(t)e' 'xe d  Ho(t)In(1)]} = 0, 
e=1 

suggesting the conditional moment estimate, with /3 replacing 13: 

do(t) = E dNe(t) /[ e..1 1'¢(t)efrxe]. 	 (7.1.33) 
e=i 

The estimate (7.1.32) equals f(r)  dflo(t). This is often referred to as the Breslow 
or generalized Nelson—Aalen estimate; note that when 1̂3 = 0 (7,1,32) is just the 
Nelson—Aalen estimate (3.2.13), 

A simple way to estimate So (t) is to exploit the relationship So(t) = exp[—Ho(t)j 
and define 

	

go(1) = ezP[—flo(t—)]. 	 (7.1,34) 

When there are no covariates, or 11 = 0, this does not give the Kaplan—Meicr esti-
mate (3.2.2), but another estimate, sometimes referred to as the Fleming—Harrington 
estimate. Both lio(t) and S.o(t) are given by standard software for the PH model. 
Estimates 

	

.(t Ix) = 0(t)P (I3 ") 	 (7.1.35) 

for a specified vector x and value of t can also be obtained. 
Standard errors for 8"(t lx) require the joint asymptotic distribution of !kW and i3. 

This can be obtained via martingale arguments that extend those referred to at the end 
of Section 7,1.3 (e.g., Andersen et al. 1993, pp. 503-506). We note a pair.of useful, 
results, recalling the definition  of  (t, fi) in (7.1.7) and defining 

	

S (°) (t, /3) = E y,(t)eo , 	 (7.1.36) 
i=1 

Then, -AIL (t) — H (0] has a limiting normal distribution with mean 0 and variance 
estimated by n times 

6i  
= E 	+ 

so)(ti, P) 
(7.1.37) 



where 

*(1)  = 	8171(ti, 	

- f 
 77(u, /3) dHo(u). 

s(0) (t i , /3)  
(7,1.38) 
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In addition, 

6; 
fa-r{log[— log :i. (tlx)]} =  1/0(1) -2 1 

s(0)(ti , it)2 

[*(t) — Jo(t)x] /()— [*(t) — Jø(t)x]}  

(7 1.39) 

estimates the asymptotic variance of  log— log 8'01x)]. We give the form (7.1.39), 
since to obtain confidence intervals for S(t ix), it is preferable to treat log[— log ,S"(t lx)] 
as approximately normal rather than 5(1 Ix).  Note that the first terms in (7.1.37) and 
(7.1,39) correspond to the variance if 13 were known; the second terms reflect the 
fact that 13 is estimated by 

7.1.6 Stratification 

Sometimes the basic PH model is not adequate, but a model in which covariates 
affect the hazard function multiplicatively within certain strata may be. In particular, 
suppose that individuals can be assigned to one of f strata, defined in terms of one or 
more factors. Suppose also that for an individual in stratum j with covariate vector 
x the hazard function is 

hi (fix) = h.oj (t)eP'x 	j = 1, 	, J, 	 (7.1.40) 

where hoj(t) is a baseline hazard function. That is, individuals in the same stratum 
have proportional hazard functions, but those in different strata do not. In (7.1,40) it 
is assumed there is no stratum—covariate interaction; in some cases we will want to 
consider the model 

h j (11X) = hoi (t)e' 	J  — 1 	J 	(7,1.41) 

in which the covariate effects vary from stratum to stratum. 
The model (7.1.41) can of course be handled by fitting separate PH models for 

each stratum. The simpler model (7.1.40) can be handled by obtaining a partial 
likelihood  L(l3) of the form (7.1,5) for each stratum, then basing estimation on 
the combined likelihood function L(p) = L i  (/3)L2(13) L (13). Expressions 
for the log-likelihood, score vector, and information matrix in Section 7,1.1 merely 
require summation across strata. Standard PH model software deals with this model. 
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Once /3 in (7.1.40) is estimated, the baseline cumulative hazard functions can be 
estimated by (7.1.32), using for Au (t) only those individuals who are in stratum j. 

7.1.7 Left Truncation and Delayed Entry 

Left truncation occurs when it is a condition on the observation of an individual i 
that their lifetime exceeds some value, ui. This phenomenon was discussed in Sec-
tion 2.4, and it was subsequently shown in Sections 3.2 and 3.5 that nonparametric 
estimation of survivor or cumulative hazard functions easily accommodates left trun-
cation. The same is true for the semiparametric analysis of multiplicative hazards 
models such as (7.1.1). 

The key, as in Section 3.2.1, is to redefine l';(1) when left truncation is present as 

(t) = / (ui < t < 	1=1 	n  

where the observation on individual i now consists of (ui, ti, 8i, xi), with ti either a 
lifetime or right-censoring time, and 8i = I (ti is a lifetime). Provided that the left-
truncation mechanism is independent in the sense described in Section 2.4.1, it then 
can be shown that the Cox likelihood (7.1.5) still applies exactly as given, as does the 
estimate (7.1.32) of 110(r) and all of the procedures described in preceding sections. 
An easy way to see that this is so is to consider the partial likelihood derivation in 
Section 7.1.3, with Yi(r) redefined as earlier, dNi(t) = I (Ti E [1, t 4- At), T, > 
ui, ai = 1), and 7-1 (t) in (7.1.24) defined so it includes the history of entry times 
zu, as well as past failures and censoring. Then, (7.1.25) still holds and the partial 
likelihood (7.1.26) once again gives (7.1.5). 

7.1.8 Time-Varying Covariates 

The methods of analysis described here are mostly unchanged when the model 
(7,1.1) is extended to allow the covariates to be time-varying. For example, (7.1,5) 
is replaced by 

e P'xfoi) 	) 6, 
L(p) n( 	 

1.1 EL, Ye ct,je0) 
(7.1.42) 

and similar adjustments are made to the expressions for the score vector (7,1.8) and 
information matrix (7.1.9). It should be noted that (7.1.42) and proceduees based 
on it require the values of time-varying covariates at the observed lifetime ti, not 
just for individual i,  but  for all individuals at risk at ti, that is, with Ye, (ti) = 1. 
This may sometimes pose a problem; for example, in settings where covariates vary 
randomly over time, it may be possible to record covariate values only intermittently. 
In addition, data storage and computational demands in the evaluation of likelihood, 
score vector, and information matrix values are greater with time-varying covariates. 
Some software packages accept time-varying covariates only if they are piecewise- 
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constant; that is, for any individual i there is a set of times 0 = aio < ati < at2 < 
• • such that 

.Xi(t) =  Xi), 	at,j-1 	t < ajj 	 (7.1.43) 

for  j=  1,2,.... 
Time-varying covariates were discussed briefly in Section 1.4, and in Sec-

tion 6.4.3 for time transform models, When x(t) is external, the expression (1.4.6) 
for survival probabilities applies, giving 

1),(1' > tix) = exp — 	efVx(u)  cif :19(0} 
0 

= 	IX), 	 (7.1,44) 

where X = {x(t), t > 0} stands f6r a specific covariate history. It is possible to 
estimate S(t IX) for a given X by inserting the estimates '0 and 

ROI(t)
8i 

 ) = E „„ 	 (7.1.45) 
 YE(ti)eivxt00 

into (7.1.44). Note that flo(t) Is the obvious generalization of (7.1.32) to the case of 
time-varying covariates. 

Asymptotic variances for tio(t) and for :.'(11.1() can be obtained as direct gener-
alizations of (7.1.37) and (7.1,39), with S (°) (t, p) of (7.1.36) generalized to include 

(t) and Tc(t, 13) of (7,1.7) generalized to 

E2-1 YecoxecoePixeco 
rc(i, fi) — S(0) (t , p) 	• 	' 

For the variance estimate for log{— log &"(t I X)}, we must replace the terms fio(t)x 
in (7.1.39) with 

.codflocio= E 8
ix(4 )  i§) • .:„<, 

When covariates xi (t) are piecewise-constant, as in (7.1.43), it is often conve-
nient for data storage and computation to use as many lines of data  for an individ-
ual as there are covariate values, in conjunction with the delayed entry notation of 
Section 7.1.7. For the jth interval in (7.1.43), therefore, we represent the data as 
(aiu_),  a,, 8, xu);  a._  and au are the beginning and end of the risk interval, Si 
indicates whether individual i failed at au, and xu is the (fixed) covariate vector for 
individual i over the interval. Some software packages require that data involving 
time-varying covariates be set up in this way. It is easily seen that for the method-
ology in this chapter or, indeed, Chapter 6, we can think of an individual's data for 
different time intervals as equivalent to data from separate individuals. 
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Example 7.1.2. Two-Sample Tests. The two-sample tests of Section 1.1.2 are 
based on the proportional hazards model and will lack power to detect distributional 
differences in certain settings. One such case is where the hazard of  survivor func-
tions for the  two distributions cross somewhere near the medians of the distribu-
tions.-Better  tests can often be obtained by considering a multiplicative Model with a 
defined time-varying covariate.. In particular let x be a binary. coveriate that indicates 
which distribution an individual's lifetime comes from, and let g(t) be a specified 
function. Then, instead of (7.1.11), we consider  the multiplicative model 

110 	= ho(t)e", 	 (7•1.46) 

where 

/3 /x(t) = /31x1(t) 	/32x2(t) 

= /31x fizxg(t). 

This stipulates that the hazard ratio for the two distributions is 

= exP[fit 	/32g(t)l, 
h(t10) 

h(111) 

(7.1.47) 

and we can test equality of the two distributions by testing H: p = O. 
The partial likelihood analysis provides simple tests. As in Section 7.1.2, it is 

especially simple to consider score tests, based on the score vector 11(p) at p = o 
for independent random samples of sizes NI, N2 from distributions 1 and 2. For the 
case of time-varying covariates, the score vector (7.1.8) generalizes to 

U(P) = E St[xi(ti) 	p)j, 
i = I 

	

where N = N1 N2. With xi (ti) = 	xi g (Or , this gives 

1 N 

E 8t xi G (10) e--'1  Ye(ti)xe 
(g( 'ti) )  ti)  

U(0) = 
1=1 	 EL 1  Ye(tt) 

and  in the notation of (7.1.15), this becomes 

	

u(o) = E 	— di-an ) 	 , 

ni 	gt.11))' 	
(7.1.48) 

with the convention that xi = I (lifetime.is  from distribution 1). The information 
matrix I (13) generalizing (7.1.9) for time-varying covariates has xt (t) replacing xe 
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and we find that 

N  diniin2i ( 1 	g(tt)) 
1 (0) — E  1 	g (4) 2  ) 

(7.1.49) 

The statistic for testing distributional equality is then 

W = u (0)/ (or (o), 	 (7.1.50) 

which is asymptotically 42)  under the null hypothesis. By a judicious choice of 
the function g (t), we get a test with good power against "crossing" alternatives in 
which the hazard or survivor functions for the two distributions cross. If the two 
distributions happen to have proportional hazards, the test is still valid, but will be 
a little less powerful than the test based on (7.1.15) in Section 7.1.2. Problem 7.4 
considers an application of the statistic (7.1.48). 

7.1.9 Model Checking 

The key assumptions in the PH model are the proportionality assumption concern-
ing the effect of covariates, as represented by (7.1.1), and the specification of the 
covariate term exp(pix), or some other analogous function r (x; p) in (6.1.6). Most 
of the general remarks in Sections 6.2 and 6.5.1 on exploring and checking para-
metric models apply here. In particular, a combination of graphical methods based 
on residuals or stratification, and formal tests based on model expansion or on a 
comparison of model-based and empirical estimates is useful. As with parametric 
models, the presence of heavy censoring can make model assessment difficult. 

Model expansion is a crucial tool for model assessment, but informal graphical 
methods can often provide insight, so we consider them first. In addition, formal test 
statistics can sometimes be based on residuals from a fitted model. 

As discussed in Section 6.2.2, the model (7.1.2) implies that 

log[— log S(t ix)] = log[— log So(t)]  /3'x, 

so if there are very few distinct covariate vectors x in the data and a sufficient number 
of individuals with each, then one can stratify individuals according to covariate 
values and estimate S.(t lx j) for a specified value x j using a Kaplan—Meier estimate, 

(t). If the PH assumption is reasonable, then plots of log[— log &./ (Ors versus t or 
log t should be roughly vertical translations of one another. Alternatively, Nelson-
Aalen estimates R (.) can be used in place of — log gj (t). As illustrated in examples 
such as Example 6.2.2 and Example 6.5.2, such plots are subject to considerable 
variability and can be difficult to interpret. 

7,1.9.1 Martingale and Exponential Residuals 
Residuals for  fitted  PH models are Conveniently introduced in either of two ways, 
which lead effectively to the saine thing. The one  approach is to consider the cumu- 
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lative hazard or exponential residuals (6.2.7) or their adjusted version (6.2.8). Here, 
in the case of fixed covariates, these give 

= ff (ti 	= Ro(ti)d ix i 	 (7.1.51) 

(7.1 .52) 

where it is the estimate from the likelihood (7.1.5), and we iise the estimate (7,1.32) 
for fiat). As for parametric models, when there is no censoring the "di should be 
roughly independent of the xi if the model (7.1.1) is correct, and resemble a ran-
dom sample of standard exponential random variables in large samples. However, 
although plots of  ê  versias covariate values are helpful in assessing the regression 
specification, exponential probability plots of  the 'è; cannot be used for overall model 
assessment. This is because when 110 (t ) is treated nonparametrically, the empirical 
hazard function I-10W automatically conforms to an exponential model; Problem 7.5 
considers this phenomenon. In addition to this difficulty, the residuals êi . or gidi  are 
positive, with a distribution that is highly skewed. Heavy censoring obscures much 
of the information on model fit and can create systematic patterns in the residuals, as 
with the parametric models of Chapter 6. 

The second approach is called the martingale residual approach. As discussed in 
Sections 7.1.3 and 7.1.5, the processes (MI (t), t > 0), where 

Mt (t) = f dMi(u) = NI (t) — f l'i(u)el :Yx f (" )  dlio(u), 
0 	 0 

(7.1.53) 

are uncorrelated mean zero martingales. This suggests defining residuals by inserting 
estimates for p and H0(u) in Mi (t). With t = co, we get Ni (co) = 6; and, for the 
case of fixed covariates, 

= kt (co) = Si — f Yt(u)efr x' dfio(u) = St — flo(ti)eA' 	(7.1.54) 

Note by comparison of (7.1.51) and (7.1.54) that 

1 — 

The random variables Mi (co) are uncorrelated and have mean 0, and it can be 
argued that in large samples the residuals Sh should be approximately uncorrelated 
with mean 0, either conditionally on the xi or unconditionally. Thus, plots of /1;/i 
versus covariate values should be consistent with a regression mean curve that is 
approximately  E(M) = 0, if (7.1.1) is correct. The distribution of the 11̂4i is, how-
ever, highly skewed (the  M, lie between —cc  and 1), and there can be systematic 
patterns in plots because of censoring; the situation is very similar to that for fully 
parametric regression models, as discussed and illustrated in Section 6.2.2. 
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The la, can be seen to satisfy the two conditions 

E 0, 	E m,x,, 0 	(r = 1, . . • , p) . 
1=1 	 1=1 

To see the first of these note that, using counting process notation, 

ii 	 f 	 Yi(t)efrx ■ (1)  dN.(t)  E 	E lc/m(0 
1=1 	1=1  0 	 Ye(t)eivxt (t ) 

= o, 

by an interchange of the sum and integral signs. To see the second result, note that 

= 	) = 0, 

where U(13): is the Cox likelihood score function (7.1,29). 
Flâts of exponential or martingale residuals 1(11 versus povariate values xi r  are 

often hard to interPreton their own, but  if a scatterplot smOoth . iS. based on the points, 
(x.ir,, M, ), patterns can be-disce rned. As discussed in  Section  6.2.2,  however, heavy  
censoring limits model assessment from such plots. Another Useful device when the 
covarlate strticttire is . not too .complex is to group individuals -into, say, J.  groups, 
G1 • G on the basis of their  eovariate values, and to .define  martingale residual' 
sum  .processes. for each group, 

i7(t) =E A (t). 	 (7.1.55) 
ieG 

Plots of the ./C4+(t)'s versus t can provide insight into model.deficiencies if the groups 
are reasonably large, 

7.1.9.2 Score Residuals and Influence 
The partial likelihood score function u(p) is represented as a sum across individuals 
in two ways in (7.1.28) and (7.1.29). The latter gives a useful definition for a score 
residual, since the individual terms have expectation 0, whereas the former does not, 
This leads us to define 

Ûj  =1.Ji (I-3) = f [xi (t) — 	dki (t) 	 (7,1.56) 

as ap x 1 score vector residual for individual i(i — 1 	 n). We will not explore 
the use of these residuals for direct model assessment, but instead use them for esti-
mating the influence of observations. 

As discussed in Section 6.2.2, one measure of the influence of the ith observation 
is given by (6.2,12). For I§ this leads to A(_i) — 	where 	is the title. from the 
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likelihood (7.1.5) obtained from the set of n — 1 observations that excludes the ith. 
When the data set is large we do not want to calculate 13(_,) for every observation, 
so we seek approximations that can be computed quickly. The approach used to 
obtain (6.2.14) for parametric models can be applied here too. The situation is a little 
different than for the earlier parametric likelihood functions, because dropping the 
ith observation changes various terms in the log-likelihood (7.1.6). However, by the 
argument leading to (6.2.13) we have here that for P close to A, 

u(-0(p) --=u(_0(fi)-1(-1)( 13 )(13 — 

where u(_0 (p) and 1(_0 (13) denote the score function and information matrix 
based on all observations except the ith. Setting /3 A-0 and noting that 
U(_..i)(13(_0) = 0, we have 

#(-0 # 

Now, 

U ( —j ) () = 	f cx; — 	(1, A)] dki(t), 
joi  o 

and assuming that 51(_0(t, /3) 	ii(t, P) and noting (7.1.56), we get that U(_1) (3) =:-- 
—Ui(3). Upon making the additional assumption that /(_0(/3) -4: /Qî), we get the 
approximation 

fic-0 — fi 	—1(fir'uicfi). 	 (7.1.57) 

The entries Di, of the n x p matrix D with rows given by (7.1.57) thus give approx-
imations 

Di r 	4r(-0 —  fir 	r = 1, • . • P 
	

(7.1.58) 

for the effect of observation i on each regression coefficient. These case dele-
tion measures are given by several software packages, as are standardized values 
Dir/se(4r). Index plots of these values against i help to identify influential observa-
tions. The approximation tends to underestimate influence slightly compared to the 
true values  13(-0 - /3, but is accurate enough for screening purposes. Deletion of 
single cases for which the values Dir  are large can then be examined in more detail. 
The joint effect of several observations may be greater than the individual deletion 
measures suggest, and it is wise to scrutinize residuals and covariate leverage values 
(6.2.16) as well as the Dir. 

7.1.9.3 Model Expansion and Formal Tests 
The expansion of models within families of models like (7.1.1) is familiar as a 
method of checking on the specification of covariates. For example, interactions or 
terms representing nonlinear functions of explanatory variables are often added as a 
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way of checking on a linear specification p'x based on variables xi , . , xk. Another 
type of model expansion is to replace a linear term, say 13i xi, with a regression spline 
or with an arbitrary function g (xi) that can be estimated nonparametrically. This can 
be done with some PH software. An advantage of model expansion is that a formal 
hypothesis test of the baseline model can be made. 

Departures from the proportional hazards structure of (7.1.1) are common and 
should be considered. In some situations the PH assumption may be unsupportable, 
but a multiplicative specification for h(t Ix) can still be reasonable. Semiparametric 
specifications of the form 

h(t lx) = ho(t)r (x; 13)w(x, t; Y) 	 (7.1.59) 

can be handled using time-varying covariates. As an illustration, a check on the effect 
of covariate xi might be made by comparing the models 

hi (I Ix' , x2) = ho(t)aflix 1 +PZx2 	 (7.1.60) 

and 

h(t Ix 1, x2) = lio (oefitx:+13712+yet)x, 	 (7.1.61) 

where g(t) is a known function and y is a regression coefficient. A test of H: y = 0 
tests whether xi affects the hazard function multiplicatively. A more general 
expanded model is 

h(tlx) = 	 (7:1.62) 

where g)  *x = (gi(t)xi 	 g (t)x , with the g (t)'s known functions. Another 
way to interpret (7.1.62) is to write the exponent as p(t)'x, where p(t) = 
in other words, the effect of x on the hazard function changes over time. 

Procedures analogous to testing y = 0 in (7.1.61) or 7 = 0 in (7,1.62) have been 
developed by various authors. A test due to Grambsch and Therneau (1994) is imple-
mented in some software packages, and is closely related to à graphical procedure 
for assessing the proportionality assumption for any specific covariate. The graphical 
procedure is based on Schoenfeld residuals (Schoenfeld 1980), which are defined in 
terms of increments In the score function (7.1.28). This leads to p x 1 vectors asso-
ciated with individuals i whose lifetimes are observed (i.e., with c5; = 1), 

gi =  x  - 51(4 p)• 	 (7.1.63) 

Grambsch and Themeau show that if a model with 

h(t lx) = ki(t)e"Y x  

is correct, but (7.1.1) with constant /3 is fitted, then for r = 1, . , p 

E(,  ± ljr) 	Pr (11), 
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where 	is the rth element in V (ti , 	, with 

Ye(ti)eP /xe[xe 	p)][xe  — .544 ,  toy  
(ti , p) 	— EL, Ye (ti)eP'xt 

The recommended procedure is to plot for each covariate x r  (r — 1 	 p) the 
points (te, grr ), or (g(ti), rr  ) for some function g, for i's such that 51 =  I.  If the 
proportionality assumption is satisfactory for xr  (i.e., if f3,. (t) = A.), then a scatter-
plot smooth through the points should be approximately horizontal and at level A.; a 
trend in the plot suggests a time-varying effect for the covariate. 

Statistics based on the Sr, have been developed for testing y = 0 in (7.1.6 I ) or 
y = 0 in (7.1.62), and are linked to the plots of the points (g(ti)„s;;.). In addition to 
Grambsch and Therneau (1994), see Themeau and Grambsch (2000, Sec. 6.2). 

Tests based on expanded models are useful to the extent that the expanded Ihm-
ily provides an adequate representation of the data. In some cases, a multiplicative 
specification as in (7.1.62) may be unsatisfactory. In others, it may be satisfactory, 
but there may exist other types of model providing simpler or more plausible inter-
pretations of the data. It is often worthwhile considering models of different types. 

Other methods of assessing goodness of fit are discussed in Chapter 10, where 
the comparison of model-based and empirical estimates of distributional features is 
considered. 

7,2 EXAMPLES 

The examples in this section illustrate techniques discussed in Section 7.1. There are 
several good software packages that implement methodology for the semiparametric 
models (7.1.1). The examples here were handled using S-Plus and certain diagnostic 
checks reflect features that are available in S-Plus; some other software packages 
have features that are a little different. 

Example 7.2.1. Data on the times to a first pulmonary exacerbation for persons 
• with cystic fibrosis entered in a clinical trial were considered in Examples 6.2.3 and 
6.3.4. The response variable was time to the first exacerbation, in days, and explana-
tory variables were treatment (rhDNase or Placebo) and forced expiratory volume 
(fey) at enrolment. Accelerated failure time models were found to fit the data well, 
and indicated that MDNase was associated with longer times to first exacerbation, as 
was higher baseline fey. 

Probability plots of Kaplan—Meier estimates for six treatment—fey (trt—fey) strata 
were considered in Example 6.2.3. The plots were reasonably consistent with either 
a PH or an AFT model, but the AFT model provided a little better description of the 

. patterns in the plots, particularly with a normal error distribution in the location-scale 
form (6.1.4). The PH model is attractive, however, since for events such as infections 
the hazard function is physically meaningful as an infection intensity. We consider 
here the semiparametric model (7.1.1). 
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Table 7.1. Fitted Cox Model for Time to First 
Exacerbation 

Covariate 

x l  (trt) —.383 .130 —2.95 
x2 (fevc) —.0206 ,0028 —7.44 

The results of fitting (7.1.1) with covariates xi = / (treatment = rhDNase) and 
x2 = fevc (centered fey)  are shown in Table 7.1. The values of Z for each covari-
ate are /3/,te(A), and significant effects for both treatment and fey are indicated. The 
magnitude and significance of the effects agree closely with those for the acceler-
ated failure time analysis in Example 6.3.4. In the PH framework here, the estimated 
effect of the rhDNase treatment is to reduce the hazard function for time to first exac-
erbation to exp(—.383) = .68 of what it is for the Placebo treatment. The baseline 
cumulative hazard function fin (t) given by (7.1.32) is shown in Figure 7.1. 

Addition of a trt—fevc interaction to the model resulted in a likelihood ratio statis-
tic of virtually 0. Figures 7.2-7.4 show other diagnostic checks on the model: a plot 
of martingale residuals (7.1.53) against fey, with a scatterplot smooth (lowess in 
S-Plus) used to estimate trend (Figure 7.2); an index plot of approximations to stan-
dardized deletion measures ($2(—) — 42)1se(15.2) as in (7.1.58), provided by dfbetas 
in the S-Plus function coxph (Figure 7.3); plots of Schoenfeld residuals provided by 
S-Plus function cox.zph (using the "identity" transform) and designed, as described 

Figure 7.1. Estimated baseline cumulative hazard function (pulmonary exacerbations). 
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Figure 7.3. Index plot of case deletion measures (dfbetas) for fevc (pulmonary exacerbations). 

EXAMPLES 
	

365 

—40 	—20 	0 	20 	41 	610 	SO 

Baseline FEV (centered) 

Figure 7.2. Martingale residuals vs. fevc (pulmonary exacerbations). 
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Figure 7.4. Schoenfeld residual plot for detection of time-dependent effects (pulmonary exacerbations), 

in Section 7.1.9 and Therneau and Grambsch (2000, Sec. 6,2), to detect nonpropor-
tionality of covariate effects (Figure 7.4). None of these plots gives any indication of 
inadequacies in the model, or of remarkably influential observations. As discussed in 
Section 7.1.9 and previously in Example 6.2.3, residual plots like Figure 7.2 convey 
limited information due to the heavy censoring in the data. 

Figure 7.4 shows no evidence of nonproportional hazard effects, and an associ-
ated global significance test provided by S-Plus function cox,zph gives a p-value 
of .81, Similar tests can be based on models such as (7.1.61), where time—covariate 
interactions are included. A good approach that is easily handled by most software 
packages is to make g(t) in (7.1,61) piecewise constant; the simple model where 
g =  1(t  > a) for some specified value a is especially useful. For the current 
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setting, about half of the observed failure times are 60 days or less, so for illustration 
we consider g(t) = I (t > 60), which is equivalent to defining additional covariates 

x3(t) = xi /(t >60), 	x4(t) = x2/ (t  >60). 

The likelihood ratio statistic generated by testing the Cox model with covariates xi , 
X2  against that with covariates xi, x2, x3(t), x4(t) is A = .2, corresponding to a x (22) 

 p-value of .90. The estimates and standard errors of /33 and /34 in the expanded model 
are .055(.262) and .0021(.0056). There is no evidence of nonproportionality. 

A PH model thus fits the data quite well, and gives results about covariate effects 
that are very similar to those from the log-normal and log-logistic accelerated failure 
time (AFT) models in Example 6.3.4. Hazard functions h (t lx) for the PH and AFT 
models are rather different, but the estimated cumulative hazard functions H (t Ix) and 
survivor functions S(t lx) for the two types of model agree quite closely over the data 
window (0,169) days. Nonparametric hazard function estimates are not sufficiently 
precise to provide much further guidance, though we can note that within the AFT 
family the Weibull model (which is also PH and which gives estimates very close to 
those for the semiparametric PH model here) is somewhat less well supported than 
the log-normal and log-logistic models. 

As a final illustration of the PH methodology, we give confidence intervals 
for the probability of no exacerbation within the first 160 days, or S(1601x). The 
S-Plus function survfit, based on the asymptotic normality of log SU Ix) and variance 
estimate from (7.1.39), gives approximate .95 confidence intervals for x = (0, 0)' 
and x = (1, 0), respectively, as (.54, .65) and (.65, .75). 

Problem 7.1.8 examines another aspect of model specification and treatment com-
parison for this example. 

Example 7,2.2. Data on the survival times of patients with advanced lung can-
cer were introduced in EXample 1.1.9 and considered in Examples 6.3.3 and 6.4.3, 

' where accelerated failure time models were used as a basis for analysis. Here we 
consider an analysis using multiplicative hazards models. 

Table 7.2 shows the results of a PH model (7,1.1) fitted to the full data set (n = 
137) described in Example 6.4.3, with covariates /(prior therapy = yes), perfor-
mance status (PS), /(treatment = Standard), /(cell type = Squamous), /(cell type = 
Small), /(cell type = Adeno), age, and months since diagnosis. Separate PH mod-
els fitted to the groups with (n = 40) and without (n = 97) prior therapy are also 
shown. The covariate effects suggested by these results are in broad agreement with 
those from the AFT analysis in Table 6.6 of Example 6.4.3, and the analysis for the 
therapy = yes group in Example 6.3.3. In particular, PS is an important factor, with 
higher values associated with longer survival, cell types Small and Adeno are associ-
ated with shorter survival times than are types Squamous and Large, and neither age 
nor months since diagnosis is significant. There is a slight suggestion of a treatment 
effect from the full data, but the Separate analyses for the two therapy groups strongly 
suggest an interaction, with a significantly higher risk of death associated with the 
standard treatment for the group not receiving prior therapy. 



368 	SEMIPARAMETRIC MULTIPLICATIVE HAZARDS REGRESSION MODELS 

Table 7.2, PH Models Fitted to VA Lung Cancer Data 

Full Data (n = 137) Therapy (n = 40) No Therapy (n = 97) 
Parameter Estimate se Estimate se. Estimate se 

II (PS) -.033 .006 -,060 .014 -.027 .006 
fi (Squamous) -,400 .671 -.322 .486 -.467 .361 
/3  (Small) .457 .266 -.026 .506 .664 .320 
,8  (Adeno) .789 .303 1.048 .628 .728 ,354 
/3 (trt) .290 .207 -.407 .408 .706 .268 
/3 (age) -.009 .009 -.012 .021 -.013 .012 
/3 (diagnosis) .000 .009 .001 .012 .018 .020 
,13  (therapy) ,072 .232 - - 

Checks on the PH assumption indicate problems, however. The plots and hypoth-
esis tests in S-Plus function cox.zph indicate that the assumption is violated for the 
important PS covariate, the problem arising mainly with the group not receiving prior 
therapy. The diagnostic plots suggest that higher PS is associated with a smaller haz-
ard function only up to about 60-80 days, after which there is no significant effect. 
This can be investigated further by fitting a model with a time-varying covariate, 
as in (7.1.61). Table 7.3 shows the results for a model with the same covariates 
as Table 7.2, except with age, diagnosis, and therapy dropped, and the covariate 
PS * / (t > 60) added, This last  covari  ate is strongly significant, with a Z2  value of 
12.6; the corresponding likelihood ratio statistic for testing this effect is 12.5. The 
positive estimate /3 = .039 for the regression coefficient roughly cancels the PS 
estimate (PS) = -.044; this results in almost no effect due to PS after 60 days, 
as suggested by the diagnostic plots. An expanded model in which therapy and a 
therapy-treatment interaction are added gives a likelihood ratio statistic A = 2.7 
with 2 degrees of freedom; the interaction effect has a regression coefficient estimate 
(and se) of -.66(.52). Thus, we find no evidence of a therapy effect or an interaction 
with treatment. 

The decreasing relevance of PS (measured at entry to the study) as time on study 
increases is perhaps plausible, and the nature of this effect agrees qualitatively with 
that in the AFT model fitted in Example 6.4.3, where hazard ratios are not constant 

"Ibble 7.3. Model for Lung Cancer Data With Time-
Varying PS Effect 

Parameter 

f3 (PS) 
13(PS * /(t > 60)) 
fi (Squamous) 
fi (Small) 
fi (Adeno) 
/3 (trO 

Estimate  se 

-.044 .007 -6.87 
.039 .011 3.48 

-.334 .283 -1.18 
.543 .267 2,03 
.741 .300 2.47 
.093 .204 .45 
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Figure 7.5. Estimated cumulative hazard functions for patients stratified by PS (lung cancer survival). 

for individuals with different covariates. Figure 7.5 displays the marginal effect of 
performance status. It shows  Nelson—Aalen cumulative hazard function estimates 
(3.2.13) for individuals with (a) PS < 50 and (b) PS > 60. It is seen that after 
about 60-80 days the two estimates f/(1) have close to the same slope, suggesting 
that the hazard functions h(t) are roughly the same. For t < 60, the hazard function 
for individuals with PS < 50 is markedly larger. A complicating factor, however, 
is the association between cell type and PS. Table 7.4 shows a .breakdown, and we 
see that Squamous and Large cell types are associated with higher PS values. The 
analysis giving Table 7.3 shows an association between these two cell types and 
longer survival, The effects of PS and cell type are therefore confounded to  sottie 
degree in this study. 

We remark that these data have been discussed many times in the literature. 
Sources that can be consulted for additional insights are Kalbfleisch and Prentice 

Table 7.4. Numbers of Individuals by PS and Cell Type 

Cell Type 

Squamoua 	Small 	Adeno 	Large 

	

10-50 	12 	22 	12 	6 
PS 	60-90 	23 	26 	15 	21 
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(1980, pp. 60, 89), Farewell and Prentice (1977), Bennett (1983a), Younes and 
Lachin (1997), and Therneau and Grambsch (2000, p. 135). 

7.3 METHODS FOR GROUPED OR DISCRETE LIFETIMES 

Discrete response models can be used in two settings. The first is when lifetimes are 
inherently discrete, for example, when the time to failure of a switch is measured in 
terms of the number of on-off cycles. The second is when an underlying continuous 
lifetime can only be observed to lie in certain intervals; this is commonly referred to 
as grouped or interval-censored data. 

Grouped lifetimes were considered in Section 4.3 and in Problem 6.17. Handling 
them with a fully parametric model poses no significant problems; the main compli-
cation is when covariates are time varying, in which case they are usually assumed 
constant over intervals. Semiparametric models such as (7.1.1) are more problem-
atic. When lifetimes are all grouped into a single set of intervals, the best that can 
be done is to fit a parametric model in which one group of parameters represents 
baseline survivor or cumulative hazard function values at the interval endpoints. It is 
convenient to consider such models here because of their relationship to models like 
those in Section 7.1, even though they are not strictly semiparametric. This is done 
in Sections 7.3.1 and 7.3.2. The more complex case of arbitrary interval censoring is 
deferred to Section 7.4. 

Discrete-time regression models are considered in Section 7.3,3, It will be seen 
that both they and the models used for grouped data are closely related to generalized 
linear-regression models for discrete responses. 

7.3.1  Regression Analysis of Grouped Lifetimes 

The  situation considered here is that of Section 4.3.1, except that fixed covariates 
are present. Observations are taken on n individuals, with a lifetime  T and a p  X 1 
vector x of covariates associated with each individual. The exact x is known for each 
individual, but lifetimes are grouped. In  particular, it is assumed; as in Section 4,3, 
that time is partitioned into k i intervals I  = [ai_i , ai), i = 1, . , k ±  1, where 
ao 0 and ak+1 = oo, and that we know only in what interval an individual died or 
was censored. 

Define the quantities 

(x) = Pr(T ailx) 

(x)  
— 	 ( 

P,_1(x) 	
7.3.1) 

 
= Pr(T > atIT > at-1,x), 

with Po(x) equal to one for all x. As in Sections 3,6 and 4.3.1, there is a need for 
explicit assumptions regarding censoring times. For,  the time being we assume that 
all censoring takes place at the ends of the intervals; modifications will be mentioned 
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later for occasions where this assumption is unreasonable. Let R; be the risk set at 
time ai_i, Di the set of individuals observed to die in h = [ai _ i , ai), and Ci the 
set of individuals censored in  ij,  Under assumptions like those in Section 2.3.1, the 
likelihood function is then 

	

L.ri(nu-Pi 00] 	pi(x)
i1 leDi 
	 (7.3.2) 

remembering that all censoring in /i is assumed to take place just prior to ai , after all 
deaths in  Jj  have occurred. 

Fully parametric models such as those in Chapter 6 give parametric expressions 
8 (x; 0) and IN (x; 0). Here we consider models with weaker assumptions, analogous 
to the semiparametric models of. Section 7.1. Two models will be discussed in some 
detail; they are as follows. 

7.3.1.1 A Model Based on Grouped Lifetimes from (7.1.5) 
If lifetimes T given x from a PH model (7.1.2) are grouped into intervals in the way 
described here, then a grouped regression model is obtained, for which 

(x) = S(aiix) 

	

= So(ai)exP(P'x) 	p.eXP(0) 	 (7.3.3) 

where 

with Po = 1. This gives 

where 

= So(ai), 	i= 1, 	, k, 

131(x) 	exp(firx) 
= 	 — Pt 

—t(x) 
(7.3.4) 

Pi 
Pi.= 	 i = 1, 	i k.. 

This model produces à likelihood (7.3.2) that can be used for inferences about  13 
and pi, pk. Note that although the underlying continuous-time model is semi-
parametric, the discrete model involves only So(a1), • • • So(ak), so is essentially 
parametric, Unlike the parametric models in Chapter 6, however, no parametric rela-
tionship is assumed for .  the So (ai) ' S. 

7.3.1.2 A Logistic Model 
Model (7.3,3) is appealing because it is based on the continuous PH model. We also 
consider a second model that is useful for analyzing grouped data, though it cannot 
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be obtained by grouping from a continuous-time model. This models takes pi (x) of 
the form 

Pi (x) = (1 + Yie ilex ) -1 	i = 1, . . . , k, 	 (7.3.5) 

where 

I 	Pi (0)  
Yi 	 — , 	k  

Pi 

This is a logistic model; note that 

log  (
1_  

pi  (x)  ) 
	

log yi p'x. 

This model  i . 	and convenient, as logistic models are in  many other discrete 
data situations (e.g., Cox and Snell 1989). As the number of intervals increases and 
interval lengths decrease, (7.3.5) and (73.4) agree mOre and more closely. In the 
limit as interval lengths approach  Oit  is easily seen that if the pi approach 1, then 

1 	plexP(lYx) 
— pi of, 

	

exp(13'x) 	Pi e  Pi 

7.3.1,3  Maximum  Likelihocid Estimation 
The Models (7.3.4) and (7.3.5) are of generalized linear form: defining cri 
log(— log pi) for (7.3.4) and al = log )); for (7.3.5), We can write them as 

pi (x) = exp — 	 = 1, 	, k 	 (7.3.6) 

pi (x) = (1 + eal+P)-1  , 	i =  1,..., k 	 (7.3.7) 

respectively. Furthermore, the likelihood function (7.3.2) has the same form as for 
a binary response regression model, and so software for discrete generalized linear 
models (g.l.m.'s) can be used to fit (7.3.6) or (7.3.7). The link functions, which in 
g.l.m. terminology correspond to the inverses of exp(—ez) and (1 ez) -1 , are the 
log-log and logit functions, respectively, (e.g., McCullagh and Nelder 1989). 

Generalized linear model software can be used by defining k indicator covariates 
and then associating a separate observation (y, x*) with every interval for which each 
individual is at risk. That is, an individual .e is at risk over [ai _1 , ai) if they are alive 
and uncensored at ai _1, and the observation (y, le) associated with that individual 
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and interval can be taken as 

y = I (individual E did not die in  [al_, ai)) 

=(xe,z1), 

where zi is a k x 1 vector with 1 in position i and 0 elsewhere (i = 1, 	, k). 
Although it is generally convenient to use g.l.m. software, we will give expres-

sions for the log-likelihood and score functions for the grouped PH and logistic mod-
els; they will be used in Section 7.3.2. Some issues concerning estimation of survival 
probabilities, censoring, and time-varying covariates will also be considered. 

The log-likelihood from (7.3.2) and the grouped PH model (7.3.6) is 

	

eq3, a) = E E log[eexp(cii+P'xe) _ 1, _ E 
	

(7.3.8) 

	

1=1 	EeDi 	 Celti 

To write down the first derivatives of P(fl, a) define 

-1-13'xt 

	

zit = e 	i = 1, . , k; 	= 1, 

Then 

a E =  E XerZle 

 Z—,/ 1 e—zie 	E xerzie) 
a 13r 	i=1( LED, 	 eel?! 

= 1, 	 (7.3.9) 

BE 

	

= E 	 _ 	E zit 
aai 	LED, 	 eel?, 

i = 1, 	. , k. 	(7.3. I 0) 

The m.l.e.'s and & are easy to obtain with standard optimization or equation-
solving software. When p = 0, equations (7.3.10) give estimates 

f); =e°' 	ni 
12i 

where d1 = IDII and ni =  R I  are the number of deaths and the number at risk in 
the ith interval, respectively. These are the life table estimates of pi in Section 3.6, 
when censoring is at the ends of intervals, They can be used as initial estimates of 

for a maximum likelihood iteration procedure. 
With pi(x) given by the logistic model (7.3.7), the log-likelihood function from 

(7.3.2) can be written as 

e(p, 	= E E (cei P/Xe) — E log o + ecq+P' x')). 	(7,3.11) 
1=1 	LED, 	 eel?! 
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First derivatives of (f3, a) are 

k a log L _ E  , Li  .„. E  xerece-fivx ,   ) 	r — 1 	p 	(7.3.12) 
afir 	1=1 (teDr 	eel?,  1 + ear+P'xt 

a logL 	 eat+Irxt 
	— ch E 	i — 1 	k 	(7.3.13) 

aui 	 i ± eai+13'xe eel?, 

The m.l.e.'s h, ex are once again easily obtained, When /3 = 0, (7.3.13) yields the 
life table estimates f/i = (1 + eal ) -1  = (ni — di )/ni, which can be used as initial 
estimates in an iteration procedure. 

Tests about p are of particular interest in many situations. In the case of the logis-
tic model, a partial likelihood for g is also available and  can be used for inferances 
about  p in the absence of knowledge of PI ..... though this requires excessive 
computation if the number of deaths per interval is substantial. This approach is 
described later. More generally, standard large-sample procedures based on normal 
approximations for h or likelihood ratio statistics can be used for tests or interval 
estimation. The constancy of p across intervals can also be checked, by allowing /3 
in (7.3,6) or (7.33) to depend on i = I,. k. This is analogous to checking the 
proportional hazards assumption in continuous PH nriodels. 

One may also want estimates or tests for stirvival probabilities, 

1 
(x) = 	pj(X), 

.1=1  

A satisfactory procedure in most instances is to treat log  j3  (x) as normally dis-
tributed, with mean log  P1 (x)  and variance obtained as follows. Let  j  (x) =  &j  -Firx 
for j =  I,...,  k and let z(x) =  (z 1(x),  , zk(x)r It follows from Theorem B2 in 
Appendix B that the asymptotic covariance matrix of i(x) is given by 

Asvar[i(x)] = L(x)Asvar(ev, h)L(x)', 

where Asvar(ex, 	= /(a,  13 ) -1  is the asymptotic covariance matrix for  (à,  h ) and 
L(x) is a k x (k p) matrix with the k x k identity matrix giving the first k columns 
and the last p columns given by placing the vector x in each row. An application of 
the asymptotic variance formula (B2) then gives the asymptotic variance of log /3/(x) 
as 

Asvar[log  P, (x)] = a(x)2(x)Asvar(ii, p)L(x)'a(x) 

where a (x) is a k x 1 vector with elements 

ai(x) = a log /3/ (x)/azi(x). 
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A variance estimate for log Pi (x) is obtained by replacing 1(a, 13) with I (a, j3) and 
a and 13 with &  and  f3 in all expressions. 

For the grouped PH model, for example, 

log (x) = - Eexp[ii (x) ]  
J=1 

so ai (x) = —/ (j :5 i) exp[Zi (x)]. 

7.3.1.4 A Partial Likelihood for the Logistic Model 
It turns out 	 og stic—model—a partial likelihood function for p can he 
obtained; this is  not possible for thefiroupenodel. This partial likelihood is 
developed by considering for each interval h the probability of the observed set of 
individuals who die; conditional on the observed number of deaths. For di > 0, we 
have 

Pr (the individuals in Di die in // Id/ individuals die in fi) 

=eP'xI) 	( FI  teDi 	all Di teDi 

e a'sr 	E ep'si. 
-all DJ 

(7.3.14) 

In (7.3.14) the sum in the denominator is over all possible di-subsets Di of RI, and 
si = EL, ED  xf is the sum of the covariate vectors for individuals in  D1. Multiplying 
the factors for different intervals gives the partial likelihood 

Li(p) = (eP's' I E 
1=1 	all D) 

(7.3.15) 

This is a partial likelihood according to the definition in Appendix C, and can 
be employed as though it is an ordinary likelihood. It usually requires excessive 
computation, unless the di are small, because of the large number of di-subsets of Ri. 
This likelihood is useful, however, for testing that fl = 0, where a statistic based on 
the score function from (7.3.15) is easily computed. This is discussed in Section 7.3,2 
and is used to test the equality of two or more lifetime distributions on the basis of 
grouped data. 

7.3.1.5 Assumptions About Censoring 
It has been assumed thus far that all censoring takes place at the ends of intervals. If 
this assumption is unreasonable, modifications can be made to.  the preceding meth-
ods; these will usually have to be somewhat ad hoc, as discussed in Section 3.6. If 
censoring times are more or less uniformly distributed across intervals, for example, 
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Thompson (1977) suggests the following procedure, which was introduced in Prob-
lem 3.18. Partition Ri into three groups: Di is the set of individuals who die in h, 
Ci is the set of individuals censored in ii, and Gi = Ri — Di — Ci is the set of 
individuals surviving beyond I. The likelihood (7.3.2) is then replaced by 

I' (I1 l Pi(xt)l n Pi(xe) 	Pi(xe) 112)• 
II  eel), 	 feGI 	eeCi 

(7.3.16)- 

With (7.3.16), the only difference in the maximum likelihood formulas given earlier 
is that sums EfERI  are replaced by 

E +-E 2 teCi 

That is, the contribution to the log-likelihood of individuals censored in h is halved. 
If g.l.m. software allows case weights for individual observations, this modification 
is easily accommodated. This is an ad hoc but reasonable approach which, when 
p = 0, leads to the standard life table estimates of PI given by one minus (3.6.3). 

7.3.1.6 Time-Varying Covariates 
Tithe-varying  covariates are  accommodated in a straightforward way if their values 
can be assumed constant over intervals h. In that case individual t has covariate 
vectors 

Xe(t) = Xei 	ai,j < t 

Since multiple terms are  associated with individuals in the likelihood function 
(7.3.2), corresponding to the number of intervals h over which they are at risk, no 
essential complication in methodology ensues. The same is true if g.l.m. software 
for binary response regression models is used to handle (7.3.2), as described earlier. 

7.3.2 Testing the Equality of Distributions with Grouped Data 

Tests for the equality of two or more lifetime distributions, analogous to those in 
Section 7.1.2, can be obtained from the regression models (7.3.6) or (7.3.7). The 
objective is to test the equality of m > 2 distributions, represented by the hypothesis 

H: 	(t) = • • = S,„(t)': 	 (1 .3.17) 

In the grouped data scenarios considered here, we assume that the lifetimes in in 
independent samples from Si (t), 	, Sni (t) are subject to the same grouping inter- 
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vals ..... /k+.1. The best that we can do is to compare the 5',.(t)'s.at the interval 
endpoints at, . , cik, and so we can replace (7.3.17) with the hypothesis 

Pti = • • • = Pini 	for all 	i = 	 (7.3.18) 

where 

Pr!  = Sr(ai)/Sr(cit—i), 
	i = 1, . . . , k. 	(7,3.19) 

Tests can be based on either of the regression models (7,3.6) or (7.3.7) by defin-
ing m —1 indicator covariates that identify which distribution an individual's lifetime 
comes from. The models imply a relationship for the pri, analogous to the relation-
ship (7.1.17) among the survivor functions in the case of continuous observation of 
lifetimes. In particular, consider the case m = 2 and define the covariate 

x = I (individual's lifetime is from S1(1)). 

Then (7.3.6) implies that pli = pi (1) and p21 = pi (0) for i = 1, . , k are of the 
form 

Pli = exP( .e'), 	P21 = exp(—eal ), 	 (7.3.20) 

whereas (7.3.7) implies that 

	

Pli = (1 + eaf +fir i 	p21 = (1  +e)" 1 	(7.3.21) 

The relationships (7,3.20) and (7.3.21) represent quite strong assumptions, but are 
reasonable in certain situations. Checks on the assumptions can be made by estimat-
ing the conditional probabilities pli and p21 nonparametrically, as in Section 3.6. If 
all censoring is at the ends of the intervals h, then 

= 1 — dry/ nri 	i 	„ k; 	•7•• = 1, 2, 

where 

dri = number of lifetimes in h from Sr  0) 

nri = number of individuals at risk in  f from S,.(t). 

Under (7.3.21), 

log 
(  1 — pit  ) 

-= log 
(1  _ P21)  

fi, 	 (7.3.22) 
Pli 	 P2i 

so the values log((l—Pii)/Pii) and log((1 — fh()//52() can be compared numerically 
or graphically to assess the validity of (7.3.22). Similarly, (7.3.20) can be assessed 
by comparing log(— log fiii) and log (— log hi) for i  —1  k  
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Tests of (7.3.17) or (7.3.18) can be carried out by testing that 13 = 0 in the regres-
sion models (7,3.6) or (7.3.7); for the case m = 2, this amounts to a test of fi = 0 in 
(7.3.20) or (7.3.21). This can be done using g.l.m. software and test statistics based 
on i3 or on log-likelihoods. As in Section 7.1.2, it is also possible to derive simple 
score tests that do not require the calculation of These are obtained by considering 
the score vector U([3, a) for p and a from the likelihood (7.3.2) in partitioned form 

u=  rui] r8 log Lop] 
[pd .' La log Liaay 

with the information matrix 1 (13,  a) partitioned similarly  as 

/it 1121 	[-8 2  log Liapag —8 2 logL/apacel 
I (P ' 	= [121 122 = —a 2  log Loaapi --a2 logLiactaa' j• 

As discussed in Appendix C, a score test of H:13 = 0 can be based on the statistic 

(a log L) 
U1[0, ex(0)] _ 

813 
(7.3.23) 

where 6(0) is the mix, of a when p = 0; recall that 6(0) has a simple closed-form 
expression. If p = 0, U1[0, 6(0)] is asymptotically normal with mean vector 0 and 
covariance matrix estimated by 

= hi CO3 &( 0)) - 112(0,  41 (0))/22(01 &(0)) -1 1 / 12(0, &OD, 	(7.3.24) 

and W = U1[0, ii(0)]' VI— 1  1.11 [0, il(0)] is asymptotically x(2m _ i) . Large values of W 
provide evidence against the hypothesis that 13 = O. 

The score vectors for the models (7.3.6) and (7.3.7) are given by expressions 
(7.3.9), (7.3.10), (7.3.12), and (7.3.13), and the information matrices 1(13, a) can be 
obtained by differentiating the expressions. In the case of the logistic model (7,3.7), 
an alternative procedure is tb base a score test on the partial likelihood function 
(7.3.15); this has the advantage that a does not need to be considered at all. Proce-
dures of both types will be described briefly. It will be assumed that all censoring 
occurs at interval endpoints; if this is not the case, then a modification to the likeli-
hood (7.3.2) can be considered, such as (7.3.16). 

7.3.2.1 A Score Test Based on the Grouped PH Model (7.3.6) 
Let us consider a test of equality of m > 2 distributions, represented by the 
hypothesis (7.3.18). Define a vector x of m — 1 indicator covariates, such that 
individuals from populations (distributions) 1, . , ni have x vectors (1, 0, 	, 0), 
(0, 1 0)„  (0,  0  1), and (0 0), respectively. That is, the rth covari-
ate (r =  1,..,  ni  — 1) equals 1 if and only if an individual is from population r. 
We assume that the pH in (7.3.18) are given by the model (7.3.6), and test that 
/3  =0.  
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It is readily found from (7.3.10) that 

eit (0) = log [ — log (ni 	)], 	i=l  	k  
ni 

where di = E dri and ni = E nri are the total number of lifetimes and total number 
of individuals at risk in  I, across the samples from all m populations. It then follows 
from (7.3.9) that Ut = u1 (0, &(0)] has entries 

Uir 
(ni —  

= E (nr, — 	log 
1=1 	 ni ) 

r =  1, 	m — 1. 	(7.3.25) 

Note that (7.3.25) can be rewritten as a weighted sum of terms (dri — nri / ni), which 
takes the "expected—observed" deaths form seen in (7.1.18). The covariance matrix 
V1 in (7.3.24) can be obtained after some algebra. Prentice and Gloeckler (1978) 
noted that V1 can be replaced with a slightly simpler version V, which is obtained by 
taking conditional expectations of terms in 1(0, ii(0)): specifically, the expectations 
E(drildi, nri, ni) = nridi / ni replace dri for i = 1, .. . , k and r = 1 .... , In — 1. 
The matrix V has entries 

Vrs = 
nrinsi)  Vsk n i —  r iog  (ni  di )]

2 
(nrial.‘rs 

di 	L 	ni 	 ni ) i=i 
(7.3.26) 

for r, s = 1, . 	m — 1, where Srs  = I (r = s). 
Under the hypotheses (7.3.17) or (7.3.18) that the m distributions are the same, 

the statistic 

W = 	171.11, 	 (7.3.27) 

is approximately 4, 1 _ 1) ; large values of W provide evidence against the hypothe-
sized equality. 

7.3.2.2 A Partial Likelihood Score Test Based on the Logistic Model 
Consider the regression model (7.3.7), with the (m —1) x 1 covariate vector x defined 
in the same way as for the grouped PH model in the preceding subsection. The log 
partial likelihood for 13 is, from (7,3.15), 

ei (13) = Ep'st — E log E eirs), 
i=1 	1=1 	(all Di 

where si = EtEDi  xe is the sum of the covariate vectors for all individuals in a 
particular set Di and the sum Eau Di  is taken over all de-subsets of Ri. The first and 
setond derivatives of (p) are 
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( 

Ea11 D) sk ews.,  ) 
= E Sir —E 

uPr 	i=i 	1=1 	La11 DJ ei3'81  

0 2 ei  

r = 1, 	, m — 1 	(7.3.28) 

afir afil 

  

( Eon DJ SP-S.1 r eP'si )( Ea Di  eirsj ) 	( Eau  l DJ Sfr 613'si )(Ea11 Di  •S' telYs i) 

1=1 	 Mall DJ e fl'sJ ) 2  

1', = 	... 	— 1. 	(7.3.29) 

The score vector is U(/3) = ( az i /apr) and the information matrix is 1( 13) = 
(-8 2e 1 /8fir  MO. Under H:13 = 0, U(0) is approximately normal with mean 0 and 
covariance matrix 1(0),  and W = U(0)'/ (0) — IU(0) is asymptotically  4e _ 1) . Large 
values of W provide evidence against the hypothesis, and p-values can be computed 
using the x 2  approximation. 

Although U(f3) and I (13) require a lot of computation in the general case, U(0) 
and 1(0) take simple forms, particularly for the in-sample problem. Noting that in 
(7.3.28) and (7.3.29) the sums over "all Di" are over all di-s'ubsets of Ri, we have 
the following results for i = 1, k and r = 1, , m — 1: 

Sir E xer = dri 
EEL), 

E  = (ni) 

all Di 

E 3.1r E E Xer 
all DJ 	all DJ teDi 

= E xer  (number of di-subsets that contain t) = nri nd!: 
teRi 

E sirs» = E E xer,e, + E E XerXnat 
all DJ 	all DJ EEDJ 	all DJ tomepj 

(ni — 1 ) 	 (ni — 2 \ 
= 3rt[rirl 	— 1 	nri (iirt — 1) 	— 2 ] •dj 

Inserting these expressions into (7.3.28) and (7.3.29) with 13 = 0, we obtain the score 
vector and information matrix components 

Ur(0) = E (dri _ f ) 	 r  — 1 	ni — 1 	(7.3.30) 
i=t 

k 	— 	di)df 	nrinti) 
Irt(0) = E 	(nrori — 	r, t = ,, . ,, m — 1. 	(7.3.31) 

	

i=1 ni (ni — 1) 	 ni 
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The statistic for testing equality of the distributions is 

W = U(0) / / (0) —1 U(0), 	 (7.3.32) 

which is asymptotically x(2 	when the hypothesis of equality is true. Note that 
(7.3.30) has the same form as the test statistic (7.1.18) based on the continuous PH 
model, though in the case of (7.1.18) the terms refer to the times ti for the individuals 
in the sample rather than to time intervals II. It is possible to think of the continuous-
time case as giving a sequence of very short intervals' that bracket the ti, and early 
derivations of the test based on (7.1.18) were made on that basis. Note further that 
the information matrix (7.3.31) for the grouped data problem is the form (7.1.21) 
proposed for use in the continuous case when there are numerous ties among the 
lifetimes. 

The tests of distributional equality based on the grouped PH and on the logistic 
model have good power to detect alternatives in which any two conditional survival 
probabilities Pr!,  pii in (7.3.18) are related roughly as in (7.3.20) or (7.3.21). They 
can have poor power in settings where survival or hazard functions for the different 
distributions cross. More powerful tests can be devised for such settings by consid-
ering time-varying covariate effects in models of the form (7.3.6) or (7,3.7); this 
is analogous to the approach taken in Example 7.1.2 of Section 7.1.5 for the case 
of continuous observation. Cook and Lawless (1991) consider such tests; see also 
Problem 7.12. 

Example 7.3.1. To illustrate the tests for the equality of distributions, consider 
the data given in Table 7.5, which represent failure time (in weeks) for three types 
of electrical components subject to constant use. A total of 140 components are 
involved, with 42, 50, and 48 components of Types A, B, and C, respectively. 

There are 128 failures and 12 censoring times; the number of withdrawals in the 
different time intervals is not shown in the table, but can be deduced from the num-
bers at risk and the numbers of failures for the intervals. To test for the equality of 

'Bible 7.5. Grouped Data on Component Failures 

Interval 

Total 	 Type A Type B Type C 

n,  d, nil di, nv dv  n3/ 

(0, 10) 140 21 42 4 50 6 48 11 
[10,20) 119 24 38 3 44 11 37 10 
120, 30) 94 25 35 3 32 10 27 12 
[30,40) 68 21 31 5 22 8 15 8 
[40,50) 44 16 26 6 12 6 6 4 
[50, 60) 26 7 20 4 5 3 1 0 
[60, 70) 17 5 15 3 1 1 1 I 
[70,80)  11 4 11 4 0 0 0 0 
[80, co) 5 5 5 5 0 0 0 0 
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failure time distributions using the logistic score statistic (7.3.32) it is necessary to 
calculate U = [U1(0), U2(0)Y and 1(0), given in (7.3.30) and (7.3.31). The values 
are easily calculated as U = (-24.10, 8.32)' and 

1(0) = (- 19.8157 —11.3917) 
11 .3917 	19.1190 

Note that k = 8 in the expressions involved in (7.3.32), the ninth interval being 
[80, co), wherein all remaining individuals must die. This gives the observed score 
statistic value U'I(0) -1 U = 32.74, which gives a p-value of under 10-7  on x(22) , As 
is pretty clear from a look at the data, there is strong evidence of a difference in the 
failure time distributions. 

When intervals are long, tests based on (7.3.32) and those based on the grouped 
proportional hazards model can give slightly different results,  but the conclusions 
emerging from the two tests will usually be similar. In the present situation we find 
from (7.3.25) and (7,3.26) that U = (U1, U2 )'  = (-28,08, 8.72)' and 

V
( 26,0903 —15.0919 = —15.0919 	24.9656) ' 

which gives a score statistic value (7.2.27) of 33.70, Very close to the value for the 
logistic model. 

7.3.3 Discrete-Time Hazard-Based Models 

In many settings where lifetimes are discrete, it is convenient and satisfactory to 
treat them as continuous. However, it is sometimes useful to consider T as a discrete 
variable, for example, when the number of observed values for T is small or when 
there are large numbers of tied or equal lifetimes. Time-transform models are not 
natural for discrete-time, and to there is a strong emphasis on the hazard function 
for modeling and analysis. Assume without loss of generality that the range of T is 
(0, 1, 2, ...) and let h(tlx(t)) denote a discrete-time hazard function for T,  given a 
vector x(t) of possibly time-varying covariate§. We restrict the discussion to external 
covariates, and so assume that for individual j the  hazard  function satisfies 

h(tlx(t)) = Pr(T = tir > t, X), 	 (7.3.33) 

where X = {x(t), t > 01 is the covariate history. 
The survivor function corresponding to (7.3.33) is 

t—i 
Pr(T tlX) = n {i _ 

u=o 
(7.3.34) 

and so the contribution to the likelihood function from an individual i with time and 
status indicator (ti, di) is; by (2.2.12), 
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fi— 

= h(tilxi(ti)) 8' ( 1 — h(tilxi(ti))} I —61  nci - h (uixi (u))) • 
u=0 

(7.3.35) 

Note that (7.3.35) has the same form as the likelihood for a set of ti + 1 independent 
binary responses; in particular, we can write Li as 

tj  

Li =
[1  h (ulxi (u)) d  (u)  [1 —  
11=0 

,(7.3.36) 

where dNi(u) = I (ti = u, di = 1). This shows that software for binary response 
regression can be utilized, provided of course that it accommodates response 
probabilities of the specified form h(ulxi (u)). As for the grouped data models 
of Section 7.3.1, it is necessary to create multiple observations d (u), xi(u), 
u = 0,  1....,  ti for each individual as input to the binary response software. 

The discrete-time modeling framework is formally the same as for the grouped 
data setting; if we associate times, t,  with intervals, 1, in the former setting, then 
h(t lx(1)) in (7.3.33) corresponds to conditional probabilities 1 — pi(x(i)) in the 
grouped data case, where x(i) indicates that x in (7.3.1) may vary from interval to 
interval. It is convenient to use g.l.m.'s analogous to (7.3.6) and (7.3.7) for discrete-
time modeling, because discrete-time hazard functions are probabilities that must 
take values in (0, 1). The discrete-time models that correspond to (7.3.6) and (7.3.7) 
are, respectively, 

h lx(t)) = 1 	exp _ ece(t)+frx(r)} 
	

(7.3.37) 

and 

h(tlx(t)) —  	 (7.3.38) 
1 + ea(t )+Wx(1 ) 

Unlike the case of grouped data, where the number of intervals is generally rather 
small, the general discrete case may involve a large number of t-values, and so it 
is not usually feasible to leave a(t) in (7.3.37), (7.3.38), and other similar models 
completely arbitrary. One option is to specify a(t) parametrically; if this is done 
additively, as a (t) = Yo + yi gi (t) ± • • • Yk gk (t) for specified functions gi (t), then 
models like the preceding ones take the convenient form 

h(tlx(t)) = 1,14-/z(t) 	13'x(t)], 	 (7.3.39) 

where.),  = (YO, yI, • . • , A)', z(t) = (1, gi(t) 	 gk(t)) /  , and 1,fr is a function map- 
ping (—co, co) to (0, 1). It is easy to use g.l.m. software with such models. 

A second option is to leave a (t) arbitrary, but to impose some form of smoothing, 
along the lines of the hazard-function estimation in Section 3.4. Some g.l.m. soft-
ware has the capability to fit models like (7.3.37) or (7.3.38) with this approach. The 
Bibliographic Notes provide a few references on discrete-time modeling. 

ece(t)+P'x(0  
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7.4 SEMIPARAMETRIC MAXIMUM LIKELIHOOD 

Semiparametric models can often be addressed by more or less standard maximum 
likelihood procedures. Although complex mathematical issues arise in a rigorous 
treatment, practical implementations of methodology are in many cases straightfor-
ward. In this section we examine maximum likelihood for multiplicative hazards 
models. 

7.4.1 Estimation from Continuous Observation 

Consider the PH model (7.1.1) with fixed covariate vector x. The likelihood function 
from a fully observed censored random sample  of n lifetimes, conditional  on covari-
ate values x,  , . . , xn  was given in (7.1.27). Written in  terms  of the parameters p and 
Ho = lHo(t), t 0 1 , this is 

s, 
up, 	= ri[d,o(ti),0 ,.] exp [ — Ho (ti)eP 	(7.4.1) 

The objective of semiparametric maximum likelihood is to maximize up, Ho) 
jointly with respect to /3 and Ho and, insofar as possible, to apply standard method-
ology from parametric likelihood theory, as presented in Appendix C. Mathematical 
and procedural issues arise, however, because we want to conceive of Ho(t) as a 
continuous function, but rigorous analysis (e.g., Kiefer and Wolfowitz 1956) shows 
that there is no unique definition of likelihood for functional parameters such as Ho. 
It is clear that if we extend Ho (t) to allow both discrete and continuous functions, 
then up, H0 ) is always maximized by a discrete function, because for continuous 
models dHo = ho(t)dt 0 as dt 0. The problem is that for discrete models 
(7.4.1) is not quite the correct expression for the likelihood function, since So(t) in 
(7.1.27) is not equal to exp[—Ho(t)]; see (1.2.8). Furthermore, there is no unique 
way to discretize the continuous model (7.1.1). Note that (7.1.1) and (7.1.2) cannot 
hold simultaneously for a discrete-time model. 

Fortunately, it turns out there are practical ways to proceed. If we approximate the 
model (7.1.1) ever more closely through a sequence of models with finite parameter 
spaces, then under fairly mild conditions we can apply standard maximum likelihood 
methodology to make inferences about p, Ho(t), and 50(t).  By choosing different 
approximating sequences we get slightly different procedures that, however, agree 
more and more closely as sample size increases. 

We can use  discrete-lifetime models to approximate (7.1.1), but it is a little simpler 
to use piecewise-continuous models. Consider the model discussed in Example 6.5.1, 
in which ho(t) is piecewise constant and Ho(t) is piecewise linear. That is, for a 
specified set of cut points 0 = ao < al < < ak =  co we have 

	

ho(t)  =  Œj 	ai_i 	t < ai 	 (7.4.2) 

	

Ho(t)= Eaj A j (t), 	 (7.4.3) 
j=1 
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where (see (1.3.26)) 

ai  
i(t) 	f 	1 (t u) du. 

cti_i 

Maximum likelihood for this model was developed in Example 6.5.1, Let us con-
sider these results in the case where k becomes large; in doing this we will assume 
that ak_i is fixed at some large value beyond which failures are essentially impossi-
ble, and that as k increases the values ai — ai_i for j = 1 ..... k — 1 approach 0. It 
follows from (6.5.11) that the profile likelihood function for 13 is proportional to 

8, 

	

L,„(p)=n 	  v•Ic 

	

i=i 	1 (ai_i 	ti <ai) EL 1  Ai (te)eP'xt 

When k 	oo as specified, L (P) normalized by a factor accounting for the decreas- 
ing interval widths approaches 

efrxi  

{ 	 Ye(ti)eP'xel 

which is the Cox likelihood function (7.1.5). Thus, as claimed in Section 7.1.3, 
(7.1.5) can be obtained as a profile likelihood or, more specifically, as a limiting 
profile likelihood for a sequence of models approaching (7.1.1). 

Note in addition that the mix, of Ho(t) is, by (6.5.10) and (7.4.3), 

lc 
(At) = E 	di j (t) 	I 

J=1 	 { ELI Ai (te)d' xe  

where di = E,8 1 (ai_i < t  < ai) is the number of lifetimes in [ai_ i, ai). In the 
limit as k increases, this approaches 

fo 
db .(tt)  E 	8,  

ELI Ye(u)eP'xe 	 Ye(ti)elY. ,  
(7.4.5) 

which is the Breslow or generalized Nelson—Aalen estimate (7.1.32). The preceding 
development also goes through when covariates xe (t) are time-varying. Thus, we can 
produce the estimates for the multiplicative models given. in Section 7.1 as limits of 
estimates for a sequence of approximating models. Since the approximating models 
can approach the purely semiparametric model (7.1.1) arbitrarily closely, we can 
think of this maximum likelihood treatment as essentially nonparametric. 

Note that asymptotic properties of these types of procedures need to be deter-
mined. For the PH model and the approach just considered, the limiting profile 

(7.4.4) 
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likelihood for /3 and the estimate of Ho(t) coincide with those from the par-
tial likelihood—martingale analysis of Section 7.1.3, and therefore their proper-
ties have been established. Moreover, variance estimates for  110 (t),  go(t), and 
g'(t lx) = exPI — fio(t) exp(frx)] obtained from the information matrix I (a, 
in Example 6.5.1 according to standard maximum likelihood large-sample theory 
approach the expressions given in Section 7.1.5 as k increases and interval lengths 
become small. More generally, such properties are not always known. However, it 
is usually a satisfactory practical procedure to use standard parametric likelihood 
methods with an approximating model that has a moderate value of k. Experience 
indicates that reduction of the grid fineness beyond a certain point in models like 
(7.1.1) combined with (7.4.2) produces little change in inferences. 

Different families of approximating models generally lead to slightly different 
procedures in finite samples. Instead of models with piecewise-constant hazard 
(7.4.2), we could, for example, consider models with piecewise-constant probability 
density functions; this is slightly less tractable than using (7.4.2). Another approach 
is to use discrete approximating models where it is assumed that lifetime T takes on 
values in some discrete set {ai,  a2, . • • }, which must include all the observed failure 
times. An idea that has been considered with fixed covariates is to retain the PH 
survivor function relationship (7.1.2), 

s(rix) = So (t)ex PVYx) , 

where So (t) is now a left-continuous step function with jumps possible only at points 
al , a2, . , .. The likelihood function from a censored random sample of lifetimes is, 
by (2.2,14), 

L(p, so) = 	— s(ti + Ixt)P scti + Ixi)! -81  • 	(7.4.6) 
1=1 

	

This likelihood involves So(t) only at the observed times t1 	 t,,, so maximizing it 
will give estimates  So(t) that jump only at these times. In fact, So (t) has jumps only 
at the observed lifetimes, {ti: c5j = 1}. The estimate :S.0(t, p) maximizing L(p, So) 
with 13 fixed has a closed form only if there are no tied lifetimes, so it is only in 
this case that the profile likelihood function  L(fi) has a closed form. Problem 7.14 
considers this approach. 

It turns out that if we apply an approach similar to that in the preceding paragraph 
to the likelihood (7.4.1) expressed in terms of 1-10 and p, then closed-form results are 
obtained. In fact, the estimate of Ho(t) is precisely (7.4.5), and the profile likelihood 
for p is (7.4.4). To see this, associate parameters  aj = d Ho(t(i)) with the k distinct 
times to) « t() at which failures occur. It is then easy to show that (7.4.1) is 
maximized with p fixed when 

d N .(t(i)) 
d fio(t(n) — 	=1 yto  ep,xt 
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and that L(p, lip) reduces to (7.4.4). As previously noted, this approach is not 
exactly proper, since with a discrete-time model, the likelihood is not exactly (7.4.1). 
However, as the sample size increases, the difference between (7.4.1) and the proper 
likelihood becomes negligible. 

7.4.2 Estimation from Incomplete Data 

An advantage of semiparametric maximum likelihood is that it can be applieil when 
data features such as interval censoring or arbitrary truncation occur, whereas the par-
tial likelihood and martingale methods of Section 7.1.3 break down. However, prob-
lems with implementation and theoretical properties can arise with some approaches. 
For example, in the case of interval-censored data and an underlying continuous PH 
model (7.1.1), the likelihood function takes the form 

	

so (Ri  )exp(p'xi)i, 	(7.4.7) L(p, so ) = n[so(Loexpurx,) _ 
1=1 

where the information available is that Li < T1  < Ri. One approach is to iden- 
tify parameters ai , 	, ak with the values of So (t) at the distinct values in the set 
(L1,  Ri, i = 1, 	, n) and to maximize (7.4.7) to obtain a and  p. The parameter 
values ai are ordered, and the global maximum can be difficult to find. In addition, 
the asymptotic properties of and the resulting ,§0(t) are not completely known, 
though it appears that inferences about p may be based on its profile likelihood 
function in the standard parametric way. 

In cases where the number of distinct intervals [Li, Ri] is fixed and not large, both 
numerical implementation and theoretical results are straightforward with the pre-
ceding approach; we are then dealing with a finite parameter situation. Forexample, 
in the case of current status observation,  as  in  Example 4.3.2, the likelihood function 
takes the form 

Si 	 ]I-61 

L(P, SO) = 	[1 - So ( )exP (P ' x i ) 	[so (co exP(P' ) 
i= 1 

where Ci is the inspection time for individual i and Si = I (Ti < CO. If there are 
only finitely many distinct times CI , 	Ck no matter how large n, is, then, (7:4.8) 
becomes up, a), where ai = So(Ci) for j =  1 	k   The baseline survivor func- 
tion is estimable only at the times C1, 	, Ck, and the problem is parametric. To 
consider pure semiparametric estimation, we require data for which the Ci become 
dense  on some interval (0, r) as n increase's. In that case only can we consider non-
parametric estimation of a continuous S(t) for 0 < t < r. Theoretical treatments of 
these types of problems are rather involved (e.g., Huang 1996). 

A better practical approach for interval-censored data when the number of obser-
vational intervals [Li, Ri] is large is to employ piecewise-continuelus models; the 
same is true for data involving different truncation patterns. Regression 'splines or 
piecewise-constant forms (7.4.2) for baseline hazard functions are both flexible and 

(7.4.8) 
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reasonably easy to handle computationally. Problems can arise if the number of 
parameters is large, or if the pieces are not oriented suitably relative to the data. 
For example, some of the  &j  in (7.4.2) may equal zero, and it may not be possible 
to base inferences on normal approximations for (i1, et). However, once a moder-
ate number (usually less than 10) of pieces is used, further increases in the number 
have little effect on estimation of p or So(t); this means that inference can rely on 
ordinary finite-dimensional maximum likelihood procedures. Carstensen (1996) pro-
vides a good discussion of PH and additive hazards models using piecewise-constant 
baseline hazard functions. 

BIBLIOGRAPHIC NOTES 

The semiparametric proportional hazards models and analinous multiplicative mod-
els involving time-varying covariates were introduced by Cox (1972a), and rapidly 
became standard bases for analysis, particularly of medical, epidemiological, and 
demographic data. In the discussion following Cox's paper and in subsequent 
articles the validity of the likelihood (7.1.3) was discussed. Kalbfleisch and Prentice 
(1973) provided the rank-based marginal likelihood justification in the case of com-
plete or Type 2 censored data, and Breslow (1974) and Holford (1976) gave heuristic 
maximum likelihood justifications. The partial likelihood justification introduced in 
Cox (1972a) was placed on a firmer theoretical basis by Cox (1975). More rigorous 
examinations of semiparametric maximum likelihood procedures and the connection 
between the Cox likelihood (7.1.3) and profile likelihood functions were given by 
Bailey (1983, 1984), Jacobsen (1984), and Johansen (1983). Estimation of the base-
line cumulative hazard function Ho(t) and survivor function So (1) was addressed by 
Breslow (1974), who gave (7.1.32), and by Kalbfleisch and Prentice (1973); see also 
Tsiatis (1981a), Bailey (1983), Jacobsen (1984), and Link (1984). 

Rigorous developments of asymptotic properties for the Cox likelihoods (7.1.5) 
and (7.1.42) and associated estimates for Ho (t) or So (t) are given by Tsiatis (1981a), 
Andersen and Gill (1982), Naes (1982), Bailey (1983), Prentice and Self (1983), and 
others. These papers take a variety of approaches, ranging from martingale-counting 
process methods to approaches that represent score functions as sums of indepen-
dent components. Early discussions of issues associated with time-varying covari-
ates can be found in Cox (1975), Efron (1977), Kalbfleisch and MacKay (1978), and 
Kalbfleisch and Prentice (1980). Peace and Flora (1978), Lee et al. (1983), and others 
studied finite sample behavior for tests and estimation via simulation. The books by 
Kalbfleisch and Prentice (1980, 2002), Fleming and Harrington (1991), and Ander-
sen et al. (1993) contain extensive discussions of the multiplicative model, including 
questions of efficiency for setniparametric inference. 

Two sample tests based on the Cox model, as in Section 7.1.2, were considered by 
Cox (1972a). Mantel (1966) first proposed the tests, following work by Mantel and 
Haenszel (1959), and they were also developed by Peto and Peto (1972) and others as 
rank tests. The test based on (7,1.15) is sometimes referred to as either the Mantel-
Haenszel test or the log rank test. Peto et al. (1976, 1977) give an extensive discus- 
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sion of the design and analysis of randomized Clinical trials in which these tests, 
and extensions involving stratification, feature prominently..Collett . (1994;.Ch. 9) 
discusses sample size requirements for two-sample log rank tests, ana provides ref-
erences. Two- and m-sample tests are considered further in ; Chapter8.: 

Diagnostic checks for multiplicative models have been discussed innianyPapers. 
Early discussion of exponential or cumulative hazard residualS: -(7:1•.51)2'and Of 
graphical methods were given by Kay (1977), Crowley and Hu (1977);  Cox (1979), 
Kalbfleisch and Prentice (1980, Ch, 4), and Lagakos (1981), LagakOs (198,1) and 
Crowley. and Storer (1983) warned against the use of exponential.' residitals 'from 
semiparametric Models like (7.1.1) in probability plots. Barlow and:Prentice( 1988) 
and Therneau et al. (1990) proposed martingale residuals. Goodness-of-fit  tests 
for multiplicative models were considered by Andersen (1982), Kay ( 1. 984), and 
Nagelkerke et al. (1984). Kalbfleisch and McIntosh (1917), Schoenfeld (1982), 
Moreau et al. (1985, 1986), Gore et al. (1984), O'Quigley. and Pessibne (1989), 
Chappell (1992), and others considered tests of proportional hazards based on inedel 
expansion with time-varying covariates. Grambsch and Therneau (1994) and  Lin et 
al. (1993) developed tests based on residuals. Deletion measures such a.(7::1.,57) for 
influence analysis were considered by Cain  and Lange (1984),. Reid 'arid trépeau 
(1985), and  Storer  and Crowley (1985). Pettitt and Bin Daud (1989) link case influ-
ence measures and residuals and discuss the usefulness of various plots: 

The regression models for grouped data in Section 7,3 were first iliscusSed by 
Cox (1972a) for the logistic case and Kalbfleisch and Prentice (1973) for the PH 
case, More extensive treatments were given by Thompson (1977) and Prentice and 
Gloeckler (1978), respectively. Pierce et al. (1979) considered alternative Methods 
for discrete data. Aranda-Ordaz (1983) considered generalized models that include 
the discrete PH and •logistic  cases; Tibshirani and Ciampi (1983) considered another 
extended family. Two-sample tests were considered by Mantel and Haenstel  (1959), 
but the formal model-based development in Section 7.3.2 started with Cox (1972a). 
Cook and Lawless (1991) consider two-sample tests that are effective in situations 
where survivor or hazard functions cross. Fahrmeir and Tutz (1994) and Tutz  and 
Pritscher (1996) discuss the smoothing of parameters c (t) in discrete-time regression 
models, such as (7.3.37) and (7.3.38). • 

Seiniparametrie maximunilikelihood for multiplicative intensity ModelS has been 
considered by Bailey (1983, 1984), Jacobsen (1984), and Johansen (1983): .  The use 
of piecewise-constant hazard functions, was considered by Holford (1976) ,an' d.:taird; 
and 'Olivier (19.81), among .  othdrs. Friedman (1982) gave  a rigorous discussion and. 
considered the case  where  the number of pieces becomes large ., as discussed Sec-' 
tion 7.4,1. Carstensen (1996) and Lindsey and Ryan (1998) provide illustrations of 
piecewise-constant hazards models with interval-censored data. Finkelstein (1986) 
considered semiparametric maximum likelihood; Huang (1996) proVides a rigorous 
investigation for the special case of  current-status  observation, Lindsey...Mid Ryan 
(1998), Kooperherg and Clarkson (1997), and Betensky et al. (l999) 'use smoothing 
and splines with interval-censored lifetimes, 

Prentice (1986) considers settings where both lifetimes and censoring timekmay 
be unobserved by design for some individuals in a follow-up study, and introduces 
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what is known as a case-cohort design. Lawless et al. (1999) consider such problems 
in a broader but parametric context. 

Theoretical aspects of semiparametric estimation that apply to the models in this 
chapter are discussed by Gill and Van der Vaart (1993), Bickel et al. (1993), Mur-
phy and Van der Vaart (1999), and others. One aspect concerns the efficiency of 
estimators, for example, i3 obtained from the Cox likelihood (7.1.3). Early studies 
of the efficiency of 13 were carried out by Kalbfleisch (1974), Efron (1977), Oakes 
(1977), and Kay (1979). Lee et al. (1983), Peace and Flora (1978), and others pro-
vided empirical studies of efficiency. 

Semiparametric methods for additive hazards models have also been developed. 
Andersen et al. (1993, Sec. 7.4), Klein and Moeschberger (1997, Ch. 10), Lin and 
Ying (1997), and Oakes (2001, Sec. 5.6) may be consulted for methodology and 
references. 

COMPUTATIONAL NOTES 

Methodology for proportional or multiplicative hazards model is included in many 
software packages. In S-Plus the relevant functions include coxph and cox.zph, 
which were used in examples in this chapter. Various two- and ni-sample tests are 
also available. Therneau and Grambsch (2000) provide detailed lifetime data illus-
trations involving S-Plus and SAS. Generalized linear model software for binary or 
multinomial responses can be used to deal with the grouped or discrete-lifetime mod-
els of Section 7.3. The likelihood methods in Section 7.4 for dealing with interval-
censored or truncated data are parametric, and are conveniently implemented by 
using general-purpose optimization software. 

PROBLEMS AND SUPPLEMENTS 

7.1 Consider the information matrix I(13) defined by (7.1M in the case in which there 
is no censoring and no ties. 
(a) Prove that the exact covariance matrix for U(0) is' 

E[I(0)] = E(ee, n  — 1) 2 /(n —1))V,X, 
e=t 
	 (7.5.1) 

where rc.X, is the corrected sum of squares matrix with (r, s) entry 

E cx, — 	— 7s) 	r, s 	, p 
i=l 

and 

= Dn — 1) — ' 
1=1 
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(b) Specialize (7.5.1) to the two-sample problem discussed in Section 7.1.2 to 
obtain Var[U(0)]. 

(c) Specialize (7.5.1) to the m-sample problem to obtain an alternative to (7.1.19) 
as the covariance matrix for U(0) in the noncensored no-ties situation, 

(Section 7.1.2) 

7.2 Consider the score function U(/3) for the Cox partial likelihood, written in the 
form (7.1.29). 
(a) Use the martingale—stochastic integral results (F13)—(F16) in Appendix F to 

obtain the covariance matrix for u(13) as 

n 

E 
 o  [

x, - -x(t, /3)][xi —N(t, p)J'Yi (t)e" d Ho(t). 	(7.5.2) 
i=1   

(b) Show that insertion of the estimator (7.1.33) for d /kW and j3.  for /3 in (7.5.2) 
gives I (A), where I (/3) is the observed information matrix (7.1.9). 

(Sections 7.1.3, 7.1.5) 

7.3 Matched pairs. Consider n pairs of individuals, and suppose that two treatments A 
and B represented by an indicator covariate x = 0 or 1 are randomly assigned to 
the individuals in each pair, so that one individual gets treatment A and one treat-
ment B.  Suppose that response times Tji  and Ti2 in the jth pair are independent, 
and that their hazard functions are 

h (t) = hof (t)el3x , 	h j2(t) = hoi (t)e9xJ2  

For convenience, suppose that individual 1 in each pair is labeled as the one get-
ting treatment A, so that xi = 0, xi2 = 1. Assume that all response times are 
uncensored. 

Use the Stratified PH Model of Section 7;1.6 to give a partial likelihood for 
the estimation of /3. Show that this likelihood is equivalent to one based on 
binary observations  Yi .  / j 1, • • • '11. 

(b) Giye  both Score and Wald, tests for the hypothesis p =. 0, ndting then-equiv-
alence to' tests for  the probability:p = fir(Yi*-=1)., 

(c) Suppose that Tit and Tj  are subject to the same potential censoring time  
.Ci. Discuss why the partial likelihood, which now is based : on pairs with at 
least one of Til or 7)2 uncensored, is still .  valid. 

(d) The leukemia remission time data given in. Example 1.1;7 actually arose in, 
matched pairs, as  described there. The data are given below, With the  first 
time in each pair being for the Subject on drug 6-MP and, the  second being 
for the subject on the Placebo treatment. Asterisks denote.censoring times. 
Carry out a test Of no treatment effect Using the stratified model given ear-
lier. Compare the result of this with a two-sample log rank test, based on 

(a) 
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(7.1.15), that ignores the pairing. Discuss the validity of the latter test in this 
context. 

(10,1) (7,22) (32*,3) (23,12) (22,8) (16,17) 
(16,2) (34*,11) (32*,8) (25*,12) (11*,2) (20*,5) 
(19*,4) (6,15) (17*,8) (35*,23) (6,5) (13,11) 
(9*,4) (6*,1) (10*,8) 

(e) This study was actually terminated early, after all Placebo subjects' remis-
sion had ended. Using the material in Section 2.2.2, explain why the paired 
analysis in part (d) is still valid under these conditions. 

(Sections 7.1.6, 7.1.2; Holt and Prentice 1974; Kalbfleisch and Prentice 1980, 
Sec. 8.1) 

7.4 The data below are survival times for patients with bile duct cancer who took part 
in a study to determine whether a combination of radiation treatment (RoRx) and 
the drug 5-fluorouracil (5-FU) prolonged survival (Fleming et al., 1980). Survival 
times, in days, are given for a group of patients given the radiation-drug therapy 
and for a control group of patients. Asterisks denote censored observations. 

RoRx -I- 5 - FU 

Control 

30, 67, 79*, 82*, 95, 148, 170, 171, 176, 193, 200, 221, 243, 
261, 262, 263, 399, 414, 446, 446*, 464, 777 

57, 58, 74, 79, 89,  98,101,  104, 110, 118, 125, 132, 154, 159,. 
188, 203, 257, 257, 431, 461, 497, 723, 747, 1313, 2636 

(a) Plot the Kaplan-Meier estimates based on the two groups. Is the test based 
on (7.1.15) liable to be effective in this situation? 

(b) Consider a multiplicative model with survivor function of the form (7.1.47) 
in Example 7.1.2, where x = I (individual received R0Rx+5 -FU) and g(t) 
is a specified function. Carry out a test of equality of the survival distributions 
for the Treatment (x = 1) and Control (x = 0) populations, using the score 
statistic (7.1.48) with g(t) = t  - 200.  For comparison, also carry out the test 
based on (7,1.15). 

(Sections 7A.2, 7.1.8) 

7.5 Consider the adjusted exponential residuals "é7di of (7.1.52), in the case of mod-
els With fixed coVariates. As stated in Section 7.1.9, these residuals are not suit-
able for PH model checks based on exponential probability plots. To help see 
why, consider the PH model (7.1.1) with no covariates and suppose there is 
no censoring in the data. Show that the values then consist of the values 
(a(1), , , (zo)) in some order, where 

.(I) E n - j 1 
	i = 1, . , n. 
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Now show using Theorem 4.1.1 that au) is the expected value of the ith smallest 
observation in a random sample of n standard exponential random variables. 

Thus, an exponential probability plot of the adjusted exponential residuals from 
the model with 13 = 0 will automatically conform to the exponential distribu-
tion. Try to extend the discussion to the case of a model with a single indicator 
covariate. 

(Section 7.1.9; Crowley and Storer 1983) 

7.6 Efficiency of partial likelihood in a simple situation. Suppose in the model (7.1.1) 
that hip(t) = X; that is, the distribution is actually exponential. Consider the case in 
which there is a single cOvariate x. Suppose that ti, , t„ are observed lifetimes 
in a random sample of n, corresponding to covariates xi 	x„; assume that the 
xi are centered so that 	=  o. 
(a) Show that the joint p.d.f. of a2, .... an , where ai = tilti,is 

	

(n — 1)1(E aiefi x
f) —n 	

ai > 0, 
i=1 

where ai = 1. This can be used for inference about fi when X is unknown. 
Determine the expected information II (fi) based on this distribution and 
show that 

11(0) 	n 	x 2 	tit.t2 
n-I-1 	n+1 .  t=1 

(1?) Consider  the partial likelihood (7.1.5). Determine the expected information 
12(0), noting that t1,  , t,, are independent and identically distribtited (i.i.d.) 
when fi = 0, whereupon each of the n! possible rank vectors has probability 
(n!) —I  . Show that 

/2(0) — 
	 n — i 

(c) Examine 12(0)//i (0) for various values of n; this represents the efficiency of 
the partial likelihood method at fi =  O.  

(Section 7.1.1; Kalbfleisch, 1974) 

7.7 Consider the electrical insulation failure time data of Example 5.4.2. 
(a) Assuming that the failure voltages for the two types of insulation have distri-

butions with proportional hazard functions, use the methods of Section 7.1.2 
to test that the two distributions are identical. 

(b) Obtain a confidence interval for d = exp(fi) in the PH model (7.1.1), which 
you used implicitly in part (a). Compare this with the confidence interval for 
3 that is obtained under a Weibull model (see Problem 5.13). 

(Sections 7.1.1, 7.1.2, 7.2) 
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7.8 Consider the data on survival times for patients with multiple myeloma, discussed 
in Problem 6.9. Assess the relationship of the five covariates to survival time by 
using the semiparametric PH model (7.1.1), supplemented by appropriate checks 
on assumptions. Compare your conclusions with those based on the parametric 
models of Problem 6.9. 

(Sections 7.1, 7.2) 

7.9 Wei et al. (1989) discussed data on the times to recurrence of bladder cancer in 
85 patients. The data were described in Problem 6.16 and examined there using 
AFT models. Some individuals had several recurrences over a period of time, but 
we consider only the time to first recurrence, measured from entry to the study 
in question. The full data set is given in Wei et al. (1989) and is contained in the 
S-Plus data frame "bladder." Covariates include, as in Problem 6.16, 

rx: Treatment group (1 = Placebo, 2 = Drug Thiotepa) 
number: The number of tumors present at initial diagnosis 
size: The size of the largest initial tumor. 

Investigate the relationship of these covariates to the time to first recurrence using 
multiplicative hazards models; include appropriate model checks. 

(Sections 7.1, 7.2) 

7.10 Abrahamowicz et al. (1996) presented survival data ôn 87 persons with lupus 
nephritis who underwent a renal biopsy during the years 1967-1983. Individuals 
were followed until death or the end of 1990; by that time 35 of the patients had 
died. Abrahamowicz et al. discuss the effect of a covariate termed "duration," 
which is the duration of the individual's untreated renal disease prior to biopsy. 
The data are discussed in Appendix G, and are available electronically. 

Use multiplicative hazards models to explore the relatienship of duration to sur-
vival time, with special attention to the possibility that the effect of the covariate 
on the hazard function may change over time. 

(Sections 7.1, 7.2) 

7.11 Exanzination of trend across several distributions. Suppose there are several life-
time distributions and that it is suspected there is a trend among the hazard func-
tions for the distributions. Trends can be examined with the methods of this 
chapter. For example, suppose there are m  distributions, corresponding to lev-
els 0, c/1 ..... 	of a covariate di  and that it is suspected that hazard functions 
for the ni distributions are proportional and vary monotonically  With d. 

(a) Consider the model (7.1.1) in which distribution j has hazard function 

hi (i.) = efl di 1213(t) 	j = 0, 1„ , m — 1. 	(7.5.3) 

Derive the score function statistic U(0) 2 / (0) — ' for testing p = 0 from 
(7.1.8) and (7.1.9). Show that U(0) and I (0) can be expressed as d'U*(0) 
and d'.I*(0)d, respectively, where d' = (di 	dm-1) and U*(0) and 
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I*(0) are the score vector (7.1.18) and information matrix (7.1.19) used 
in the m-sample test of Section 7.1.2. Tarone (1975) has shown that X2D  = 
U* (0)'I* (0) —1 U* (0) — U(0) 2 / (0) -1  is asymptotically x n _2)  under the 
hypothesis that the m distributions are equal. This can be used to test for 
departures from trend. 

(b) Consider the insulation data of Examples 1.1.5, 5.4.1, and 6.3.2. Let di = 
log(vi /32). Carry out a test for equality of the lifetime distributions at the 
seven voltage levels, using (7.1.20). Also carry out a test for trend by consid-
ering the model (7.5.3) and testing 13 .,--- 0 as suggested in part (a). Finally, use 
the statistic X2D  of part (a) to examine departures from the trend 'represented 
by (7.5.2). Compare your results with those of the fully parametric analysis 
of Example 5.4.1. 

(Section 7.1; Tarone 1975) 

7.12 TWo-sample tests with grouped data. Consider tests for the equality of two life-
time distributions, based on grouped data as in Section 7.3.2. Define prt (I = 
1,2;  i = I, , k) as in (7.3.19) arid let qrf = 1 — pri. Let f (q), 0  <q  < 1 
be a continuous, monotonic, twice-differentiable function mapping (0, 1) onto 
(—co, co), and suppose that qii and q21 are related by 

f (q2i) 	f (qii) + 	(i=1,...,k). 	(7.5.4) 

Note that the choices f (q) = log[q/(1 — q) ]  and f (q) = log[— log(1 — q)] give 
the grouped logistic and PH models given by (7.3.21) and (7.3.20), respectively. 
Testing fi = 0 amounts to testing the equality of the two distributions, under the 
assumed model (7.5.4) 
(a) Derive the partial score test of p = 0 for the model (7.5.4), as described 

in Section 7.3.2. Show that the score statistic (7.3.23) and variance estimate 
(73.24) are, respectively, 

Ut = 
1=1 

k 

V1 =E(Z)2 Pi 
i=1 

where 

— 

d21 — 
 ui   

9i Pi 
=  I  — nt = ni 

12  

Vj = 	= gi[f(40], 
n tqt pt 

g (b) = f (0), 

(b) Let Ai = (1, ri)' be a 2 x 1 vector of scores associated with the intervals 
i — 1 	k, and consider the family of models 
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Table 7.6. Survival Data for Cancer Patients Classified by Two Factors 

Interval 

A 1 13 1  A1132 	 A2Bt A2B2 

n u  du  n21  d nx 4 nm  do 

(0,3)  75 	. 15 87 18 59 12 64 9 
(3,6)  60 3 69 14 46 7 55 8 
(6,9)  56 14 55 8 38 8. 47 11 
(9, 12) 41 17 47 16 30 7 34 8 
(12,15)  22 7 30 11 21 9 25 5 
(15,18)  13 6 19 12 10 5 18 9 
[18,21)  5 4 7 4 4 2 8 3 
(21, oo) 1 1 2 2 2 2 4 4 

f(q2i)=.Pc1.11)-1-A413, 

where. p = 	/32Y Derive  the partial score  test  of p =  ci as described in 
Section 7.3.2. 

(Section 7.3.2, Cook and Lawless 1991) 

7.13 The data in Table 7.6 show the survival experience of a certain type of can-
cer patient in life table form.  Time is given . in  months from treatment. The 285 
patients  fall into four  categories, which correspond to two levels for each of two 
factors; À and B. The data give the survival experience  for each of the four patient 
groups A B1, A I 132, AzBI, and A282. 

Examine Whether the survival distributions for the four  patient groups might be 
the sanie.  Assess  the effect of factors A and B on the distributions. 

(Section 73) 

7.14 Consider the observed semiparainetric likelihood function L(p, Sp) given by 
(7.4.6).. 
(a) Show that when this Is maximized with respect to (3 and So(t), the estimate 

S0 (t) has jumps only at the observed lifetimes. 
(b) Find the function ,o(t) that maximizes L(13, So) when 13 is fixed, by first 

rewriting the likelihood in terms Of (3 and the parameters ai , 	, ak, Where 

(4./ = So(ki)±)/So(t(D) 	j =  1, . , k 

and  t(I) < 	< t(k) are  th  d distinct observed lifetimes: Show  that if there is 
only a single lifetime equal to 10) then (Xi satisfies  the equation 

ii,exp(f3'x (0 ) =  I  — eP'.0)/ E ei2rxe 
teR(to)) 

but that if there is more than one death at t(j), there is no closed-form solution. 
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(e) In the case where there are no tied lifetimes, compare the profile likelihood 
function for p with (7.1.5). For the two-sample data below, compare the 
two log profile likelihood functions for the model (7.1.1) with p'x =  fix 
(x = 0, 1) by plotting them on the same graph. Also plot the estimate 3'0(0 
described in part (b) and the estimate (7.1.34) on the same graph. 

Sample 1 (x = 0):60, 204, 29, 48, 366*, 26, 10,255. 18,74 
Sample 2 (x = 1):366*, 103, 364, 26, 81, 62, 84, 366*, 366*, 366* 

(Note: Asterisks denote censoring times.) 
(Section 14; Kalbfleisch and Prentice 1973; Bailey 1984) 

7.15 Piecewise-constant hazards and semiparametric  inference.  The information 
matrix 1(a, p) for the piecewise-constant hazards model in Section 7.4.1 is 
given in Example 6.5.1, 
(a) Consider the covariance matrix I(&,f3) -1  and obtain an asymptotic variance 

estimate for 14)(0 of (7.4.3). Show that as the number of intervals k increases 
and interval lengths shrink to zero, this variance estimate approaches (7.1.37). 

(b) Extend the development to deal with the variance estimate for log[— log 
S(t lx)], as in (7.1.39). 

(Sections 7.1.5, 7.4) 

7.16 Right-truncated iffetimes. Right-truncated data were discussed in Sections 2,4, 
3.5.2, and 4.3.3. In this setting the data consist of pairs (ti, vi , xi),  t = 1, 	, n 
where vi is the truncation time, ti < vi is the observed lifetime, and xi is a covari-
ate vector for individual i. There is no censoring in this case. In the no-covariate 
case it was shown in Section 3.5.2 how to obtain a nonparametric estimate of 
the conditional distribution P (T < tIT < vmax ), where vmax  = max(vi) is the 
largest truncation time in the data set. This was conveniently done by introducing 
the reverse time hazard function  h (t) = f (t)I F(t) for lifetime T; we note that 
by reversing the time scale right truncation turns into left truncation. 

(a) For the covariate case, let 

h RT(tlx).= f (tlx)/ F(tlx) 

denote the reverse time hazard function, conditionnl on x. Consider the Mul-
tipliCative model 

hRT (tlx) = /Iran@ exp(Wx). 	 (7.5.5) 

Motivate the likelihood function 

eP'xi 
L(f3) = • 	(E'L, i'l(ti)efrxt)' 
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where Ye(t) = I (te < t < vg),  as a partial or other type of likelihood func-
tion. 

(b) Show that 

F
(
(
v I

x
x

)

) 
exp — f 

F 	
hRr (ulx) du I 	0 t 

and thus consider the effect of x on failure probabilities. 
'(Sections 7.1, 7.4; Kalbfleisch and Lawless 1991) 

7.17 A test for quasi-independent truncation. For the setting in Problem 7.16, it is 
sometimes of interest to assess independence of  the lifetime variable T and the 
right-truncation variable, V Because only cases with t < u are observed, it is 
possible only to test what we might call quasi-independence. In the case with no 
covariates, this is expressed as 

H:hn2- (tIv) = hnr(t), 	0 < t <  V. 

(a) By defining a model (7.5.5) with a covariate that is a function of I), develop 
a score test of H by considering a score test of p =  0 in (7.5.5), as in Sec-
tion 7.1.2. 

(b) Indicate how to use a similar approach to test that the ordinary hazard func- 
tion for T given a left-truncation time U = u, is quasi-independent of u. 

(Section 7.1.7; Tsai 1990; Kalbfleisch and Lawless 1991) 

7.18 Sensitivity of PH models to covariate ntisspecification. Suppose that the hazard 
function of a lifetime T given covariates xi and x2 is of PH form (7,1.1): 

h (t 'xi , x2) = ho(t) exP(8i xi +82X2). (7.5.6) 

Suppose now that covariate x2 is not observed, but has the conditional distribution 
function G(x2lx 1), given XI,  in the population observed. 
(a) Obtain the hazard function h(tlxi) for T given xi by first obtaining the sur-

vivor function (s.f.) for T, given xi, 

co 
S(t 'xi) = 

—
expr — H0(1) eXp(PIxi /32x2)] dG(x21x1). 

oo 

Show that h (t 'xi) is not of PH form (7.1.1) in general. 
(b) Show that h(tlxi) in part (a) is not of PH form even when G(x2Ixi) = G(x2), 

that is, xi and x2 are independent. Consider the implications of this when xi 
is a binary treatment indicator in a randomized clinical trial. 

(c) Consider the randomized clinical trial involving the treatment rhDNase in 
Example 7.2.1. Discuss why PH analyses and estimates of treatment effect 
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using (7.1.1) with and without the fey covariate x2 included are not strictly 
compatible. Assess whether a PH model with only the treatment covariate x; 
present is consistent with the data. What do you conclude? 

(d) Use the results of Section 6.3 4 to discuss why accelerated failure time mod-
els are insensitive to this type of covariate misspecification. 

(Sections 7.1, 7.2, 7.4; Struthers and Kalbfleisch 1986; Appendix C.2) 





CHAPTER 8 

Rank-Type and Other 
Semiparametric Procedures for 
Log-Location-Scale Models 

Log-location-scale or accelerated failure time models were discussed extensively in 
Chapters 5 and 6. There, the emphasis was on fully parametric models that involved 
distributions such as the extreme value, logistic, and normal families. This chapter 
considers seniiparametric methodology in which the location-scale format is hsed, 
but no particular family of distributions is assumed. Applications to accelerated fail-
ure time (AFT) regression Models and to teats of distributional equality will be con-
sidered. This chapter can be regarded as the (log-) location-scale analog to Chapter 7; 
which dealt with semiparametric methods for proportional hazards models. 

As in Chapter 6, we consider models for which the distribution of leg-lifetime Y, 
given a vector of fixed covariates x, is of the form 

	

Y = (37t 	 (8.0.l) 

where Z has a distribution that does not involve x. The distribution of  Z on (—oc, oc) 
is here left unspecified; in this Case, we do not include an intercept term in Pix, since 
it can be subsumed in the "error" term Z. Sometimes we may wish to assume' .  that 
Z Is unspecified aside from having E (Z) 0; in that case we would include ah 
intercept term in ('x. This,  for example, is the standard approach When least-square 
methods are applied to (8.0.1). It is also sometimes convenient to express Z .  as bZI, 
where Z1 has a specified mean and variance (usually E (Zi) = 0, Var(ti) = 1) and 
b>  0 is a scale parameter. 

Two main approaches to serniparametric methods for location-scale modela have 
been taken. One uses rank-based procedures (e.g., Hajek and Sidak 1967), and the 
other uses robust estimating functions. The primary focus in this 'Chapter is on rank-
based procedurea, which are  more  readily adapted to handle censoring. 

A major  application  of rank-based procedures is to tests for the equality of two or 
more distributions. Section 8.1 considers this topic and gives tests that are analogous 
to those of  Section 7.1.2, developed under, multiplicative hazards assumptions. In 

401 
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fact, a close connection between the two types of tests can be established. Section 8.2 
considers inference for p in the model (8.0.1), and an extension of this model to 
incorporate time-varying covariates. 

8.1 RANK TESTS FOR COMPARING DISTRIBUTIONS 

8.1.1 Linear Rank Tests for the ni -Sample Problem 

Tests for the equality of two or more lifetime distributions are often required. When 
it is not convenient or appropriate to adopt a parametric family of models within 
which to carry out tests (as is done in Section 5.4, for example), distribution-free 
methods can be used. Some such procedures were discussed in Section 7.1.2; here 
we consider linear rank tests based on the model (8.0.1). Interestingly, the log rank 
test of Section 7.1.2 can be obtained from (8.0.1). Some other tank tests also will be 
examined, and their connection to counting process test formulations in Chapter 7 
demonstrated. 

The basic ideas of rank tests and their extension to censored data are described 
later. Several books provide extended treatments of rank tests and of asymptotic 
properties of the censored data procedures in this section; see the Bibliographic 
Notes at the end of the chapter. 

The framework used to develop the rank tests is one in'which any two distributions 
are assumed to differ only with respect to location. That,is, the two distributions are 
assumed to have probability density functions (p.d.f.'s) g(y) and g(y — 8), and they 
are identical if and only if 8 = 0. The resulting tests are therefore good at detecting 
whether two or more distributions with the same general shape are different; they 
can be poor at detecting certain other types of differences. 

The tests can be formulated in terms of the model (8.0.1). Suppose that the  in 
distributions of interest have p.d,f.'s for log-lifetime Y of the forms 

gl (y) = g(y — 	, g,,,_1(y) = g(y — 	gn,(y) = g(y), 	(8.1.1) 

where —co < y < oo and —co < 	<  oc for the parameters Oh . , Om _i . As 
in Section 7.1.2, we let x = (xi , 	, xm _ 0' be a vector of distribution indicator 
variables, defined so that individuals from the distributions 1 	in  — 1, nt have x' 
vectors (1, 0 ,,,,, 0) 	(0, 	, 0, 1), (0, 0 , 	 0). With 0 — (Or , 	 em-1)% the 
regression model 

f (y1x) = g(y — 0) 	 (8,1.2) 

then gives (8:1.1), and the equality of the ni distributions is represented by the 
hypothesis 0 = 0. We now consider rank tests for this hypothesis; we begin with 
the case of uncensored data and then we discuss adjustments to deal with censoring. 

8.1.1.1 Tests with Uncensored Data 
The construction of rank tests of 0 = 0 will be described first for the case of uncen- 
sored data. Briefly, a rank test is one for which the test statistic is a function of the 
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ranks of the observations and not their actual values. Such a test is distribution-free 
in the sense that significance levels calculated from the distribution of the ranks are 
valid for arbitrary distributions. The power of a rank test depends on the alternative 
hypothesis and the underlying distribution, but tests can be selected to have good 
power against specific types of alternatives. In the present context let yl, y„ be 
a sample from (8.1.2), selected as a set of independent random samples from each 
of distributions 1, , m; let N1 be the number of observations from distribution i 
(N1 + Nm  = n). Let r = [(1)  (n)] denote the rank vector based on 
the yi; that is, (i) is the label of the individual with the ith smallest y value. The 
ordered observations y(1) « y(„) are assumed to be distinct; this entails no loss 
of generality under a continuous model. Rank tests of  O = 0 can be constructed by 
considering a score test based on the distribution of r. This approach is outlined here; 
a more detailed presentation can be found, for example, in Hajek and Sidak (1967). 

The probability function of r = [(1) ..... (n)] is 

p(r; 0) = f •••f 	g[y(i) — x'cn O]cly(l) • • • 
A 

where A is the region {(y(1) ..... y(,)) —co < y(i) « y(„) < co) and x()) is 
the regression vector associated with (j). The first derivatives of the log-likelihood 
based on p(r; 0) are thus 

8 log p(r; 0) 
.Ut(0) = 

f , 	f 	g'(,Y(i) 	x/() 0) r_rn 
X 

P(r; 0) f...1 	A j (I)e g(y(0— 40) J11=ig(ND—KDO) dy(i) • • • dY(n) 

£ =1 	m — 1. 	 (8.1.3) 

test of 0 = 0 can be based on the score statistic 

I./(6) = [U1(0), ...,U1_1(0)]' 

When 0 = 0, all individuals have the same distribution and p(r; 0) = (n!Y 1  for 
Oach possible rank vector r. Thus 

U e (0) = 	f • • • f x(, ) , 	g(y(i)) dy(1) • • • dy(). 
A 	g UM) j= i i=1 

EiBtn! nr,L, g (ND .) is the joint p.d.f. of y(i), 	, y(„) when 0 = 0 [see (B15)], thus 

L (0) = 
	

£ =1,...,  nt 	 (8.1.4) 
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where 

0)  
ai = E 	

(y(
;  0 — 0) 	 (8,1.5) 

g (Y0)) 

The a, are called the scores associated with y(1) , 	 (n)• Note that if one uses the 
likelihood function based on the actual observations yt, 	, j)„, and not just their 
ranks, the score statistic at 0 = 0 has components 

[

—g'(yi)] 
  

g (y ) J 

so that the effect of considering only the ranks is to  replace g' (yi) 1 g(yi) with a 
score that is a function of the rank of yi . Specific tests are obtained by choosing a 
function g (y) on which to base the scores. The choice of g (y) affects the power of 
the tests, but not its distribution-free nature. We consider choices of scores after first 
developing some general results. 

The mean and variance of U(0) can be derived by standard permutation theory 
arguments, since under fin: 0 = 0 all n! possible rank vectors r are equally likely. 
The necessary formulas are given by the following result. 

LEMMA 8.1.1. Let xi 	x„ be given vectors with xi — (xi j 	xip ) and let 
, an  be given constants such that E cy/  = O. Let [(1) ,,,,, (n)] be a random 

permutation of (1, 	, n) and define 

(je  =  

Then  E(Lie) = 0 and 

n 
g( i tU s) = ( q/(n — 1) 	Ê xi exi s — ni 'È:g,, • 	t, s = 1, . . . , p, 

(8.1.6) 
where = E xi el n (t = 1 ..... p). 

Proof First, 

n 

E (U e) = EalEp(x(r)e), 
1=1  

where Ei, denotes expectation over the set of permutations of 1, 2, ... , n. This gives 

Eai
n (n 

Exie— = 	= O. 
1=1 	

j=i 	72 
l=1 
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Also, for each t and s =  1, 	 P, 

n n 
E (UeUs ) = E E 

1=11=1 

E(.,E XiceXks 	E aicei ..E xkext,.. 	 1=1 
2 ( n 

 k=1 1 01 	;cot 
• 

	

= (En  czi2 /71 	XkeXks — •Ece?/n(n — 1) 

n n 

= ( E 4/ (n — 1) E xke, — nie.is 
,=. 	 k=1 

We observe that for the scores (8.1.5) E a ;  = o, since 

d 	 d E cei = E (— E— log g(y(0)) = E (— E — log  (Yi)) = 0, 
dy 	 dy 

The mean and covariance matrix for the score vector U(0) are thus given by Lemma 
8.1.1 as E[U(0)] = 0 and 

V = E[iI(0)U(0)1 

= 

 (

E cv?/(n — 1)) X'cXc , 
1=1 

(8.1.7) 

where Xc  is the nx p matrix of x's centered about their means. For the in-sample 
problem, where x' = (xi , „ x,n —i ), the score vector U(0) in (8.1.4) and covariance 
matrix Vin (83.7) have components 

ue(o) = E ce(i) 	= 1, . , — 1 
I Est  

yes  = (E 41(n — 1)) (Nth, — 
i=1 

NeNs ) 

n ) 
e, s = 1, 	, 	— , 	(8.1.8) 

where Sts  = 7(e = s) and St denotes the individuals in the sample who are from 
distribution L. 

Under quite general conditions (e.g., Hajek and Sidak 1967, p. 159), the distribu- 
tion of U(0) is asymptotically normal, and the equality of the ni distributions can be 

405, 

0 

i=i• 	k=1 	 1=1 

X [(È Xke 
k=1 	(E:=1Xt3 ) kE=IX"X"  
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tested with the statistic 

X2  = U(0)' V —I  U(0), 	 (8.1.9) 

where U(0) and V are given by (8.1.8). Under the hypothesis that the distributions 
are identical, X2  is distributed approximately as 4_1) . Large values of X 2  indi-
cate evidence against the hypothesis of equality. With small samples, it is also fea-
sible to compute exact test properties or p-values from the permutation distribution 
of U(0). 

In order to obtain a rank test we have to define scores. Usually scores are selected 
by basing the ai in (8.1.5) on a specific p.d.f., g(y). If the data actually arise from 
a model (8.1,2) with this p.d.f., then the rank test is asymptotically fully efficient 
relative to the parametric procedure based on the actual observations, yi. In addition, 
the rank test generally retains substantially higher efficiency than the corresponding 
parametric test when the model is of the form (8.1.2), but with a different p.d.f. 
Finally, p-values calculated from the rank test are valid regardless of the common 
underlying distribution of the observations. This is not true for parametric tests based 
on a specific model. 

We consider two examples of rank tests, both of which will be later extended to 
the censored data case. 

Example 8.1.1. Exponential Ordered Scores (Log Rank) Test. If scores are 
generated by letting g(y) in (8.1.5) be the extreme value p.d.f. exp(y — eY), —co < 
y < oo, then g / (y)/g(y)= 1 — eY  and 

a; = E(eY(') —1). 

Since v = eY has a standard exponential distribution with p.d.f. 	> 0, 
E(exp No) is the expected value of the ith-order statistic in a random sample of size 
n from the standard exponential distribution. From Theorem 4.1.1 it follows that 

1 
e=i 

= ei,„ — 1. 

The a; are sometimes called exponential ordered scores (Cox, 1964). 
In the two-sample test, for example, the rank statistic and its variance are, from 

(8.1.8), 

= E 	N1 

Isit N2 	n  
= 	De,, — 1) 2 . ri(n — 1) 1.1 
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The variance can be simplified slightly by using the easily proved relations 

E• ei,„ = n 	and 	E• e7 n  = 2n — en,n 

to give 

N1 N2  

V — 	(n 
n(n — 1) 

If the data arise from two extreme value distributions differing only with respect to 
location, the asymptotic relative efficiency of this rank test is one. If the data come 
from normal distributions differing only with respect to location, the asymptotic rel-
ative efficiency turns out to be .82. The efficiency of the test is discussed further in 
Section 8.1.5. 

Example 8.1.2. Wilcoxon Test. If scores are generated by taking the logistic 
p.d.f. g(y) = eY 1(1 + e)') 2, —oo < y < co, the Wilcoxon test (Wilcoxon, 1945) is 
obtained. In this case g' (y)I g(y) = 1 — 2eY I (1 + e)') = 1 — 2G (y), where G(y) is 
the distribution function corresponding to g (y). Since G(y) is uniformly distributed 
on (0, 1), we find 

cei = E[2G (y(0) — 1] 

= n + 1 1 ' 

	

2i 	
(8.1.10) 

using the well-known fact that the mean of the ith-order statistic from a random 
sample from Uniform(0, 1) is i I (n + 1). 

For the two-sample test (8.1.8) gives the rank statistic and its variance as 

2 

n + 1 i ES! 

IT 	 2 NI  N2 	( 2i 

	

y _ 
n(n — 1) 	+ 1 

1
) 

N1 N2 
3(n + 1) .  

The two-sample Wilcoxon statistic is often cOnsidered in different but equivalent 
forms. The test is asymptotically fully efficient for detecting location shifts when 
the underlying distributions are logistic. In view Of the similarity of the logistic and 
normal distributions, it also would be expected to have high efficiency when the 
underlying distributions are normal distributions differing only in mean. In fact, the 
asymptotic relative efficiency of the Wilcoxon test in this case is .95. If the  under- 
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lying distributions are extreme value distributions, on the other hand, the asymptotic 
relative efficiency is .75. 

8.1.1.2 Tests with Censored Data 
When the data are censored, some modification of the procedures just described is 
needed. Early approaches to this problem focused on  adjustments to score statistics 
(8.1.4) in which rank-based weights are determined for both censored, and uncen-
sored observations. Later work has tended to emphasize the counting process frame-
work, described in Section 8.1.4. A brief description of rank tests for censored' data 
will be given, followed by a more detailed discussion of generalizations of the log 
rank and Wilcoxon tests. Numerous references to this area are provided in the Bibli-
ographic Notes at the end of the chapter, 

Consider the linear regression model (8.1.2) once again, and suppose that from a 
sample involving  n individuals with covariate vectors xi ..... x there arise k distinct 
observed log lifetimes yo) < 	< y(k) and n k censoring times. In addition, sup- 
pose that mi log censoring times lie in the interval [y(1), Y(i+i)), for i = 0, 1, 	, k, 
where we define .y(0) = 0 and  y +  = co. Let x(i) be the covariate vector associated 
with the individual whose y-value is y(i), and lets(i) be the sum of these vectors for 
the mi individuals with log censoring times in [y(i), y(4.0). To construct rank tests 
of the hypothesis Ho: 0 = 0 in this situation, Prentice (1978) and others proposed. 
the use of a pseudoscore statistic that has components of the form 

111(0) 	E(x(otai Rota') 	= 1, 	, m — 1. 	(8.1,11) 
t 

That is, individuals whose lifetimes are censored are given scores ai  that  are dif-
ferent from the scores of those whose lifetimes are  observed. All individuals cen-
sored in No, t(i+o)  are given the same score, regardless of their respective censoring 
times. 

Prentice (1978)  suggested  a general method of Obtaining scores ai and al for 
(8.1.11)  and discussed estimation  of the covariariee matrix of U(0) = (0) ,   
U,n-1 (0)r. This will not be considered here, except to note that scores can be defined 
so that E[U(0)] = 0 and that a kind of permutation variance for U(0) can be 
obtained, with entries fcir t, s = 1, • • • , m — 1 of 

V1 5  = E [U e(0)113  (0)] 

_ 
 (

E(.7+ ma)/(n — 1)) (NeSe s 
 1=1 

ArtArs \ 

n ) 
(8.1.12) 

This permutation variance is conditional on the particular assignment of scores in the 
situation at hand, and is thus conditioned on  ma,  . . . , mk. Consequently, formula 
(8.1.12) should be used only when it can safely be assumed that censoring is inde-
pendent of x. Alternative variance estimates are developed in Sections 8.1.2-8.1.4. 
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An approximation to the linear rank statistics (8.1.4) provides another choice of 
weights. Asymptotically equivalent tests to those based on (8.1.4) in the uncensored 
data case are obtained if we replace the weights al  in (8,1.5) with ones that are 
appropriate functions of expected Urfiform(0, 1) order statistics i/(11 -I- 1). Thus, for 
m-sample tests we consider weights ai in (8.1.8) that are of the form 0[t/(tr 
With censored data, the values i 	+ 1) are not known for all (i), i = 1,...,  k, 
and the usual procedure is to define the weight for an uncensored observation  t(j)  as 
0[1 — 300], where S'(t) is. an estimate of the common survivor function 5(t) 

Si (t) = 	= Sm  (t) under the hypothesis of equality of the m lifetime distributions. 
The weights for censored observations are more complicated (e.g., see Andersen et 
al. 1993, p. 351), but have the same property as those in (8.1.11): all a the cen-
sored lifetimes between any two observed lifetimes  t(j) and t(,+i) are given the same 
weight. See Problem 8.1 for further details concerning this. 

The rank test procedures are not strictly distribution-free when there is censor-
ing: the distribution and properties of the test statistics depend on the censoring and 
lifetime distributions involved. In this respect, observe that the  assignment of scores 
in (8.1.11) is not, in general, prespecified, but depends on  the observed data. It is 
prespecified, however, for various kinds of Type 2 censoring. 

We now consider extensions of the log rank and Wilcoxon tests to the censored-
data situation. 

8.1.2 The Exponential Ordered Scores (Log Rank) Test with Censored Data 

With uncensored data the exponential ordered scores test for the equality of two or 
more distributions employs the scores ai given in Example 8.1.1. To discuss the case 
of censored data it is convenient to use the notation of earlier chapters: specifically, 
suppose that n i  is the total number of individuals at risk across all in  distributions 
just prior to t(i),  where  t(j)  = exp[y(1)] is the ith observed lifetime (i = 1  k). 
Let di be the number of deaths at t(j); for now di is taken to be one, since lifetimes 
are assumed to be distinct, but we later allow di to be greater than one to handle 
ties in the data. Let 5e be the set of individuals from distribution  e and define, for 
= 1, , m and i = 1, , k, 

der = Number of deaths at  t(j) among individuals  in se;  

n ei =  Number of individuals from Se At risk just prior to t(j). 

Of course, 

In 	 ni 

E dti = 	and Eno 
e=i 	 E=1 

Prentice (1978) and Peto and Peto (1972) have suggested the following scores for 
use with (8.1.11): 
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= 1, 	, k. 	 (8.1.13) 

It is easily seen that when there is no censoring, the at in (8.1.13) are identi-
cal to those in Example 8.1.1. To motivate (8.1.13) in the censored case, note 
that for the extreme value distribution that generated the scores in Example 8,1.1, 
—8 /  (y)I g (y) = eY — 1 = H (y) — 1, where H (y) is the distribution's cumulative 
hazard function. In (8,1.13) ai is seen to be (y(j)+) — 1, where 11(y) is the empir-
ical cumulative hazard function (3.2.13). The score ai is ai + 1; this is motivated 
by the observation that led to (6.2.8), namely, that H (y) has a standard exponential 
distribution, suggesting an adjustment of +I to a censored observation. 

For the m-sample problem, (8.1.11) in conjunction with the scores (8.1.13) gives 
the rank statistic 

Ut(0) = E[detat (net — del — ne,t+i)at] 
1=1 

E [—del + (net — ne,t +i) (t )1 
i=1 	 i=1 r1 .1 

'le 
= —Edei + E i  

i=1 	r=1 n i 

Since di = 1 (i — 1 	10 here, Ue (0) can be rewritten as 

rzeidi) 
Uz(0)= —.E (de, --- 

nt t=i 
m — 1. 	(8.1.14) 

This is, aside from sign, the statistic (7.1.18) produced in Section 7.1.2 by the par-
tial likelihood arguments for the proportional hazards model. From the expression 
(7.1.21) obtained in  Chapter?  the estimated covariance matrix for ,U(0) can be taken 
to have entries 

yes = E ik=1 
n(iii(inT 

—‘11)172
)ii (ses 
	

E,s = I, 	 1. 	(8.1.15) 

As discussed in Section 7.1.2, (8.1.14) and (8.1.15) can also be used if there is a 
small number of ties in the data, in which case some of the di will be greater than 
one, 

The equality of the m distributions is tested with the statistic 

x' = umy v -1  um), 
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which is distributed approximately as x(2 	under the hypothesis of equality. The 
variance estimate (8.1.15) was derived from the observed information matrix for the 
partial likelihood of Section 7.1.2; an alternative is the permutation variance given 
by (8.1.14. This should be used, however, only if the censoring pattern is roughly 
the same in each of the m samples. When there is no censoring, the permutation 
variance is exact, as indicated in Example 8.1.1. Unless censoring differs somewhat 
across the in samples, or samples are rather small, the two variance formulas usually 
give results that are in close agreement. 

The log rank test has been derived from two different points of view, first as a 
test based on the proportional hazards model of Chapter 7 and, here, as a linear rank 
test for location differences. As noted in Example 8.1.1, when there is no censoring, 
the test is asymptotically fully efficient for detecting location differences under an 
extreme value model. This is equivalent to stating that the test is asymptotically fully 
efficient for testing equality of lifetime distributions in a proportional hazards, or 
Lehmann, family, where lifetime T in distribution e has survivor, function of the 
form SE(l) = So (t)t. Crowley and Thomas (1975) showed that this result still holds 
under a random censorship model in which the same censoring distribution applies 
to each of the  in  samples, but that there is some loss of efficiency when the censoring 
distributions differ. 

Properties for the log rank test are more conveniently studied using the counting 
process formulation of Section 8.1.4, and a few additional comments are provided 
there. 

8.1.3 The Generalized Wilcoxon Test with Censored Data 

The extension of the Wilcoxon test of Example 8.1.2 to the case of censored data has 
been discussed by several authors. Prentice (1978) suggested the statistic (8.1.11) in 
conjunction With scores 

cei = 1 — 2 n  "i _ 	2F1 
j. , ni + 1 ' 

ai 	rr  n 
1

= 1  
+ 

i — 1 , 	k 	(8.1.16) 

where the ni are defined as in Section 8.1.2. As motivation for al recall that for 
the logistic distribution that generates the Wilcoxon scores in the uncensored case, 
—g'(y)18(y) = 2G(y) — 1 = 1 — 2U(y), where -6-(y) is the survivor function 
corresponding to g(y). In (8.1.16), Fi is roughly equal to the product-limit estimate 

(ni — 1)/ni at t(0-1-. Motivation for ai is provided in Problem 8.1. 
The test based on (8.1.16) reduces to the test given in Example 8A.2  in the case of 

uncensored data. To see this note that when there is no censoring and no ties, Fi 
ni I (n + 1) and ni n—i +1, so that di = 1 — 2(n —i +1)/(n +1) = 211(n + 1) — 1. 
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The components of the score statistic (8.1.11) can be written in a simple form 

r. f(0) = E [rival -1- (tie' — de,  — ne,i4.1)ai] 
r=1 

= — E Fide, E(n e, — nt,i+i)(1 — Fi) 
i=1 	r=1 

= — E Fidgi 	 — 
r=i 	i=i 

Now Fi_i — F,  = Fi/ni, and if di =1 (i.e., no ties) then 

Ut (0) 	EFj  (dti — 
fljj  

L = 1, 	. , m — 1. 	(8.1.17) 

It is interesting to compare this with the score vector (8.1.14) for the log rank test. 
They differ only in the weight given to the terms dei — ditzei/ni: whereas in the log 
rank test the terms are given equal weight, in (8.1.17) they are weighted actording 
to the estimate Fi of the survivor function at t(j ) +. The Wilcoxon test thus gives 
relatively more weight to earlier events than later ones. 

An estimate of the covariance matrix V for U(0) has . entries 

Y es E 2  di  (ni — di) nti 
ni — 1 	hi 

81,s rzsr) 
ni i=1 

as we discuss in the following Section 8.1.4. Equality of the ni distributions can be 
tested with the statistic X2  = U(0)'V —I U(0), which, under suitable conditions, is 
approximately x (2m _ 1)  under the hypothesis of equality. In addition, although the test 
has been developed on the assumption that there are no ties in the data, (8.1.17) 
and (8.1.18) can be employed when there is a small number of ties. In this case one 
should, however, define Fi as 

ni —  d  +1 .  
1=1  ni + 1 

As an alternative to (8.1.18), a permutation variance for U(0) can be used, pro-
vided that the censoring pattern is essentially the same in the different populations. 
According to the general formula (8.1.12), when there are no ties, terms in the per-
mutation covariance matrix are 

vt, = (t c7/(n — 1)) (NtSe s  — 
1=1 

AftAr s ) 
n 

e, s —  I 	in —1. 	(8.1.19) 

t, s = 1, 	, nt — 1, 	(8.1.18) 
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where ci represents the score (ai or ai) assigned to the ith individual in the combined 
sample and Ni is the number of individuals from population )  (j =1,..., Bres-
low (1970) proved in the two-sample case that (8.1.18) and (8,1.19) are asymptoti-
cally equivalent, provided that the same random independent censoring mechanism 
applies in the two populations. In finite samples the two variance estimates do not 
usually differ much, assuming that censoring is similar in the different populations. 

An illustration of the Wilcoxon test is given in Section 8.1.5. 

8.1.4 Counting Process Formulation of m-Sample Tests 

Suppose that the hypothesis H: St (t) = S2 (t) that two lifetime distributions are iden- 
tical is to be tested. This can equivalently be expressed as  H: H1 (t)  = H2(t), where 

(t) is the  cumulative hazard function (c.h.f.) for distribution e  e  = 1, 2). In terms 
of the counting process notation of Sections 3.2.4 and 7,2,3, a natural nonparametric 
procedure would be to use a statistic of the form 

W 
 = f

00 
k(u)[d f (u) — dii2(u)], (8.1.20) 

where A (t) and f/2(t) are the Nelson—Aalen estimates based on the independent 
samples from distributions 1 and 2, and k(u) is a predictable weight function. Inter-
estingly, this approach leads to linear rank tests of the type discussed in the preceding 
three sections. 

Let us set up counting process notation as follows: if there are independent 
censored random samples from distributions e = 1, 2, 	, m, let {(t e;  , 3e;), i = 
1 	ne} denote the sample from distribution E, and let 

dNei(t) = 1 (tei = t, (5ei = 1) 	and 	Yei(t) = I Oa > t) 

be the failure and at-risk indicators at time t. As earlier, let dNe.(t) = E, 
4(t) Y ei (t), and dN ..(t) = L  d Ne.(t), Y ..(t) = Et  Ye.(t). In the two-
sample case, it is a sensible requirement that k(u) = 0 if 111.(u)Y2.(u) = 0, and in 
that case (8,1.20) can be written in the alternative form 

	

W=  f 00 w(u)[d (u) — d (u)], 	 (8,1.2 1 ) 

where w(u) = k(u)Y..(u)1 Y2,(u) and dli(u) = d N ..(u)/ Y.,(u) is the increment 
in the Nelson—Aalen estimate based on the combined data from both samples. Note 
that (t) estimates the common cumulative hazard function under the hypothesis of 
distributional equality. For the m-sample problem involving a test of equality of m 
distributions, Hi (t) = = Hi,:  (t), we consider the obvious extension of (8.1.21), 
which is a vector W =  (W1,...,  Wm _i)' with components 

00 
We = f we(u)[d if e(u) —  dl-T!  (u)), 	L = 1, . 	tn —  1.  (8.1.22) 
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In the notation of' Sections 8.1.2 and 8.1.3, let  t(i) « t(k) be the distinct 
observed failure times in the combined sample from all m distributions, and note 
that Ye,(40) = nth Y..(t0)) = ni, dNe.(t(1)) = dei, and dAr..(40) = di. Thus 
(8.1,22) takes the form 

We = E del 	di we(t (i) , (_ _ _) . 
i=1 	nei 	ni 

Most tests consider weight functions of the form we (t) = t(i)W(t), and in this case 
we get 

fl tj 
Wt = E 	(dei _ _di) , 	= 1, . , . , m — 1. 	(8.1.23) 

ni i=1 

As noted, both the log rank statistics (8.1.14) and the generalized Wilcoxon statistics 
(8.1.17) are of this form: the former has w (t(I )) = —1 and the latter w(t(o) = 
This class of tests is often referred to as the weighted log rank class. Note that for 
the tests to be rank-based and thus distribution-free when there is no censoring, the 
function w(t(0) must depend only on the rank (1) and not on the t-value, t(j). When 
censoring is present the tests are not strictly distribution-free, with even properties 
under the null hypothesis depending in general on the censoring process and com-
mon lifetime distribution. However, the procedures are nonparametric and are valid 
whatever the underlying distribution happens to be, 

Distribution theory for statistics of the form (8,1.22) with we (u) = Ye(u)w(u) can 
conveniently be approached through martingale arguments outlined in Appendix F. 
Note in particular that if Hi (t) = =  Hm  (t),  then 

dN..(u)1 

	

We = f 	 e. 	—. Ye,(u) 	 
Y..(u) 

oo 	f 
 = f w (u) 1 M E.(u) Y 

 g(u) 
 dM..(u)), 

Y..(u) 

where d Me,(u) = Ne,(u)—Ye,(u)dH (u) and d M ..(u) = N ..(u)— Y ..(u)dH (u), 
with H(u) the common cumulative hazard function. The processes {Me,(u)} and 
M..(u)} are martingales, so the behavior of WI, , W,n _i is easily studied if w(u) 

is predictable. An application of (F16) in Appendix F gives an estimate of the covari-
ance of We and Ws  for  L,  s = 1, . . . , m — 1 as 

Ve s  = fw(u)'  y..(u)  8e, 
o

c° 	.,Ye,(u) ( 	Y,,,(u)  ( Y..(u)— dN..(u))  

Y..(u)) 	 Y..(u) — 1 	
dN..(u) 

k = z w(to2 nti  ( 	
ni

8es nsi) 

 ni — 1

(ni — di)di 

) 	ni 	 . 1=1 
(8.1.24) 
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The weights w (t (I )) = —1 and tv(1(1)) = —Fi give the expressions (8,1.15) and 
(8.1.18) for the log rank and Wilcoxon tests in previous sections. 

The statistic X2  = 	V'W, where W,= 	, W„,_1)' and V = (Ve,), can 
be used to test Hi (t) = 	=  Hm  (t).  Under the null hypothesis, X2  is asymptotically 

The generalized Wilcoxon test statistic given earlier is of the form (8.1,23), with 
w (t(j )) =  —F1,  where 

ni + 1 — di 
F1= {J 	 I ni + 1 

as suggested by Prentice (1978). A different generalization of the Wilcoxon test was 
considered by Gehan (1965), who suggested the weight function w(t(i)) = ni; Pren-
tice and Marek (1979) and others, however, have warned against the use of this test if 
censoring patterns differ substantially across the m samples. Harrington and Fleming 
(1982) suggested a family of tests with 

w(40; A) = :S;  (t(j))" 	p 	O. 

The special case p = 0 gives the log rank test and p = 1 gives something close to 
the Prentice—Wilcoxon test. Fleming and Harrington (1991, p. 275) indicate that the 
test using w(t(,); p) is efficient against alte rnatives for which any two distributions 
have hazard functions related by 

X2(t) = X1(t)e' 6' {SI (t)P + [1 — S  

The case p = 0 gives proportional hazards, X2(t) = e'6  Xj(t). The generalized 
Wilcoxon test with p = 1 is efficient against alternatives in which X (t)/X2(t) 
as t 	co (Si (1) 	0). This ties in with the rank-based approach in Sections 8.1.1 
and 8.1.3, where the test arises from scores based on a log-logistic AFT model for 
lifetime. This model has hazard ratios with this propertY. 

Two modifications to the preceding •tests are Sometimes valuable. The first 
involves stratification, as in Section 7.1.6; hi this case, individuals are grouped 
into strata j = 1, . . , J and the hypothesis to be tested is that 

HIM = H2j (t) = 	 j = 	 (8.1.25) 

where Fief  (t) is the cumulative hazard function for those individuals in stratum j 
whose lifetimes  are from distribution (e = 1, , m). Stratification could be used, 
for example, to test for the equality of  two treatment effects when the lifetime distri-
butions for Males and females might be different, A test statistic for (8.1.25) can be 
obtained by combining straturn-speeific statistics of the type (8.1.22) or (8,1.23). 
In particular, let  Wt(J)  be the weighted log tank statistics (8.1.23) based on the 
individuals in stratum j only, and let  V(j) be the estimated covariance matrix for 
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WU) = (MU) ,  W„,_1(j))', as given by (8.1.24). Then the statistic 

( J 
X 2  = 

 

/ J 

W E 	vo)) (E w(J)) 
J=1 	J=1 	J=1 

(8.1.26) 

can be.used  to  test (8.1.25). If (8,1.25) is true, then the asymptotic distribution of X2  
in large samples is  

A second modification is useful when ni > 3 and alternative hypotheses of the 
form Hi (t) < H(t) < 	< Hm (t) are of interest; note that these alternatives 
are equivalent to  S(t) S2(t) > > Sm  (t). A test with more power than 
the test based on X2  = WV' W can often be obtained by considering scores 
ai «  a,1  and a statistic W (a) = a'W*; where a _(ai am )' and W* = 
(W1,.• • • , Wm), cbmponerits given by (8.1.23) with e = nz also being included. A 
statistic for  testing  the hypothesis of equal distributions i8 

x2 (a)  = w 00 2 [at I f f, a]- 
	

(8.1.27) 

where V* is the covariance matrix estimate with entries (8.1.24), with the values 
=  ni and s = ni also included. The statistics (8,1.27) are invariant to linear transfor-

mations a't  + ci ae of the scores. Quite often the scores at = e = 1, , in) 
ere useful, but in cases where the ni distributions refer  to individuals with certain 
quantitative characteristics it may be worth considering other choices. A good way 
to do this is to consider a proportional hazards model for which the quantitative 
'characteristics are represented by a covariate x, se that  Hg(t) 	H0(t) exp(fixe) for 

, 	 in; with xi « xm  the relevant x-values for .distributions  1,..., ay. 
We then Use at oc xe; See Problem 8.7 for further discussion. 

Underthe hypothesis Hi (t) = 	= H,n (t), the statistics (8.1.27) are asymp- 
totically 4)  in - large samples, and' arge values of X 2  (a) provide evidence against 
equality. 

8.1.5 Discussion and Examples 

The log rank and generalized Wilcoxon tests for equality of distributions are effec-
tive in settings where alternativé& involve stochastic ordering  of the distributions in 
question, that is, either St  (t) > S (t) or Se (t) < S (t) for distributions and j. Each 
test is efficient in certain settings: the log rank when the ni  log-lifetime distributions 
are extreme value distributions differing only in location, and the Wilcoxon when 
they are logistic distributions differing only in location. There is considerable theo-
retical and empirical work on the relative efficiencies of weighted log rank tests (e.g., 
see Lee et al. 1975; Lininger et al. 1979; Leurgans 1983, 1984, and other references 
in the Bibliographic Notes). If one has specific alternative hypotheses in mind, then 
this can guide the choice of test via the choice of weight function in (8.1.23). For 
example, the log rank test will be relatively more effective at detecting differences 
in the right tails of the distributions, whereas the Wilcoxon will be more sensitive to 
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early differences. Generally speaking, members of the family of tests tend to have 
good power across a range of stochastically ordered alternative hypotheses, however. 
A word of caution is that the asymptotic x 2  approximations to test statistics can be 
poor if sample sizes are too small (e.g., see Latta 1981; Kellerer and Chmelevsky 
1983). 

Weighted log rank tests can be ineffective when the hazard or survivor func-
tions for the different distributions cross, Then, statistics like (8.1,20) or (8.1.23) 
with positive-valued weight functions lc (t(l)) or w(t(,)) tend to have early terms (i.e., 
for smaller t(0) and later terms of opposite signs, resulting in small values for the 
test statistic. A good approach in this Case is to use time-varying covariates within 
a regression model, as illustrated in Example 7.1.2 of Section 7.1.8: This gives 
tests that are nonparametric but not rank-based, since the test statistic depends on 
the observed times, ti. A second approach is to consider weighted log rank statis-
tics in which the weights or scores have different signs for large Versus small i. 
Alternatively, one can preselect a time r and consider separate weighted log tank 
statistics for the observed data over (0, T. ] and over (r, 00). The tests described in 
Section 8.1.4 apply when lifetimes are subject to independent left truncation as well 
as right censoring; the data over (r, co) are treated as being left truncated at r. With 
this approach the two test statistics (in the m = 2 case) or two sets of statistics 
(when m. > 2) can either be combined or used separately; an illustration is pro-
vided in Example 8.1.3. A third approach is to use tests based on distance measures 
between distributions, which are robust to crossing survivor functions. For example, 
one might consider a statistic of Kolmogorov—Smirnov type, D = sup 1, 11(t)—&'2(t)I, 
for a test of the hypothesis 51(t) = S2(t). In D, 8.1(t) and 812 (t) are Kaplan.— 
Meier estimates. It is beyond our scope here to consider such tests, but see Schu-
macher (1984), Andersen et al. (1993, Sec. V.4) and references therein. Klein and 
Moeschberger (1997, Sec. 7.6) provide a table of critical values for the two-sample 
case. 

Tests of distributional equality are often associated with measures of the differ-
ences between distributions.  An advantage of this (assuming tha.t any models upon 
which the measure is based are satisfactory) is that such a parameter can be esti-
mated. The linear rank tests of Sections 8.1.1-8.1.3 are associated with location 
shifts in location-scale models for log-lifetime, so one could, for example, supple-
ment a significant test with estimates of the differences in median log-lifetimes for .  
the distributions in question. For the log rank test there is also the close connection 
with proportional hazards models, and it is customary to estimate  the relative risks 
Hi(t)/H.5.(t) = ht(t)/h(t). Some tests have less appealing measures associated 
with them, for example, the Kolmogorov—Smimov statistic D, so it can be a con-, 
sideration in the selection of a test whether or not one wants associated estimates of 
distribution differences. 

The following examples illustrate procedures in the preceding sections, 

Example 81.3. (Example 7.1.1 revisited). Some data on remission times for 
leukemia patients were presented in Example 7,1.1. Patients were given one of two 
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treatments A and B, and it was desired to test the hypothesis that the remission 
duration distributions for the two treatment groups was the same. 

The log rank statistic U(0) given in (7.1.15) was computed in Example 7.1.1; it 
is the same as (8.1,14) for the case where in = 2, with a change of sign. Using the 
negative of (8.1.14), we find U (0) = 3.323. The variance estimate (8.1.15) form = 2 
is the same as (7.1.16), and gives V = 8.1962, so the X 2  statistic is 3.223 2 /8.1962 = 
1.35. This gives a p-value of about .24 on 2{A )  and does not provide any evidence 
that the remission duration distributions are unequal. 

The generalized Wilcoxon statistic (8.1.17) gives U(0) = —U1(0) = 2.269 and 
(8.1,18) gives V = 3.0105, so X 2  = U(0) 2 / V = 1.71. The p-value on 4 )  is 
about .19, in agreement with the log rank test and similarly provides no evidence of 
a difference in distributions. 

Plots of the Kaplan—Meier estimates for the two treatment groups indicate that the 
hazard functions are roughly proportional and suggest that the log rank, generalized 
Wilcoxon, or other weighted log rank tests should be powerful in this situation. We 
therefore conclude there is no evidence of a difference. 

Example 8.1.4. Data on the survival times of 40 patients with advanced lung 
cancer were introduced in Example 1.1.9 and considered in Examples 6.3,3 and 6.4.3 
using accelerated failure time regression models. The same data were considered as 
part of a larger data set in Example 7.2.2. One question of interest concerned the 
existence of a treatment effect: there were two treatments, Standard and Test. Of the 
various other covariates associated with individuals, only performance status (PS) 
appears important. Assuming that treatment was assigned randomly to individuals, 
we could carry out a two-sample test of no treatment effect with additional covari-
ates ignored. A more efficient procedure, however, would be to adjust for the effect 
of performance status through stratification; we illustrate this procedure here. An 
approach that adjusts more fully for covariates is via regression modeling, as shown 
in Examples 6.3.3, 6.3.4, and 721. 

We will carry out a stratified log rank test using three strata based on performance 
status: individuals with PS 10-30, 40-60, and 70-90, respectively, are in strata 1, 
2, and 3. The procedure, described in Section 8.1.4, is to consider the hypothesis 
(8.1.25), which here is 

H Hij(1) 	H2i (1), 	j = 1, 2, 3, 

where Hu (t) and Fizi(t) are the c.h.f.'s for individuals with treatments Standard and 
Test. Log rank statistics are computed for each stratum, and the statistic (8.1.26) is 
used for the test of H. The log rank statistics (8.1.4), or (8.1.23) with w(t(i)) = 1 and 
their associated variance estimates from (8.1.15) or (8.1.24), are shown in Table 8.1; 
the score statistic for stratum j is denoted as ui and the variance estimate as vi. 
The test based on (8.1.26) returns the value X 2  (E u j) 2/ E vi  = .50, which is 
insignificant on 4 ) , and agrees quite closely with the result from the proportional 
hazards regression analysis of Example 7.2.2. The individual hypotheses (t) = 
H2j(t) for each stratum j = 1, 2, 3 can be assessed by considering the log rank 
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'Bible 8.1. Log Rank Statistics from Stratified Sample 

Stratum (PS) 

10-30 	 40-60 	 70-90 

= 1.02 

 

u 2  = —1.95 
V2  = 2.47 

.u3 = 2.64 
vi = .65 

  

y3 = 2.73 

statistics X2  — u 	» 2 /v this allows for the possibility that the treatment effect differs 1  
according to performance status level. The statistics X.1 are 1.59, 1.54. and 2.56 for 
j = 1, 2, 3; none of these is significant on 4)  at the .10 level. Of course, the very 
small number of individuals in each treatment group within strata means that only 
very large treatment effects would be likely to be detected. 

Example 8.1.5. Problem 74 gave data on survival times of patients with bile 
duct cancer who took part in a clinical trial to compare persons receiving a combina-
tion of radiation treatment and drug 5-FU with a control group. A plot of the Kaplan—
Meier estimates for the two treatment groups (Treatment and Control) shows them to 
cross at about 400 days; see Figure 8.1. Weighted log rank tests do not provide evi-
dence cif a difference in the two distributions. The log rank value from (8.1.23) with 
w(t(0) = 1 is W = —.652 (with the control group as distribution 1), with associated 
variance estimate V from (8.1.24) of 9.3615, giving X2  = .045 and a 4 1  p-value 
of .83. The generalized Wilcoxon test using tu(t(0) = (t(0), where &'(/) is the 

1000 	1500 

Survival Time (Days)  

Figure .8.1. Kaplan—Meier estimates of survival with bile duct cancer for treatment and control groups. 
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Kaplan—Meier estimate from the combined sample, gives W = —2.24, V = 3.750, 
X2  = 1.34, and a d p-Value of .25. The Wilcoxon test weights the earlier failures 
more heavily than later ones, and consequently gives  a smaller p-value, but it is still 
far short of significant. 

Other test statistics could be considered. One approach that was discussed for 
settings where survivor functions cros is to compute separate test statistics for data 
before and after a certain time. Let us consider this option by computing separate log 
rank statistics for the data (i.e., death and censoring times) up to t17,-- 400 and after 
t = 400. The value 400 has been selected after looking at Figure 8.1, so one should 
not treat any p-values very seriously; however, the test will give an idea whether any 
a priori choice of test would have been likely to demonstrate a significant difference 
in distributions. The statistics W .' and V' based On the data over (0, 400] are given 
by (8.1.23) and (8.1.24), with only the t(i) in (0, 400] included, and the statistics W" 
and V" based on the data over (400, cc)  are given by (8.1:23) and (8.1.24), with only 
tm greater than 400 included. This gives 	= —1.986, V' = 7.841, cr = 1.334, 
V' 	1.521. Neither segment of the data on its own gives a significant result, nor 
does a test based on the statistic IU'I 	i• 

8.2 ESTIMATION FOR SEMIpARAIVIETRIC AFT MODELS 

Semiparametric inference procedures for the  regression  coefficients /3 in log-
location-scale models of the form (8.0.1) can be based on the ideas used to derive 
linear rank tests for comparing distributions. This is considered in Section 8.2.1, 
following which extensions to deal with time-varying covariates are discussed. We 
will see that this methodology is much harder to implement than that for the semi-
parametric proportional hazards Model in Chapter 7. 

8.2.1 Rank-Based Procedures with Fixed Covariates 

Linear rank inference procedures for p in (8.0.1) can be based on the approach in 
Section 8.1.1. To do this, consider a hypothesized value )30 under which the "errors" 

= 	— glxi are independent and identically distributed (i,i.d.). If (yi, 81),  j  = 
1, 

 
. n  is a censored random sample of log failure times generated by (8.0.1) and 

an independent censoring mechanism, the values 

z.i (Po) = y, 	gpzi, 	i — 1 	n 	 (8.2.1) 

are a censored random sample from the distribution of Z. Let us write zi (Po) as zf 
for convenience, remembering that it depends on /30, and let Z(I) < 	< z(k) be 
the distinct values among zi , 	, z n  that correspond to observed failure times (i.e., 
to units with Si = 1). Now consider statistics of the form (8.1.11), 

	

U(130) = Dailt(i) als(0), . 	 (8.2,2) 
t=i 
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where it is assumed that there are no tied failure times, and where S(j) = E x e., with 
the sum being over those individuals L for whom Si = 0 and zu) < ze < zu+D• 
Under (8.0.1) and the hypothesis that 130 is the true value for p, the properties of the 
statistic U(P0) are the same as those of the statistic (8.1.11). 

As shown in Section 8.1.4, it is convenient to consider linear rank statistics in 
counting process form, so we will examine estimating functions of the form 

Erè,__ I  xel (ze 	zi)  
U(Po) = E biw(zi) 	

I 	
(8.2.3) 

i=1 	 EL, 1 (ze 2.-  zi) 

where w(zi) is a weight function that is non-zero only if Si = 1 and that depends 
only on the rank of zi among values with ô  = 1. When there are no tied values, 
(8.2.3) can be written as 

Xel(Ze 	ZU)) 	
Ua3) = E w, 	 (8.2.4) 

It is easily shown that a statistic of the form (8.2.4) can be rewritten in the form 
(8.2.2), with ai and ai given by (8.3.6) in Problem 8.2, and ni = E (ze > 40). 
Conversely it can be shown, exactly as in Problem 8.2, that any statistic of the form 
(8.2.2) for which cri and ai satisfy (8.3.7) can be expressed in the form (8.2.4). The 
form (8.2.3) is also defined when there are tied values among the zi with Si = 1. 
As with the in-sample test procedures in Section 8.1, we get different estimating 
functions U(Po)  through different choices of weight functions. The most common 
choices are wi = 1 and tat = ,§(z(j)), respectively, in (8.2.4); they correspond to the 
log rank and Wilcoxon weights used for the tests in Section 8.1. Here, is the 
Kaplan—Meier estimate based on the data (zi , 8/),  I  = 1, . . . , n. 

It can be shown using martingale arguments like those mentioned in Section 8.1,4 
that n -1  /2 U(P0) is asymptotically normal. For notational convenience define for 
—oo < z < 00 

k. (z; po) _ E'=1 I (ze z)x e  

Then (8.2.3) and (8.2.4) can be expressed as 

U( o) = E Siw(zi){xt 	(zt; 11o)), 
t=i 

and n-112u(p0) is asymptotically normal with mean vector 0 and a covariance 
matrix that is estimated consistently by 

I Po)][xe — Ft (zi;  ho)]' = -' Lajw(zi) 2 {ELI (ze zi)[xt 
n 	 Ere1=1 I (ze zi) 

(8.2.7) 

(8.2.5) 

(8.2,6) 
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The estimating function U(00) depends on (30 only through the ranks of the val-
ues zi = yi — f4xi. Thus, two different values 130 will give different U(f30) val-
ues only if the ordering of the zi they give is different. This means that U((30) is 
a complex step function of P0, and it is not necessarily monotone. As a result the 
preferred way to define a point estimate (̂3 is as the value /30 that minimizes some 
norm II U(P0) II, such as U((J0) /  V ((J0) -1 U((Jo) or U(P0)T(P0). There has been 
relatively little consideration of point estimation in the literature, in part because it 
turns out that variance estimation is difficult. In addition, the computation of the 
vector /30 that minimizes some norm can be challenging when dim(P0) > 1. Lin 
and Geyer (1992) describe an approach based on simulated annealing; Jones (1997) 
describes another method. 

Interval estimation of 13 is more conveniently based on the estimating function 
U(13o) than on it. If po  is the true value, then WI ( (3o) = n —l uakrv(Por'u((30) 
is asymptotically x(2p) , where p = dim(/3), and an approximate a confidence region 
for p is given by the set 

{Po WI (Po) 5_ 4), OE 	 (8.2.8) 

An asymptotically equivalent alternative is to replace V(130) in WI ( (Jo) with  V(P). 
A similar approach can be used to estimate subsets of the parameters. For example, 
let P = ((J; . Pp' and suppose we want to estimate /3j.  Wei et al. (1990) showed that 
we can consider 

((3z; Pio) = tr i  gi3Y V (fir l Udi 

where J  = ((J,13) , . Under the hypothesis that pi = Pio, the statistic 

W3 ((3  10) = min 1472(132; (3 m) 	 (8.2.9) 
[32 

is asymptotically x(2q) , where g = dim(/31). An approximate a confidence region for 
PI consists of vectors in the set 

{(3 10 W3( (3 10)  

This procedure can in particular be used to get confidence intervals for individual 
parameters. 

Example 8.2.1. Fleming and Harrington (1991) presented data on 418 patients 
who took part in a study on primary biliary cirrhosis (PBC) of the liver between 1974 
and 1984. This is a disease that eventually leads to destruction of liver function and 
death, The data, available in Appendix D1 of Fleming and Harrington (1991) and 
in electronic form (see Appendix G), contain information on survival time T (the 
number of days between registration in the study and death), assigned treatment, 
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age, sex, biochemical measurements, and disease conditions. Here we consider only 
a group of five variables that have been found to be important in predicting survival 
time. These are 

Age-Patient age at time of registration; 
Edema-A variable scaled to take values 0, .5, and 1, respectively, denoting three 

levels of edema, of increasing severity; 
Albumin-Serum albumin concentration; 
Bilirubin-Serum bilirubin concentration; 
Protime-Protluombin time. 

Two patients had missing prothrombin times and are dropped in the analyses dis-
cussed here. 

Table 8.2 shows the results of fitting several log-location-scale models of the form 
(8.0.1). Parametric extreme value and logistic models were fitted as described in Sec-
tions 6.3.2 and 6.3.3. Table 8.2 shows maximum likelihood estimates (m.l.e.'s) for 
the regression coefficients, intercept, and scale parameter for each model. For each 
regression coefficient the Z2  value ,q/se(fli) 2  is shown. In addition, a "robust" Z2  
value is shown, obtained by replacing se03 i) in Z 2  by a robust standard error calcu- 

ThbJe 	Parametric and Semiparametric Log-Location-Scale Models for PBC Data 

Term 

Extreme-Value 
Semiparametric 

(tD, = I) 

Estimate Z2  Z2  (robust) Estimate 

Intercept 12.15 - - - - 
Age -.026 25.5 19.6 -.027 20.2 
Edema - . 64 13.0 8.9 -.69 7,4 
Log (albumin) L63 14.8 16.5 1,66 9.4 
Log (bilirubin) -.57 106.3 101.6 -.58 68.1 
Log (protime) -1.72 11.0 7.1 -1.88 6,9 
Scale .67 - - -- - 

Semiparametric 
Logistic (w, 

Term Estimate Z2  Z2  (robust) Estimate 

Intercept 13.51 - - - - 
Age -.028 22.2 22.9 -.027 21.7 
Edema -.81 13.5 10.3 -.80 10.3 
Log (albumin) 1.54 10.8 10.4 1,60 9,9 
Log (bilirubin) -.58 86.1 83.6 -.59 76.6 
Log (protime) -2.33 11.3 7.0 -2.30 9,4 
Scale .51 - - - - 
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lated using the robust asymptotic covariance matrix (C30) in Appendix C. Finally, 
semiparametric estimates obtained by Lin and Geyer (1992, Table 1) are shown; they 
are obtained by minimizing II  U(130)  il  using the L1 norm. Also shown are W val-
ues, obtained by computing for each fij  the statistic W3 (P10)  given by (8.2.9), with 

= 0 replacing gm  and 132 identified with the regression coefficient vector exclud-
ing pi . As for the Z 2  values in the table, the individual W values can be used to test 
the hypotheses that the regression coefficients equal 0, with approximate p-values 
obtained from 41)  probabilities. Two sets of semiparametric values are shown, based 

on estimating functions (8.2.4) with wi = 1 and ui =S(z(i) ), respectively. These 
values provide high efficiency when a model (8.0.1) holds, with errors Z that are 
approximately extreme value and logistic, respectively. 

Table 8.2 displays close agreement between the semiparametric and parametric 
estimates, with agreement particularly close between the parametric and "efficient" 
semiparametric estimates. There is relatively little difference between the ordinary 
and robust parametric standard errors, Residual plots and other model checks dis-
cussed in Section 6.2 show both the extreme value and logistic location-scale models 
(6.1.4) with  u(x) = P'x to be consistent with the data, so this is not surprising. 
The logistic distribution is slightly better supported within the larger log-Burr family 
of parametric models discussed in Section 6.4.1, but conclusions based on the two 
models are for all practical purposes identical. 

This example illustrates the fact that, when the location-scale framework (8.0.1) 
is appropriate, the application of fully parametric models along with model checking 
has a great deal to recommend it. Parametric estimates of regression coefficients are 
robust, as discussed in Section 6.3.4, and the use of robust variance estimates main-
tains the validity of tests and confidence intervals under departures from the assumed 
error distribution. The agreement between inferences based on suitable parametric 
models and ones based on semiparametric models is close. The much simpler imple-
mentation of the parametric methods makes them the approach of choice in most 
settings. 

8.2.2 Rank-Type Procedures with Time -Varying Covariates 

In the accelerated failure time model, covariates effectively alter the rate at which 
time passes. This suggests that if external covariates x(t) are time-varying, then we 
might consider models for which the survivor function is of the form 

Pr(T > 'IX). (f  vf[x(u); p] du) , 
6 

(8.2.10) 

where 1,/,(.; [3) is a family of positive-valued functions specified up to a parameter 
p, s(.) is a survivor function defined on (0, co), and X = (x(t), t > 0} is the 
covariate process history. In the case Where (u) = x is constant, (8.2.10) gives 
Pr(T > tix) = Sp(*(x; [3)t), which is the standard AFT model considered in 
Chapter 6 for fully parametric settings. 
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A convenient form for (8.2.10) in many applications is given by (6.4.18), which 
we write here as 

Pr (T tlX) =S'tj' (f e — P'x(u)  du 
0 

(8.2.11) 

When x(u) = x is constant, this gives 

Pr(T tlx) = Sp(e — P'x t) 

= SO(Y — 

where y = log t and So(y) = S6"(eY). This is the location-scale model (8.0.1) for 
which serniparametric methods, not requiring specification of So(.), were discussed 
in the preceding section. We will consider the model (8.2.11) in the remainder of this 
section. 

Rank-based estimation procedures can be based on the fact that under (8.2.11) 
and the hypothesis H: p = Po, the quantities 

es  (po) = f e —iNixi (u) du  
0 

act as a set of (possibly censored) residuals. In particular, if the failure time random 
variable Ti  replaces ti in (8.2.12), then the ei (PO' s are i.i.d. An estimating function 
analogous to (8.2.3) with the log rank weights w(z) = 1 has been considered by Lin 
and Ying (1995) and others: 

U(P0) = 	{CO 	
gel(PD).?.. er (Pci)lxtre -e- I  (er(P0))li  

Ear 	 , 

	

 ELI ilee(P0).. et (PO)] 	
(8.2.13) 

r=.1 

where ee-1  (es (Po)) denotes the real time, t, which corresponds to the value es (Po). 
That is, t satisfies 

e — r3()"€ (u)  du = ei (PO. 
	 (8.2.14) 

Under appropriate conditions, if Po is the true value of p .then 	I /4(P°) is 
asymptotically normal with mean vector 0 and a covariance matrix that is estimated 
consistently by 

V(f3 0) = 1 'xi-% re'. (ee ei)[xt(tt) — i(ti; Po)lixt(ti) — 710 r ROY   — 	r E7= , I (eg es) n  i=1 
(8,2.15) 

where for simplicity of notation we have written et for et (P0) and 

E7.... 1  
 (tr; Po) — 	
I (et 	es)xt[e e-1  (es)] 

i  
ELI I (et el) 

(8.2,12) 
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The estimating function u(po) and estimated covariance matrix v(p o ) are formally 
similar to (8.2.4) and (8.2.7) for the fixed covariate case in the preceding section, and 
confidence intervals can be found by using the procedures described there. 

This and other rank-based procedures require that the values of time-varying 
covariates for all individuals be known for all t that may appear in one of the equa-
tions (8.2.13). This and the need to solve (8.2.14) make application of these methods 
difficult in many situations. Note also that it may be necessary to know values of 
X(t) for t > te. 

8.2.3 Discussion 

Regression models with independent continuous responses Yi and covariates xi or 
Xi = {xi (t), t > 0) have the property that certain functions Zi of Yi, /3, and xi or Xi 
are LW, In particular, in the location-scale family (8.0.1), the errors Zi = Y — /3'xi 
are i.i.d. with some distribution function Fo(z), and in the AFT model (8.2.11) with 
time-varying covariates the quantities Zi = ei (/3) given by (8.2.12) with Ti replacing 
ti are Li.d. This opens the door to the use of distribution-free rank procedures based 
on likelihood or on estimating functions for 13 that effectively measure association 
between the ranks of the Zi and characteristics of the covariate values; the  Z, are 

and thus independent of the covariate values if . fl is the true value and the model 
family in question is correct. The presence of censoring makes things more difficult, 
but rank-type procedures that are at least asymptotically distribution-free can often 
be devised. 

The fact that rank-based estimating functions u(p) have discontinuities and are 
hard to characterize creates difficulties for the estimation of /3, as the preceding sec-
tions have shown. With the multiplicative hazards models in Chapter 7 it was seen 
that other approaches to semiparametric estimation could be developed, in particu-
lar, methods based on partial likelihood and on semiparametric maximum likelihood, 
In fact, when the lifetime data are uncensored, these approaches gave procedures 
that are also rank-based methods. Alternative approaches are also possible with AFT 
models. We will briefly discuss one of them, which also turns out to be hard to 
implement. Additional approaches can be found in references in the Bibliographic 
Notes. 

Let us consider the log-location-scale model (8.0.1) with fixed covariates, and 
suppose  temporarily that the distribution function Fo(z) for the Zi is known. The 
maximum likelihood estimating function for p from a censored random sample 
(yi, 3i),  j  =  1,  n is then 

fo(zi)  u(p)= 	xi  Is  	(1 	Si) 	, 	(8.2.16) ' fo(z) 	so(zi) 

where zi  = yi — p'xi and fo (z) and So(z) are the p.d.f. and survivor function (s.f.) 
for  Z.  Defining 0(z) = ,f( (z)/ fo(z), we can rewrite (8.2.16) as 
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f Sb(u)dSo(u)1 
U(P) =Exi {8i95(Zi) (1 (51) 

i=1 

	
So(z1) 

Ex, oiczo - ( 1 - 6i)E[q5(z1)izi > zip 
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(8.2.17) 

(8.2.18) 

This estimating function is not usable since we do not know Fo(z), but (8.2.18) 
suggests an approach. Suppose that 0(z) is an arbitrary function of z and that poten-
tial log censoring times yr are independent of the Yi, given xi x„, It then easily 
follows for estimating functions of the form (8.2.18) that 

E{U(13)} = 	 (8.2.19) 

since 81 = 1 if and only if Yi < yr . Since E(q5(Z1)) is the same for i — 	 
Emp)) = 0 if  Ex = 0, or if E {0 (Zi)} = 0. One approach would be to include 
an intercept term in 13'xi and restrict Fo(z) by assuming that E(0 (Z)} = 0. We 
suppose instead that there is no intercept; we can then center the covariates so that 
Ex/  = 0, and U(13) is unbiased. An  obvious approach is now to use the estimating 
function (8.2.19) with the expectations in the second term estimated nonparametri-
cally. This can be done by replacing So(z) with the Kaplan—Meier estimate So(z) 
based on the zi: 

n f c*  (u)d:50(u) 
U()  = 	xi 6io(zi) 	(1 	Si) 	  — 0. 	(8.2.20) 

I. 	 So (zi,  

This can be solved by a two-stage iterative procedure in which (z) is the Kaplan, 
Meier estimate based on the current estimate p, and then (8.2.20) with zi = yi —P / X; 
is solved for 13 to give the new current estimate. The choice 0(z) = z gives a gener-
alization of least squares to the censored data setting. This was suggested by Buckley 
and James (1979) and has been studied further by James and Smith (1984) and Ritov 
(1990). Unfortunately, the estimating equations in (8.2.20) are in general discon-
tinuous, and so not particularly easy to deal with. There is consequently no practi-
cal advantage for these methods over the rank-based approaches of Section 8.1.1. 
Ritov (1990) has established an asymptotic equivalence between estimation based 
on (8.2.20) and the rank-based methods. 

The fact that generalized residuals Zi are i.i.d. if AFT models such as (8.0.1) and 
(8.2.11) are correctly specified provides opportunities for model checking based on 
observed residuals like = yi — frxi, as discussed and illustrated for parametric 
models in Chapter 6. Although semiparametric estimation methods afford protection 
against misspecification of So(z) in (8.0.1) or (8.2.11), which can occur with fully 
parametric models, the awkwardness of semiparametric estimation and the ability to 
check parametric assumptions are strong reasons to use fully parametric methods in 
most situations. Consequently the methods discussed in Chapter 6 tend to dominate 
in regression settings. 
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BIBLIOGRAPHIC NOTES 

Linear rank tests have been discussed for uncensored data by many authors; Hajelc 
and Sidak (1967), Lehmann (1975), and Hettmansperger (1984) provide book-length 
accounts of the general theory and applications. The log rank and Wilcoxon tests 
were considered by Savage (1956) and Wilcoxon (1945), respectively; Kruskal and 
Wallis (1952) considered in-sample Wilcoxon tests. These tests were later modified 
for use with right-censored data: Mantel and Haenszel (1959) and Mantel (1963, 
1966) considered what is effectively the log rank procedure and Gehan (1965) and 
Breslow (1970) considered Wilcoxon procedures. Linear rank tests with censored 
data were considered by Johnson and Mehrotra (1972) and Mehrotra et al. (1977) for 
Type 2 censored data, and by Peto and Peto (1972), Kalbfleisch and Prentice (1973) 
and Prentice (1978) for more general types of censoring. Crowley and Thomas 
(1975), Leurgans (1983, 1984), Struthers (1984), Cuzick (1985), and others have 
considered these tests further. Empirical studies by Lee et al. (1975), Peace and 
Flora (1978), Lininger et al. (1979), Latta (198 1) and Kellerer and Chmelevslcy 
(1983) have examined the size and power of the tests in various settings. Peto et al. 
(1976, 1977) give extensive illustrations of the application of rank tests to the design 
and analysis of clinical trials. Sample size requirements for log rank tests have been 
considered by Schoenfeld (1981, 1983) and Lakatos (1988). Collett (1994, Ch. 9) 
provides additional references. 

The counting process formulation of rank tests was taken up by Aalen (1978b) and 
Gill (1980), where martingale theory was deployed as a powerful tool for devising 
their properties. Andersen et al. (1982) review this topic and show how statistics of 
the form (8.1.11),can be expressed in the weighted log rank form (8.1.23); see also 
Mehrotra et al. (1982). Tarone and Ware (1977) and Morton (1978) had previously 
considered weighted log rank test statistics, which are very easily handled in the 
cciunting process framework. Later work has tended to use this approach, and the 
books by Gill (1980), Fleming and Harrington (1991) and Andersen et al. (1993) 
give mathematically detailed presentations of the theory. 

Other types of nonparametric two-sample tests were mentioned in Section 8.1.5. 
For additional examples and discussion see, for example, Fleming et al. (1980, 1987), 
Tarone,(1981), Schumacher (1984), Jones and Crowley (1989, 1990), and Pepe arid 
Fleming (1989, 1991). Sequential versions of tests in this chapter have also been 
considered. This is Outide the scope of the book, but see, for example, Koziol and 
Petkau (1978), Jones and Whitehead (1979), Tsiatis (1981b), Sellke and Siegmund 
(1983), and Whitehead (1992). Weighted log rank tests and other m-sample proce-
dures for discrete data are considered by Cook and Lawless (1991), Kalbfleisch and 
Lawless (1991), and Park (1997). 

Klein and Moesehberger (1997, Ch. 7) discuss many types of tests for comparing 
distributions. Oakes (2001, see Secs. 3.2, 4.4, 5.2, 8,3) gives an interesting commen-
tary on these tests,. 

The use of linear rank procedures for estimating regression coefficients in the 
model (8.0.1) was considered by Adichie (1967) and Jure6kova (1971). Kalbfleisch 
and Prentice (1980, Ch. 6) discussed the censored data case informally, and Louis 
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(1981), Tsiatis (1990), Ritov (1990), Wei et al. (1990), Lai and Ying (1991), and 
Ying (1993) provided more rigorous treatments and  discussions  of asymptotic prop-
erties. The case of time-varying covariates has been discussed by Robins and Tsiatis 
(1992) and by Lin and Ying (1995). Bagdonavicius and Nikulin (1997, 2001) con-
sider several types of models with time-varying cpvariates, One of which is  (8.0.1). 

Buckley and James (1970) generalized least squares  to Censored data,  improving  
on an earlier attempt by Miller (1976); Currie (1996)  discusses computational  aspects 
of these methods. James  and Smith (1984) and James (1986) consider more general 
estimating function approaches discussed in Section 8,2.3. 

COMPUTATIONAL NOTES 

Many software packages implement the weighted log rank tests discussed in Sec-
tions 8.1.1-8,1.5. A word of caution is appropriate, because different packages may 
use different version of certain tests (e.g., the generalized Wilcoxon). In addition, 
some packages employ permutation-based variance estimates that are appropriate 
only when the censoring processes for the distributions in question are the same. 

PROBLEMS AND SUPPLEMENTS 

8.1 Linear rank tests. 

(a) Consider the scores al given by (8.1.5) for the case of uncensored data. 
Show that ai can be expressed as 

	

a; = E (15(U(0)), 	 . , n, 

where U(1) « Uoi) are the order statistics from a random sample of 
size n from the distribution  U (0,  1), and 

(x))  
tp(x) 

where G(y) is the cumulative distribution function corresponding to g(y). 
(b) It can be shown that an asymptotically equivalent linear rank statistic to 

(8.1.4) with (8.1.5) is given by (8.1.4) with scores defined by 

= (15 	' 
	= 	 (8,3.1) 

(Note that E {Um) = i 1(n 1).) Compare the values a; with the a; for the 
log rank and Wilcoxon tests in Examples 8.1.1 and 8.1.2, which correspond 
to extreme value and logistic models for  Y.  
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(c) For censored samples, let  t(I) « t() be the distinct observed failure 
times. A common suggestion is to define the score  cc ; for  t(j) by 

OI  = 	- 	-- 1 	k 	(8.3.2) 

where &"(t) is an estimate of S(t), the common survivor function for T = 
exp Y when 0 = 0 in (8.1.2). Suppose now that a censored observation t* 
lies in the interval No, 41+10. A common score assignment for t* is then 

1 	f l  

1  — u u 
g5(x) dx1„ =1  _g(to)) , 	(8.3.3) 

motivated by the fact that we know the lifetime corresponding to t* 
exceeds t(j).  Obtain (8.3.2) and (83.3) for the cases where G(y) has 
standard extreme value and logistic form, respectively. 

(Sections 8.1,1-8.1.3) 

8.2 Equivalence of two forms of linear rank statistics. Consider the statistics 
(8.1,23) in the case where there are no tied failure times: 

	

We = E wi(dei — nei I ni) 	e -- 1 	in —1, 	(8.3.4) 
1=1 

where wi = w (t(j)) and de; = 1 iff the failure at 40 is from group E. 

(a) Show that (8.3.4) can be written in the form (8.1.11): 

Wt = 	4.21.( 1 ti --  I  -- r1 41-1-1)], 	Z == 1, 	, ta -- 1, (8.3.5) 
1..1 

where, for i 	1 	k  ai and a; are defined as 

	

(xi = Iv/ — E wane, 	a; = —E we/ne. 	(8.3.6) 
t.i 	 t=i 

Note that the ai, a; values satisfy 

cr = nia;_i — (n; — 1)a; 	i = 1, . , , k, 	(8.3.7) 

with ao defined as 0, 
(b) Show conversely that if We has the form (8.3.5) for scores al , a; that satisfy 

(8.3.7), then it can be rewritten in the form (8.3.4), with ID/ = cri — ai 
(i = 1 , 	k). 

(Section 8.1.4; Prentice and Marek 1979; Mehrotra et al. 1982) 

8.3 Consider in-sample tests based on statistics of the weighted log rank form 
(8.1.22) or (8.123), Relate the ith term of (8.1.24) to the covariance matrix 
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for the multiple hypergeometric observation (c111, 	,dm _i.1) with probability 
function 

nt 
Pr (di; , 	, d,n_i,i) =

t=i  (
n°) / 
dei . 	di 

Link this to the application of the martingale result (F16), from which (8.1.24) 
can be obtained. Examine whether (8.1.24) is an unbiased estimator of the exact 
covariance matrix of (W1, . , . , in (8.123). 

(Section 8.1.4) 

8.4 Consider the data on times to a first pulmonary exacerbation for persons with 
cystic fibrosis, introduced in Example 1.1.8 and subsequently discussed in 
Examples 3.2.4, 3.2.5, 6.2.3, and 6.3.4. 
(a) Carry out tests of no difference in the distributions of time to first exacerba-

tion for the Placebo and Treatment (rhDNase) populations using weighted 

	

log rank procedures. 	no adjustment for forced expiratory volume 
(fey), 

(b) Carry out stratified versions of the tests in part (a), by dividing subjects 
into three strata based on their fey values. Form strata of approximately 
equal sizes by using the .33 and .67 qiiantiles of the fey measurements as 
cut points. Compare the p-values for these tests with the corrtspoadirig 
tests in part (a), and with the.parametric test for no treatment effect based 
on the analysis in Example 6.3.4. 

(c) How do you feel most comfortable quantifying the treatment effect? 
(Section 8,1) 

8.5  Consider  the  two-sample electrical insulation failure time data of Example 5,4.2, 
for which a log rank test was used in'Problem 7.7. Carry out a test of no differ-
ence in the two lifetime distributions using the generalized Wilcoxon test, and 
compare it with the log rank result. 

(Section 8.1) 

8.6 Consider the data on times to failure of five types of ball bearings, discussed 
in Problem 5.8. Carry out rank-based tests of equality for the five failure time 
distributions. Compare results with those of the parametric analysis in Prob-
lem 5.8, and discuss the pros and cons of the rank-based and the parametric 
methods. 

(Sections 8.1, 5.4) 

8.7 Derive a log rank trend test statistic (8.1.27) from a suitably defined propor-
tional hazards model with Ht (t) = Hn(t)exp(Pxe),  for e  = 1, . . . , rn. Discuss 
how to develop this test as well as others of linear rank form from the approach 
described in Section 8.1. 

(Sections 81.!, 8.1.4) 
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8.8 The following is another way of looking at the Wilcoxon test. Suppose for 
simplicity that there is no censoring and let Y11 (i = 1, 	n i) and Y2t (1 = 
1 	n2) be independent, random samples from two continuous distributions 
with survivor functions Si (y) and 52(Y).  Define 

7,, 	1 	if Y2j 	YII 
1-1 if Y2j > 

and let 

i  = 1 	ni 	j = 	, 

ni n2 
W = E Eui,. 

1.1 

(a) Show that W = (n 1) U(0), where U(0) is the Wileoxon score statistic 
given in Example 8.1,2. 

(b) Show under Ho: Si (Y) = 5200 that E(W) = 0 and Var(W) = n in2(nt 
n2 + 1)/12. 

Gehan (1965), Efron (1967), and Breslow (1970) discuss generalized Wilcoxon 
tests for censored data from this point of view. 

(Sections 8.1.1, 8.1.3) 

8.9 Specialize (8.2.7) to the m-sample setting discussed in Section 8.1.1, where xi 
is a Vector of In 1 indicator cnvariates and p = 0 if the m distributions are 
identical. Show that V(0) given by (8.2.7) is not the same as (8.1.24) when 
there are tied lifetimes.  

(Section 8.2.1) 

8.10 Confidence intervals for .a locationdifference. Consider the model (8.0.1) with 
'a single indicator covariate x indicating whether an observation comes from  
distribution 1 (x = 1) or 2 (x = 0). By estimating /3 we are therefore estimat-
ing the difference in location of two distributions with the same shape; this is 
equal to the difference  in the means or in specified quantiles of the distributions. 
(a) Use the rank procedure in Section 8.2.1 with a log rank weight function 

w(z) = 1 to estimate i3 for the two distributions in Example 8.1.1. In par-
ticular, obtain a two-sided .95 confidence interval for fi based on (8.2.8). 
Compare this with a confidence interval for the difference in pantiles 
/3 = u — u2, based on the assumption of two extreme value distributions 
for log-lifetime, EV (It , b) and EV (u2, b). 

(b) Obtain an estimate  $ for /3 using what you consider a reasonable proce-
dure. 

(Section 8.2,1; Louis 1981) 



CHAPTER 9 

Multiple Modes of Failure 

9.1 INTRODUCTION 

As discussed in Section 1.5, individuals can in some settings fail in different ways, 
and are then assigned a mode of failure. The modes may refer to the cause of failure, 
in which case they are often termed competing risks. For example, an individual in a 
demographic study might be recorded as dying at age t from one of cancer, cardio-
vascular disease, or other causes. Failure modes can also be defined in other ways, 
for example, to reflect costs or severity of consequences associated with failure. This 
section describes the basic characteristics of multiple failure mode problems, follow-
ing which methods of inference are considered. 

9.1.1 Basic Characteristics and Model Specification 

A pair  (T,  C) is defined for each individual, with T the failure time and C the failure 
mode. It is assumed for now that T is a continuous random variable and that C takes 
on values in the set (1, , lc). The joint distribution of T and C can be specified in 
a variety of ways, but it is particularly convenient to do this via mode-specific hazard 
functions given by (1.5.2): 

Pr(T  <t -I- At, C = jIT t) 
X1(t) =  urn  

At-+0 	 At 
(9.1.1) 

These functions fully specify the distribution of  (T,  C). The marginal hazard rune-
tion for T is 

A(t) = E X(t) 
1=1 

and the marginal survivor function for T is therefore 

S(t) = Pr(T > t) = e —") , 	 (9.1.2) 

433 
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where A (t) = f(1)  À(u) du is the cumulative hazard function (c.h.f.) for  T.  Of course, 

k 

A(t) = Ef xi cto du=EA, (t). 

Since Pr(T E [t, t + At), C = j) = Pr[T < t + At, C = jIT > t]Pr(T > t), it 
follows that 

F (t) = Pr (T  t,  C = j) = f Xi (u)S (u) du, 
0 

and 410) = 	(t) =?J(t)S(t) are the subdistribution and subdensity functions for 
mode j failures. 

The F./ (t)'s or fi (t)'s also specify the distribution of  (T,  C). Note that 

Tr./ = Pr(C = = F (oo), 	j = 1, 	 (9,1.4) 

F(t) = 1 — S(t) = E Fi(t), 	 (9.1.5) 

and that X J (t) = 
The  mode-specific hazard functions X1 (t) often have intuitive and scientific 

appeal. In human mortality studies, for example, they represent the mortality rates 
from specific causes at age t,  conditional on survival up to age t.  Various probabilities 
are also typically of interest; these include the Fi(t)'s, which are sometimes referred 
to as (mode-specific) cumulative incidence functions, and conditional probabilities 
such as 

Fl '(t) = P r(T (IC = j) = — F (t). 
Tc.  

(9.1.6) 

Parametric models can be specified in different ways. The most common approach 
is to specify the Xi (t) parametrically, but one could instead specify the Fi(t)'s 
and Jr.,. The one set of functions can be obtained from the other, but the interpretabil-
ity of individual parameters is tied to the approach taken. 

Example 9.1.1. The common approach is to choose convenient parametric 
specifications for the mode-specific hazard functions (9.1.1). For example, with no 
covariates present, Weibull parameterizations 

t j= 1 	k 	(9.1.7) 
CY 

are often useful; to incorporate covariates, multiplicative hazards assumptions such 
as 

(9.1.3) 

X j (t Ix) = 	(t)ef3'ix 
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are often made. These types of models are easy to fit with standard survival analysis 
software, as we will see in Section 9.1.2. However, the subdistributions Fi (t) in 
(9.1.3), and other quantities that might be of interest, are complex functions of all of 
the parameters. 

rically, and to treat the  Jrj  as additional parameters. For example, we might adopt 
Another approach would be to specify the distributions F7 (I) in (9.1.6) paramet- 

Weibull distributions with hazard functions OW of the same form as the right side 
of (9.1.7), in which case the parameters all have rather direct interpretations. This 
model has more parameters than the one represented by (9.1.7), and it cannot be as 
easily fitted using standard software. The fact that 

xi 0) 	fi* (t) 

1 	EL '  e 	(t) 	j  = 1 ' • • • k 

	
(9,1.8) 

—  

also makes it clear that the mode-specific hazard functions have complex forms for 
these types of model. 

The functions just introduced fully describe the distribution of  (T,  C) in multiple 
failure mode settings. A physical process involving additional structure is sometimes 
relevant: this is called the series system or latent failure times model. Consider a 
system with k essential physical components, each of which is liable to fail, and let Ti 
denote the lifetime or failure time of component j (j = 1,...,  k). The system fails 
when the first component fails, so its lifetime is T = min(T1, , Tk). We can also 
identify a failure mode that indicates which component failed with each system: C = 
j such that T =  T.  This framework seems interesting, since it appears that we can 
consider multivariate models F(ti  tk) for the joint distribution of  T1,   Tk. 
Within a series system this is entirely notional, however, since all that is ever realized 
or observed is the pair  (T,  C). Even if the joint distribution is considered meaningful, 
it is inestimable solely on the basis of observations (Ti , C ) : it is easily seen that 
two different distributions F(ti  tk) can give the same distribution for  (T,  C). 
It is also impossible to determine whether T1,...  Tk are mutually independent or 
not; for every distribution having nonindependent Ti, there exists a distribution with 
independent Ti that gives the same distribution of  (T,  C). Problems 9.1, 9.2, and 9.3 
amplify this point. 

9.1.2 Likelihood Function Formulation 

Suppose that observatirms are taken on a  random sample of n individuals and that 
right censoring is possible; we ignore cpvariates for now. If Ti is censored at ti, the 
eventual failure mode is unknown, sO the observed data for individual t consist of 
either (Ti =  t,  Ci) or Ti > ti. The likelihood function under the assumption of 
independent censoring is therefore 

L = 	fc, 00 61  S (0 1-6i 
	

(9.1.9) 
i=1 
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where 81 = 1 if tf is a failure time and 0 if it is a censoring time. To explore this 
further, note from (9.1.2) that 

SO) = expi— 	0  E A;( 1 
1=1 

=FIG (I), 
1=1  

(9.1.10) 

where G./ (t) = exp{—Ai(t)). The functions G./ (t ), j = 1, . . . , k have the math-
ematical properties of continuous survivor functions, but they are not the survivor 
functions of any observable random variables. However, the likelihood (9.1,9) can 
be rewritten, using the notation 8u = I (Ci = j), as 

• k 

L  = 	FT 4, uosus,,, I —31  
1=1 J=1 

n k 

n 	(tosuoisii 

where. 

1=1.1=1 

• k 

= 	gJ(ti)8u  G (ti) I-61J 

i=i j=1 
(9.1.11) 

gi(0= Xi (t)G j(t) = —G 1i (t). 	 (9.1.12) 

By reversing the order of the products in (9.1.11) we see that L has the same form 
as a product of k likelihood functions, each of which represents a censored sample 
associated with a particular failure mode. The jth part in the product, 

Li = 	g (0 31J G (t1) ''J , 
	 (9.1.13) 

1=1 

is exactly of the standard form (2.2.3) for a lifetime distribution with probability den-
sity function (p.d,f.) gi (I), and survivor function (s.f.) Gi (t), though as mentioned, 
these functions do not here correspond to any observable random variable. 

The form of the likelihood function, L, in (9.1.11) indicates that the Xi Ors or 
Ai (t)'s are estimable from data on (T, C), Furthermore, if the Xj(t)'s involve sep-
arate parameters Oi for ]  — 1 k (and so likewise for the Gi(t)'s and gi(t)'s), 
then L(01 ,,,,, Ok) factors into separate pieces L1(0.1). Inference for 0) can there-
fore be based on (9.1.13); for a  given ],  this amounts to treating a failure of mode j 
at ti as a failure, but a failure of any other mode at ti as censoring. Parametric infer-
ence for models of this type is easily implemented using standard survival analysis 
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methods and software. Similarly, nonparametric and semipararnetric methods can be 
implemented for models based on the Xi Ors. It will be noted, on the' other hand, 
that unless there is no censoring the likelihood function does not factor for paramet-
ric models in which the conditional distributions  P1(t)  in (9.1.6) involve separate 
parameters Of ;  this follows from (9.1.8) and (9.1.11). 

Let us also consider briefly the form of the likelihood function when data on 
lifetimes are discrete or grouped. In particular, suppose that intervals It = (a e._ , at] 
are defined for — 1 m + 1, with 0 = ao < al < < a,„ < nm +1 = 
and assume that the numbers of individuals failing by modes , k in each of 
the intervals 1,..,  /,,, is observed. It is assumed further that there is no censoring 
except possibly in /„,.4.1; the case where censoring may occur in intervals /1„  In  
is discussed in Section 9.3 and Problems 9.11 and 9.12. 

Define for £= 1, 	, m and j = 1, 	, k 

nit = Pr {individual fails in /e by mode j1 	(9.1.14) 
at 

=J  f (u) du 
at—I 

=nif
at  

fi* (u) du . 
ae-t 

The likelihood function based on n independent individuals is then 

{ L = n ILI 77./dil  S(am )4+ 1 , 
f--.I ..i =1 

where die is the number of mode j failures in le and 

in 	k 

dm +i  =n—die 
e=i ji  

(9.1.15) 

is the number of  Individuals  surviving.to.ae . The likelihood is Of mnitinomial form, 
and if the data  ai-ose from grouping continuous lifetimes, then models  in liAiCh the 
distributions F* (i) are parameterized separately are reasonabiy.  conyenie.ntithe case 
of discrete-lifetime distributions is also covered by the formulation.in  (9.1.15); in this 
case,. the definition (9.1,14) holds, but the two lines following  it are  irrelevant.  

The next three sections consider nonparametric,  parametric,  and semiparainetric 
methods for multiple failure modes data. 

9.2 NONPARA.METRIC METHODS 

Consider a censored random sample of (71, CO's, as described in Section 9.1,2. 
Based on the fact that the likelihood function (9.1.1) factors into separate pieces 
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(9.1.13) for each failure mode, nonparametric estimation is straightforward. In par-
ticular, the piece (9.1.13) has the mathematical form of a censored data likelihood 
for a lifetime distribution with survivor, density, and hazard functions Gi (I), gi (t), 
and Xi (t). Consequently, Gi(t) could be estimated using the Kaplan—Meier estimate 
based on the data  (t,, du), i —  1,  n  Since  G(t) is not the s.f. for any random 
variable, however, this is of limited direct interest, and it is more useful to consider 
the cumulative mode-specific hazard function Ai (t). This equals — log Gi (t), and so 
could be estimated from the Kaplan—Meier estimate of Gi (I), but it is more common 
to use the Nelson—Aalen estimator for a c.h.f. By (3.2.13), this takes the form 

Sti 
j = 1, 	, k, 	 (9.2.1) 

<, 

where Ye(t) = !(t e > t) and tit = 	Ye(ti) is the number of individuals alive 
and uncensored just prior to time ti. The variance estimate from (32.15) is typically 
used with (9.2.1): this is 

Varriii(t)] = E 
n i 

	 (9.2.2) 

The marginal s.f. S(t) for T is easily estimated by ignoring the associated failure 
modes and using the Kaplan—Meier estimate based on the data (ti, BO, i = 1, . ,n. 
This gives 

s•ct, 	( n; 	 d ) 
	

(9.2.3) 
'10).ct 	n i 

as in (3.2.2), where t(1) < 	< t(k) are the distinct times at which failures occur, 
and cl; and  n. 	the numbers of failures and individuals at risk at t(j), respectively. 
The variance estimate (3.2.3) can be used in association with g(t). An alternative 
estimate of S(t) is 

3(t = exp[—A(t)] exp [— E 	o c] , (9.2.4) 

with the 'Ai (t)'s given by (9.2.1). 
The subdistribution or cumulative incidence functions Fi(t) of (9.1.3) are also of 

interest. In view of (9.1.3), a natural nonparametric estimate is, in counting process 
notation, 

(t) = fo l  ,9̂(u)dAi (u). 
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This gives 

	

fri ct, 	E :y(0 . 2-8 ./ 	= 1, 	, k. 	 (9.2.5) 
ni 

If there is only a single failure mode, then (9.2.5) reduces to 1 — ..(t±), with :SW as 
in (9.2.3). If there are k > 2 failure modes, but no censoring, then F1 (t)  equals the 
fraction of individuals with ti < t and Ci = j, that is, the empirical subdistribution 
function for mode j. When there is no censoring, E fr;  (t) equals 1 — +), but this 
is not the case generally. 

Variance estimates for fri (t) can be obtained by using extensions of counting 
process ideas discussed in Section 3.2.4; Andersen et al. (1993, pp. 298-304) and 
references therein can be consulted for this approach. An alternative is to consider a 
model in which the hazard functions A1 (t)  are piecewise-constant, as in Problem 3.7, 
Example 6.5.1, and Section 7.4. This allows parametric maximum likelihood meth-
ods to be employed and, as discussed in Section 7.4, it is also possible to obtain 
consistent nonparametric estimates of parameters, and associated variance  estimates, 
by letting the number of intervals increase while interval lengths approach zero. The 
development is outlined below. 

Define intervals h = 	, ae)  for e  = 1, ... ,m, with 0 = ao < al < 
am , where am  is some suitably large value. Assume that the Xi (t)'s are piecewise-
constant, 

?.j(t) = Xje, 	t E It, 	 (9.2.6) 

for j — 1 	k and t — I 	m. The c.h.f.'s are then 

A j (t) = E A.„Ae (t), 	 (9.2.7) 
e=i 

where At (t), as in (1.3.26), is the length of the intersection of le and (0, t). From 
(9.1.11), the likelihood function can be written as 

k n 

L  = H n  (ti)8U e—A10‘), 

J=1 jI 

and so 

log L  die A  
8A.je 	 e ' 

where Ae = E7=1  At (4) and die = EL 1  1(t,  E h)8ii. This immediately gives the 
maximum likelihood estimates (m.l.e.'s) 

L i e = dje/it 	j =  1 ..... t = 1, 	, in 	(9.2.8) 
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and it also follows from taking second derivatives of log L that the 5:it's are asymp-
totically independent with asymptotic variances estimated by 

	

Var(Xit) = die 
	

(9.2.9) 

Now consider fri(t) based on (9,1.3). An asymptotic variance can be obtained by 
using Theorem B2 in Appendix B. For this we require the derivatives 

wrue)  aFi ttvax rt . 

,Differentiating through the integral sign in (9.1.3), we find 

w 	(I (j = r)S(u)1 (u E le) — e(u)X j(u)S(u)} du. 	(9.2.10) 

We can obtain a variance estimate for Pi (t) by computing the wrUz )  using estimates 
e for Xie. With the vector *CI )  representing the ibrUe)  in some specified order, and 

the vector i) representing the variances (9.2.9) in the same order, we get 

	

Var[fri(t)] = INVOdiag()* (i) 	 (9.2.11) 

as an estimate, where diag (v) is an mk x mk diagonal matrix with the entries of v 
on the diagonal. 

'Let us also take the limit as In —+ co and interval lengths approach 0, in order to 
get a variance  estimate  for the nonparametric estimate (9.2.5). With 	= lee—at—II 
small, we have At (t) 	> a e), and from (9.2.10), 

wr(ie ) 	I() = r)64S(at)/(t at) — 
Is:au  <I 

4.-.. (t 	at),64 { 	= r)S(tte) — 	fi (au ),64} 
a,,=at 

-4,  (t > rig)  14 (j = ,')S(at) — [Fi() — F (ae)]) 

This gives, via (9.2.11), 

k 	in  die 
(t» EE/ci ?..5ze)(64)2{/(/ = r)S. (ae) [fr (t) — frf (ae)l} 2  

e 

Noting that At i4Y.(at) 4  where Y.(u) = E I (ti > u)  is  the number of  individu- 
als at risk at time u, we obtain, upon taking the limit as the 64 	0 and  in 	00, 
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the variance estimate 

k 	t  
G[k.  j(t)] 	,§(02 

r=1 	0 

where dNj(u) is the number of 
The parameters 7ri can by (9.1.4) 

itj = 

[Pj(t) —  Fi(u)]  r) 
S(u) 	

) 2 
dNi(u) 
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(9.2.12) 

(9.2.13) 

failures of mode j at time u. 
be estimated as 

frj(co) 	j — 1 	k  

However, by (9.2.5) this is not estimable unless the largest observed time is a failure 
time r i  in which case :§(t) = 0  for t > r; if the largest time is a censoring. time, 
&(I) is undefined beyond it, as discussed In Section 3.2.1. Even when :§(t) =  0 for 
t > 7, the estimates 7/7 do not satisfy E = 1, except when there is no censoring. 
A common procedure is to renorrnalize the estimates as 71"/  = 2'0/ EL I  ire in that 
case. In general, we can, of Course, estimate  P(C = jIT < r), which for large r is 
essentially as useful as estimating 7ri. 

Finally, nonparametric estimation of cumulative hazards can still be done when 
lifetimes  are left truncated, exactly as discussed for the Nelson—Aalen and Kaplan—
Meier estimates  in Section 3.5.1. If the lifetimes of all individuals are truncated, 
then only the functions Ai (t) — Ai (umin ) are estimable, where umi n  is the Minimum 
left-truncation time in the data. 

Example 9.2.1. Example 1.1.10 gave data from a life test on a small appliance. 
Failures were classified into 18 different modes, though among the 33 observed fail-
ures only 7 modes were represented, and only modes 6 and 9 appeared more than 
twice. We will focus here on failure mode 9 for an illustration of nonparametric 
methods. Therefore, define C = 1 if failure occurs by mode 9 and C = 2 if it occurs 
by any other mode; let C = 0 denote that the failure time is censored. 

Table 9.1 shows the ordered failure times and failure modes, along with the 
Nelson—Aalen estimates Â (t) and Â2(t) given by (9.2.1). The Kaplan—Meier esti-
mate (9.2.3) of S(t) and estimated cumulative incidence functions F1 (t) and P2(1) 
from (9.2.5) are also shown. Plots of the Âi (t)'s and 'Pi (t)'s are given in Figures 9.1 
and 9.2, respectively. 

The cumulative mode-specific hazard functions Âi (t) show, as is apparent from 
the raw data, that mode 2 failures predominate early and mode 1 failures predominate 
later on. The slopes of the plots in Figure 9.1 provide rough estimates of the hazard 
functions Xi (t) and X2(t). Figure 9.2 shows the way that failures of the two types 
accumulate over time. The estimated marginal  probabilities  ni and 7r2 of mode 1 and 
mode 2 failures cannot, strictly speaking, be estimated, since the largest observation 
is a censoring time. However, the probabilities P(C = jiT < 13,403) are estimated 
by P/(l3,403)01(13,403) + P2(13,403)] for j = 1, 2, The values (13,403) = 
.509 and P2(13,403) = .451 then give the values .530 and .470. For all intents and 
purposes these can be regarded as estimates of  In  and Ir2 
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'bible 9.1. Multiple Failure Mode Estimates for 
Appliance Life Test Data 

Act, ) A2(:,)  S' (r1) P1 (t1) fr2 (:1) 

11 2 .000 .028 1.000 .000 .028 
35 2 .000 .056 .972 .000 .056 
49 2 .000 .086 .944 .000 .083 

170 2 .000 .116 .917 .000 .111 
329 2 .000 .147 .889 .000 .139 
381 2 .000 .180 .861 .000 .167 
708 2 .000 .213 .833 .000 .194 
958 2 ,000 .247 .806 .000 .222 

1,062 2 .000 .283 .778 .000 .250 
1,167 1 .037 .283 .750 .028 .250 
1,594 2 .037 .322 .722 .028 .278 
1,925 1 .077 .322 .694 .056 .278 
1,990 1 .119 .322 .667 .083 .278 
2,223 1 .162 .322 .639 .111 .278 
2,327 2 .162 .367 .611 .111 .306 
2,400 I .210 .367 .583 .139 .306 
2,451 2 .210 .417 .556 .139 .333 
2,471 1 .262 .417 .528 .167 .333 
2,551 1 .318 .417 .500 .194 .333 
2,565 0 .318 .417 .472 .194 .333 
2,568 1 .380 .417 .472 .224 .333 
2,694 1 .447 .417 .443 .253 .333 
2,702 2 .447 ,488 ,413 .253 .363 
2,761 2 .447 .565 .384 .253 .392 
2,831 2 .447 .649 .354 .253 .422 
3,034 1 .538 .649 .325 .283 .422 
3,059 2 .538 .749 .295 .283 .451 
3,112 I .649 .749 .265 .313 .451 
3,214 1 .774 .749 .236 .342 .451 
3,478 1 .917 .749 .207 .372 .451 
3,504 1 1.084 .749 .177 .401 .451 
4,329 1 1.284 .749 .148 .431 .451 
6,367 Q 1.284 .749 .118 .431 .451 
6,976 1 1.617 .749 .118 .470 .451 
7,846 1 2,117 .749 .079 .509 .451 

13,403 0 2.117 .749 .039 .509 .451 

The life test that gave these data was carried out during the development of the 
appliance in question, and it was of interest to consider what effect the removal of 
certain failure modes would have on the overall failure time distribution, S(t). This is 
often done by assuming that removal of a mode of failure reduces the hazard function 
for that mode to 0, and leaves the hazard functions for other modes unchanged. This 
assumption cannot be checked on the basis of the observed data, however, and is usu-
ally unrealistic, because removal of a failure mode involves changes that also affect 
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Figure 9.1. NA estimates of cumulative mode-specific hazards, appliance test data. 
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Figure 9.2. Estimates of mode-specific cumulative incidence functions, appliance test data. 
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other failure mechanisms within an individual. For the present situation a check on 
this is to some extent possible, since Nelson (1970b) discussed additional data from 
tests that were run after certain improvements in the appliance had been made. These 
data show that the two mode-specific hazard functions here were greatly affected by 
these changes. 

Parametric modeling of the Ai (t)'s and other quantities is also possible. No par-
ticular model is suggested by the background to this problem, though flexible forms 
such as (9.1.7) could be considered. There is little point in doing this here, since the 
situation regarding failure mechanisms and models changes significantly as design 
modifications to the appliance are made. 

Methods similar to those above can also be given for grouped data. This is done 
in the following section on parametric methods, since grouping the lifetimes into a 
finite number of intervals makes models finite-dimensional. 

9.3 PARAMETRIC METHODS 

As discussed in Section 9.1, the most convenient parametric models for continuous 
time data are ones for which the mode-specific hazard functions (9,1.1) are specified 
as Xi (t; 0i), with 01, . . . , Ok functionally independent parameters. By (9.1.11) and 
(9.1,12), the likelihood function then factors as a product, 

	Ok) = 
	

(9.3.1) 

with L (0)) given by (9.1.13). Models for which Xi (t;  0) is of Weibull, log-logistic, 
log-normal, and a few other common forms can be fitted using standard survival 
analysis software, as discussed in Section 9.1.2. Weibull forms for which 

(t ; j )'j) = 	t  aj af 

are often useful. 
Regression models for the Xi (t)'s are also easily handled. Consider a fixed vector 

of covariates x; then it is only necessary to replace Xi (t), gi (t), and  G1(t) in (9.1.11) 
with Ai (t Ix), gi(1IX), and Gi (tlx). Parametric accelerated failure time (AFT) spec-
ifications are convenient, since parametric survival analysis software handles many 
models of this type. The Weibull (AFT) model corresponding to (9.3.2) is often use-
ful; it has Oi = (Ph  KO where 

(tlx; 0i) — 	t  r 
(x) a (x) 

and ai (x) = exp(P .ii  x). 

(9.3.2) 
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Estimation of quantities such as the distribution functions Fi(t) or Fi(t) is 
straightforward in principle, though they are in general complex functions of all of 
0; ,   O. Variance estimates can be obtained by a tedious application of Theo-
rem B2; bootstrap methodology is an alternative approach for obtaining variance 
estimates or confidence intervals. 

Standard diagnostic techniques from Chapters 3-6 can be used to assess para-
metric model assumptions, because of the formal connection between the individual 
failure modes and univariate lifetime models. If there are several failure modes or if 
censoring is heavy, then there may be relatively few observed failures for a specific 
mode  j.  As discussed in earlier chapters, this limits one's ability to detect model 
inadequacy. 

Example 9.3.1. The data in Table 9.2 give the survival times for two groups of 
laboratory mice, all of which were exposed to a fixed dose of radiation at an age 
of 5 to 6 weeks (Hoel 1972), The first group of mice lived in a conventional lab 
environment and the second group was kept in a germ-free environment. The cause 
of death for each mouse was assigned after autopsy to be one of three things: thymic 
lymphoma (C1), reticulum cell sarcoma (C2), or other causes (C3). The mice all 
died by the end of the experiment, so there is no censoring. 

It was of particular interest to compare the mortality from the different failure 
modes in the conventional and germ-free environments. Plots of Nelson—Aalen esti-
mates (9,2.1) for the three causes show that the hazard functions for Cl  (thymic 
lymphoma) are similar in the two environments, but that those for modes C2 and 
C3 differ substantially. Figure 9.3 shows the A; (t)'s for the two environments, and 
Figure 9.4 shoWs the A2(t)'s. 

111131e 9.2. Survival Times and Causes of Death for Laboratory Mice 

Control Group 
	 Germ-Free Group 

C1 Deaths 

159,189,191,198,200,207,220,235,245,250, 
256,261,265,266,280,343,350,383,403,414, 
428,432 

158,192,193,194,195,202,212,215.229,230, 
237,240,244,247,259,300,301,321,337,415, 
434,444,485,496,529,537,624,707,800 

C2 D eaths 

317,318,399,495,525,536,549,552,554,557, 
558,571,586,594,596,605,612,621,628,631, 
636,643,647,648,649,661,663,666,670,695, 
697,700,705,712,713,738,748,753 

430,590,606,638,655,679,691,693,696,747, 
752,760,778,821,986 

C3 Deaths 

40,42,51,62,163,179,206,222,228,252,259, 
282,324,333,341,366,385,407,420,431,441, 
461,462,482,517,517,524,564,567,586,619, 
620,621,622,647,651,686,761,763 

136,246,255,376,421,565,616,617,652,655, 
658,660,662,675,681,734,736,737,757,769, 
777,800,806,825,855,857,864,868,870,870, 
873,882,895,910,934,942,1015,1019 
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Figure 9.3. NA estimates of cumulative hazards for mode Cl (thymic lymphoma): 	conventional 
environment; — — germ-free environment. 
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Figure 9.4. NA estimates of cumulative hazards for mode C2 (reticulum cell sarcoma): 	conven- 
tional environment; — — — germ-free environment. 
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Formal tests for modes C2 and C3 provide strong evidence of a difference. 
Distribution-free tests are considered in Section 9.4. Plots of log 11i (t) versus log t 
for j = 2, 3 are roughly linear and suggest that Weibull forms (9.3.2) might be 
adopted, so an alternative procedure is to use a parametric comparison. For example, 
for mode C2 the values of  ûj  = log cij and Si = pj- 1 in (9.3.2) for the two envi-
ronments are (with standard errors in brackets) its 2 = 6.52(.02), S2 = .124(.015) for 
the conventional and  û2  = 6.92(.06), S2 = .193(.039) for the germ-fre6 environ-
ment. A likelihood ratio test of the hypothesis that (u2, b2) are the same in the two 
environments gives an observed value of 60.9 on two degrees of freedom, so there is 
very strong evidence against the hypothesis. 

Example 9.3.2. PH Model with Piecewise-Constant Hazards. The propor-
tional hazards regression model with piecewise-constant hazard function, discussed 
in Example 6.5.1 and in Section 7.4, is easily extended to the multiple failure modes 
setting. For a specified set of cut points 0 = cto < al < < am  as in Section 9.2, 
suppose that 

Âj(t ix) = Xjo(t)e 13:1x , 	 (9.3.4) 

with 

A.jo(t) = ceit, 	ctE_i < t < 	 (9.3.5) 

for j = 1, . , k and E = 1, 	, m. Because Of  the factorization of the likeli- 
hood (9.1.11) into k pieces, the m.l.e.'s et./ and  Iii  (j = 1, . , k) and inferences 
concerning  (ci, 13:0's are obtained by k separate applications of the procedures in 
Example 6.5.1. It is, in particular, straightforward to assess the effects of covariates 
on hazard functions. 

Cumulative incidence or subdistrihution functions are more complicated to deal 
with. The extension of (9.1.3) to include covariates gives 

Fi (t ix) = je: S(ttlx)Xj(ulx) du. 	 (9.3.6) 

Since 

S(UIX) = exp — 	A ro(u)eP; x 1 

Fj (t lx) depends on all of the pUram.eters .p i , 	13k and the aft for j = 1, . ,lc. 
The development of valiance estimates  for  F1 (fix) via Theorem B2 is therefore 
tedious, and for interval estimation it may be simpler to use bootstrap methodology. 
Further discussion  of this model is given in Seption 9.4. 
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9,3.1 Grouped or Discrete Data 

Data with multiple failure modes often come in grouped, or life table, form in areas 
such as demography and actuarial science. In the absence of covariates, and under 
the assumption that there is no censoring except in the last interval, the likelihood 
function is given by (9.1.15), 

L.Vin
7r e l S(ani )dm+ 1  , di 

nt 	k 

where lifetimes are grouped in o intervals ie = [ae_i, ae),  L ,  = 1„ . . ,  in  + 1 with 
ao  = O and a,,+1 = co. The parameter zit is the probability an individual fails 
in , ae) by mode j, and die is the observed number of individuals failing in 
[ae_i, at) by mode j. The failure Modes for the dm-Ft  individuals still alive at time 
am  are unknown. Note that S(a,n ) = 1 —E f  71.  je. 

An alternative way to Write (9.3.7) is in  terms  of conditional probabilities 

qjz = Pr (individual fails of mode j in ItI alive at at_i) = nit/ S(at_i). (9.3.8) 

Then (9.3.7) can be expressed as 

iii k 
L = fJf] qj (1 _ q ,„ne_d,, , 

e.=1 

where q.e = E j  ait,d.t =E die, and ne = n— (di+ • • • +de_i) is the number of 
individuals alive at at_i. This representation also holds when . censoring of individu-
als is allowed at the ends of the intervals: in that case, ne is the number of individuals 
alive and uncensored at ae_i, and therefore at risk of failure in [ae—t , ae). The like-
lihood (9.3.9) is proportional to (3.6.8), used. previously for life table data, when 
there is only one mode of failure. As discussed in Sections 3.6 and 4.3.1, the occur-
rence of censoring within intervals is more difficult to handle, and requires further 
assumptions; see Problem 9.12. 

If an underlying parametric continuous-time model is assumed, then the xit or 
ail in (9.3.7) or (9.3.8) are as given by (9.1.14). The likelihood (9.3.7) is of multi-
nomial form, and (9.3.9) is of product-multinomial form; either can be maximized 
with standard optimization software (see Appendix D). In the case where there is no 
underlying paratnetric model, there are km parameters qie that satisfy 0 < qjt < 1 
and 0 < qie + + (Ike < 1 for each P. It is easily seen that (9.3.8) is maximized 
over this parameter space by 

die, ne 	j =  1,,..,  k; 	L=  1 , . ... m. 	(9.3.10) 

The 	of S (a e) is 

E-1 

g(de) = 11(1 — 
u=1 

(9.3.7) 
i=1 • 

(9.3.9) 



which is of exactly the form (7.1.5). Similarly, the generalized Nélson--Aalen esti-
mate, 

e
) (So p' xi  

L j (pi ) = 	
E 	

(9,4.3) 
L I  e(ti)e 13:i x ' 
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and estimates of other quantities are also easily obtained. Confidence intervals and 
tests can be handled using likelihood ratio statistics or Wald statistics. For the latter, 
it is seen directly from inversion of the observed information matrix based on (9.3.9) 
that asymptotic variance estimates of the "(be are 

Var(4'ie) = 4je(1 — ilie)/ne 	j = 1, . , k; 	f = 1 „ . . , In 

E(.cjje, 4,e) = —4ie4re/ne 	j 0 r; 	=  1, 	 (9.3.11) 

Cov(4,g, 400 = 0 	 t  r u.  

An application of these procedures is considered in Problem 9.9. 

9.4 SEMIPARAMETRIC METHODS FOR MULTIPLICATIVE 
HAZARDS MODELS 

As noted in Section 9.3,  regression modeling for competing failure modes is conve-
niently undertaken by considering specifications X i(tlx) for the môde-specific haz-
ard functions, given a vector of covariates x. If multiplicative hazards models of the 
type considered in Chapter 7 are used, then semiparametric methods presented there 
can be applied. In  particular,  PH models of the form 

(t ix) = 	(t)e x 	j = 1, 	, k 	 (9.4.1) 

can be treated exactly as in Chapter 7 by considering each mode of failure separately. 
The partial likelihood methods of Section 7.1.1 clearly apply. This can be seen by 

developing the partial likelihood for Pj through consideration of the probability that 
a particular individual fails by mode j at time t, given that one of the individuals at 
risk at time t fails by mode j. This gives a partial likelihood 

L(Pl, • • 
 n k 

Pk) = 11 	
e  13' xi 	31i 

i=1 j=1 ErL, Ye (toe

) 

frix ,  

where Y t(t) = 1 (tt > t). This factors into a product of terms L) (13:0 for j =: 
1, 	, k, with 

(9.4.2) 

(9.4,4) A0,0)- 	
8,,   E 

*:ti :St EL L  Y e (toeitxt 
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can be motivated, just as (7.1.32) was in Section 7.1.5. Procedures for hypothesis 
tests or interval estimation for pi ,  Ac(t), or Ai (t lx) also can be based on the meth-
ods of Section 7.1, and the methodology extends to deal with time-varying covariates 
x(t) in place of x in (9.4,1). Finally, note that it is not necessary to include the same 
covariates in the models for different failure modes. Certain components of pi  in 
(9.4.1) can be restricted to be equal to zero, so the corresponding terms drop out of 
the model. 

Example 9.4.1. (Example 9.3.1 revisited). An examination of the mouse 
mortality data in Example 9.3,1 indicated that the mortality hazard functions for 
mode Cl  (thymic lymphoma) were similar for the conventional and germ-free lab-
oratory environments, but that the hazards for mode C2 (reticulum cell sarcoma) 
were quite different. The Nelson—Aalen estimates of the cumulative hazards Ai (t), 
j = 1, 2, also suggest that proportional hazards models 

=
" 

G F (,,N 	• = 1,2 
l "/ 

would be reasonable. In this case, it is sensible to test the equality of the conventional 
and germ-free hazards using the log rank methodology of Sections 7.1.2 and 8.1,2. 
An application of the log rank test based on (8.1.14) and (8.1.15) gives X 2  values 
of 1.16 and 45.0, respectively, for modes Cl and C2. The 41)  p-values indicate that 
there is no evidence of a difference in the thymic lymphoma,mortality hazard func-
tions, but very strong evidence of a difference for the reticulum cell sarcoma hazards. 
The latter result agrees closely with the parametric test considered in Example 9.3,1. 

Example 9.4.2. Tuli et al. (2000) discussed an observational study on children 
with hydrocephalus for whom internal shunts were inserted surgically. These shunts 
drain excess cerebrospinal fluid away from the head, typically to the abdominal area, 
and have led to a major decline in neurological deficit and death. Shunts are designed 
to stay in patients over their lifetimes, but "failtires" occur, in which a blockage, 
infection or other condition requires that an existing shunt be partially replaced. In 
the study reported by Tuli et al. (2000), data were available on the initial shunt, and 
on any subsequent failures and replacement shunts, for 839 children who had initial. 
shunts inserted during the years 1987-1996, Lawless et al. (2001) describe the data 
and give additional analyses. We will focus here on the analysis of the time to first 
shunt failure, from insertion. 

Information on failures up to the end of 1997 was available, and of the 839 
patients, 453 experienced a failure. Censoring times for children not experiencing 
a failure range  from  about 1 year to  about 11 years. Three primary modes (causes) 
of failure were defined: Obstruction, Infection, and Other (other causes). About 70% 
of the observed failures were due to obstruction, and 15% were due to each of the 
other two causes. Mortality is also a competing risk or mode of failure; 121 deaths 
occurred among the patients during the study period, though not necessarily before 
a first shunt failure. 
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The primary objectives of analysis are to identify risk factors associated with each 
cause of failure. For illustration, we consider the first failures of the Obstruction 
and Infection modes. Preliminary analysis (see Lawless et al. 2001) identified three 
primary risk factors: 

1. The age of the child at the time of shunt insertion. In the analysis here, age was 
categorized as 

age <0, 	0 < age < 1 year, 	age > I year. 

The age < 0 category is due to the fact that some children were born prema-
turely and had shunts inserted before their full-term birth date. 

2. The etiology, or cause of the hydrocephalus. This is represented by eight 
categories: Ivhemm (intraventricular hemorrhage), Men (meningitis), Adsten 
(acqueductal stenosis), Tumor, Trauma, Mmc (myelominingocele), Other 
(other causes), and Con (congenital). 

3. Shunt type, classified as vp (ventriculoperitoneal) or other. 

Table 9.3 shows estimated regression coefficients ij; and standard errors for pro-
portional hazards models (9.4.1), with binary coVariates used to represent age and 
etiology categories. The baseline category for age was  âge>  1 and for etiology was 

'Mole 9.3. PH Model Fits for Shunt Failures Due to 
Infection and Obstruction  

Covariate 
Infection 

.0 	se .  
Obstruction 

A 	se 

Age 
age < 0 1.33 .47 1.14 .26 
(age < 	(1 	t  < 2)  - - .32 .43 
(age < 0)*/ (1 	2) - -1%23 .55 
0 < age < 1 .77 .42 .76 .20 

Etiology 
Ivhemm 1,04 .57 ..67 .25 
Men .93 .71 .40 .34 
Adsten 1,30 .61 .55 ;30 
Tumor ,93 .66 .69 .28 
Trauma 2.14 .81 .95 .44 
Mmc 1.21 .54 .63 .22 
Other .93 .58 .42 .25 

Shunt type 
Shunt type -.87 .21 
Shunt type */ (1 < t  <2)  - - ,79 .76 
Shunt type *I (t > 2) 1.26 .63 
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Con. Thus, for example, the value exp(4) = exp(1.33)  =3.78  for the covariate "age 
< 0" for the Infection mode estimates the hazard function for this age category to be 
3.78 times that for the baseline "age > 1" category. Shunt type was not significant 
for Infection failures, so has been omitted from that model. In addition, diagnostic 
checks described in Sections 7.1 and 7.2 indicated that the effects of the age < 0 
and shunt-type covariates on Obstruction failures were time-varying. As a result, 
three covariates were defined for shunt type: /(shunt type = up), !(shunt type = 
up)! (1 < t < 2), and /(shunt type = ITV (t > 2). Three similar covariates were 
defined for the  age '<  0 indicator covariate. Other diagnostic checks do not contradict 
the models represented in Table 9.3. 

The estimated baseline cumulative hazard functions 'Am (t) and Â02(t), as well as 
the raw data, show that Infection (and Other) failures virtually all occur within 300 
days of shunt insertion, whereas many Obstruction failures occur long after inser-
tion. This, along with the results shown in Table 9.3, provide a rather clear picture. 
Younger age at insertion is highly associated with an increased risk of failure due to 
both infection and obstruction, but in the case of obstruction, the excess risk for the 
age < 0 group disappears by about two years after insertion. There is a suggestion 
that this may also be true for the 0 < age < 1 group, but the evidence falls short of 
statistical significance. The vp shunt type (which is used in about 90% of the cases) 
Is associated with a lower risk of obstruction failure over the first year after inser-
tion, but a higher risk after about two years. Finally, the seven etiology categories 
in Table 9.3 all have estimated risks,  relative to the baseline category Congenital, 
greater than one. The estimated failure hazards associated with trauma cases are 
especially high, but there are only 19 out of 839 patients whose hydrocephalus is due 
to trauma, and the standard errors are consequently large. 

9.4.1 Estimation of Cumulative Incidence Functions 

Subdistribution or cumulative incidence  functions  Fi(t Ix) can also be estimated 
under the PH model. Note first that the survivor function for T given x can be esti-
mated as. 

	

(t IX)  = ex () 	110i 
	 (9.4.5) 

J=1. 

Variance estimates for the quantities 

kJ (t Ix) = 	(t)e 	 (9.4.6) 

were presented in Section 7.1.5; see (7.1.39) for the variance estimate for 'Ai (t ix). 
Because the overall partial likelihood (9.4,2) factors, the estimators (Ai,  A oj (t)) are 
asymptotically independent for j = 1, k and a varianbe estimate for log  5(1 'x),  
and thus ,§(t Ix), is easily obtained, 
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The cumulative incidence function Fi (t lx) can be estimated as 

Pi (t lx) = f (u I x) 	(ujx) 

=  f t  exp — E Âoe(u)ell'ex eki x  d ikoi(u) 
0 

E si, exp — E Aot(toeire.} 	 
t:11<t 	 e=1 	 EL Ye(ti)A x ' 

It will be noted that ,.(t lx) in (9.4.5) and Pi (t lx) in (9.4.7) do not have the same 
form when x = 0 as the estimates in (9.2.3) and (9.2.5) for the no-covariate case. 
It is possible to use an alternative estimate for S(t lx), based on the extension of the 
product representation (1.2.16) to the case of covariates, but (9.4.5) is simpler and 
does not differ much from other sensible estimates. Andersen et al. (1993, Sec. 7.2.3) 
consider the alternative approach in a general setting that includes the multiple failure 
modes model here. 

Variance estimation for  F (t) in the no-covariate case was discussed in Sec-
tion 9.2. The results for the present situation are much more complicated; see, for 
example, Benichou and Gail (1990) or Cheng et al. (1998). A reasonably straight-
forward approach that is satisfactory in practical situations is to use a model with 
piecewise-Constant baseline hazard functions for variance estimation. This PH model 
was discussed in Example 9.3.2; the baseline mode-specific hazard functions X01 (I) 
are of the form (9.3.5), which we write here in terms of parameters kit, 

4.1(0 = Xje 	t E /e, 

where /e = [at_i, at), — 1 	nt, with cut points 0 = cto <  at  < 
in (9.2.7), the corresponding c.h.f 	's are 

nt 

Aøj (t) =  
t=i 

(9.4.8) 

< a., As 

(9.4.9) 

where At (t) is the length of the intersection of le and [0, t). 
Since the likelihood function (9.1.11) (extended to include covariates) factors into 

separate pieces for each failure mode, inference procedures for k = (x; 1 , , j„,) 
and Pi under the proportional hazards model (9.4.1) follow, exactly as given in 
Example 6.5.1. In particular, the m.l.e. for Pi can be found by maximizing the profile 
log-likelihood function from (6.5.11), 

[ nt 

	

ip j (13 J ) E 	— log E I (ti 	e)E t(tr)e°:11`'il , 

	

1=1 	 e=l 	r=1 

T3'x e 
(9.4.7) 
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and by (6.5.10) the Xie are estimated by 

Lie 	
die 

—  	—  1, 	m, 	(9.4.10) 

where die is the number of individuals observed to fail in interval le of mode j. As 
shown in Section 7.4, the m.l.e.'s for pi  and for A oi(t) under this model approach the 
estimates for pi  obtained from the Cox partial likelihood (9.4.3) and the generalized 
Nelson—Aalen estimates (9.4.4), when in increases and the interval lengths lae—ae_i I 
approach zero. 

To obtain a variance estimate for 	x) in the piecewise-constant hazards model 
is straightforward, but somewhat tedious. From Example 6.5.1, it follows that the 
information matrix for Ai and /3/ is, In partitioned form, 

1.1(A P I3j) 	
Di Ci 

= 	Bi)'  

where 

Di = Diag(die/) .,e ) 

Is a diagonal in x in matrix, Ci is an  in  x p matrix with (e, q) entry, 

(g.t)e • = E e(ti)xi q  ef3ixi 

and Bi is ap xp matrix, 

Bi = E x,.;Aoi ctoewl.,  
1=1 

(9.4.11) 

The m.l.e. Pi (t Ix) involves  (Ar,  iL - ) for  all ,  = 1, ...,k. By the asymptotic indepen-
dence of the (Ar , A r )'s and an application of Theorem B2 (Appendix B), it follows 
that 

fr j (t IX)] = E 	ar, 	0) , 
r=1 

where w (i )  is an On p) x 1 vector, 

u) 	(a Fi  (rix) 	a P 0it  ix)  a  F./  (eix) 	a Fi (tix)y _ 
oxri 	' • • • ' 	dA•rm 	19/3r I 	 ai5rp ) 

(9.4.12) 



&13r 
	 — x e 	f S(ulx)(I (r = J ') A (u)el4x )Xnj (u) du . Or 

0 

a F.;  (t ix) 
(9.4.14) 

BIBLIOGRAPHIC NOTES 
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The entries of this vector are found from 

(tlx) = f S(ttlx)X0i (u)e 13',/ x  du, 

which give 

a Fi(tlx) 	tv. 
et-i x 	S(ulx)(I (r = j) I (u e le) — e0;-' 	(u)Xof (11)] du 	(9.4.13) 

aXre 	o 

A suitable practical procedure is to approximate the variance of  P (ix) based on 
the semiparametric estimates using (9,4.12) with a moderately large value of m, and 
the at chosen so that each interval [at_i, at) has at least a few observed failures. 
Rather than compute the estimates of pj and Apj(t) under the piecewise constant 
model, we can use the semiparametric estimates  f3j and 'Aoi(t) and approximate the 
entries in (9.4.11), (9.4.13), and (9.4.14) by replacing kit with 

Ao (ae) — Aoi (at—i)  
at — at_i 

Xoi (u) du by dÂoi (u), and other quantities by their semiparametric estimates. 

BIBLIOGRAPHIC NOTES 

Multiple failure modes and competing risks problems have a long history in actuar-
ial science and demography; Gail (1975) and Seal (1977) provide historical reviews. 
Early applications of actuarial techniques in medical contexts were considered by 
Cornfield (1957), Berkson and Elveback (1960), Kimball (1969), Pike (1970), Hoel 
(1972), and many others. David and Moeschberger (1978), Elandt-Johnson and John-
son (1980), and Crowder (2001) contain numerous additional references. 

The emphasis on mode-specific hazard functions is implicit in the work of 
Altschuler (1970), Nelson (1969), and Aalen (1976), where the Nelson—Aalen 
nonparametric estimation techniques of Section 9.2 were introduced. Prentice et 
al. (1978) discuss mode-specific hazards and the estimation of competing risks char-
acteristics in some detail. The fact that data on failure time,  T,  and mode of failure. 
C, do not allow discrimination between independent and nonindependent risks was 
noted by Cox (1959, 1962) and studied in more detail by Tsiatis (1975) and Peter-
son (1976). Connections with censoring were considered by Williams and Lagakos 
(1977), Lagakos and Williams (1978), and Kalbfleisch and MacKay (1979), Crow-
der (2001) provides a discussion of models and identifiability issues for competing 
risks. 
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Some aspects of nonparametric estimation have been developed within the more 
general context of continuous time Markov processes. For example, Aalen (1978a), 
Aalen and Johansen (1978) and Fleming (1978a,b) developed estimation of subdistri-
bution probabilities Fi (i), as discussed in Sec. 9.2. Andersen et al. (1993, Sec. 4.4) 
discuss these ideas in some detail.. Matthews (1988) obtains empirical likelihood-
based confidence intervals for subdistribution functions. 

Parametric models of several types have been discussed in the literature. Specifi-
cations based directly on the mode-specific hazard functions, as in (9.3.2) and (9.3.3) 
are very common. Nelson (1982) and Crowder (2001) provide additional illustrations 
and references, Models in which the conditional subdistributions FT(t)  in (9.1.6) 
and the marginal probabilities 7ri = Pr(t' = j) are parameterized directly have 
also been considered (e.g., Mendenhall and Hader 1958; Larson and Dinse 1985). 
Another line of approach has been the use of parametric multivariate failure time dis-
tributions for the series system or latent failure time model described in Section 9.1.1 
(e.g., Noel 1972; Moeschberger 1974; David and Moeschberger 1978; Crowder et al. 
1991, Sec. 7.4). As has been noted, such models are physically relevant only occa-
sionally, and in any case, crucial aspects of such models are uncheckable using only 
data on  (T,  C). 

Actuarial and demographic life table methodology for grouped multiple failure 
modes data as in Section 9.3 has been extensively developed. In these areas the term 
multiple decrement life table is often used to refer to the multiple modes of death or 
failure, Seal (1977) provides a historical overview and many details can be found in 
books such as Elandt-Johnson and Johnson (1980), Manton and Stallard (1988), and 
Namboodiri and Suchindran (1987). 

Semiparametric methods based on proportional hazards models were consid-
ered by Holt (1978) in matched pairs settings and are described in some detail by 
Kalbfleisch and Prentice (1980, Sec, 7.2). Benichou and Gail (1990) and Cheng et 
al. (1998) consider interval estimation of subdistribution functions Fi (t Ix). Many 
authors have provided illustrations of this methodology to medical data (e.g., Kay 
1986; Gaynor et al. 1993; Lunn and McNeil 1995). Other approaches, mainly based 
on conditional subdistributional functions, have also been examined (e.g., Fine 
1999), but are considerably more awkward to implement. 

Problems in whiCh the mode of failure can be identified only up to a set of modes 
have received a good deal of study; this phenomenon is referred to as failure mode 
"masking." Flehinger et al. (1998) provide numerous references to this area. 

PROBLEMS AND SUPPLEMENTS 

9.1 Consider the series system model introduced following Example 9.1.1, and let 
f (ti , 	 tk) be the joint p.d.f. for 7.1 ,,, . , 

(a) Show that if Ti ,,,,, Tk are mutually independent with s.f.'s Si (t), then the 
mode-specific hazard functions (9.1.1) are the hazard functions hi (t) = 
—d log S (t)/dt for  T1,   Tk• 



PROBLEMS AND SUPPLEMENTS 	 457 

(b) Show also that in the likelihood function (9.1.13) based on data  (T, C), 
Gi(t) = Si(t). 

(c) If T1 	 Tk are not independent, write down the joint probability distribu- 
tion of (T, C), based on f (ti, 	, tk). Show that there exists a joint model 
with independent T1 	 Tk that gives exactly the same distribution for 
(T, C). 

(Section 9.1.1) 

9.2 Independent censoring. A lifetime distribution subject to right censoring can be 
considered as a model with two failure modes, C =  I (lifetime observed at t) 
and C = 2 (censoring at t before lifetime observed). In this case, it is instructive 
to consider the series system model for (T1,  2'2), where Ti = T is the lifetime 
and T2 is the censoring time for an individual. Let Xi (t), j = 1, 2, be the 
mode-specific hazard functions (9.1.1) and let hi (t), t = 1, 2, be the hazard 
functions for the marginal distributions of Ti and T2. Assume that (T11, T21) 
are, independent for i = 1,.. , n, with joint p.d.f. f (II, 12). 

(a) Show that the independent censoring definition (2.2.11) is in this case 
equivalent to the condition 

(t) = 	 (9.5.1) 

(b) Show that if T1 and T2 are independent, then (9.5.1) holds. Show also that 
although (9.5.1) does not hold in general, it is slightly weaker than inde- 
pendence of Ti and T2, and can hold when Ti and T2 are not independent. 

(Section 9.1.1; Williams and Lagakos 1977; Kalbfleisch and MacKay 1979) 

9.3 Consider the bivariate lifetime distribution with survivor function 

S(ti, t2) = exp[—(A.1 	A.212 -I- Xi X20 ti12)], 

where Xi > 0,  A2 > 0, and 0 < < 1. Suppose that only series system data 
T = min(Ti, T2) and C = j T = Ti is available. 

(a) Obtain the mode-specific hazard functions (9.1.1) and also the hazard func-
tions for the marginal distributions of Ti  and T2. 

(b) Discuss by direct illustration why it would not be possible to assess the 
adequacy of the joint model for (Ti,  T2) on the basis of data on (T, C). 

(Section 9.1.1) 

9.4 If the mode-specific hazard functions X j (t) are proportional, significant sim-
plifications occur. Suppose that A. J(t) = lb./A.(0 for j = 1, . „ k, where 
0 < wi < 1 and E wi  = 1, so that X(t) is the marginal hazard function 
for T 

(a) Show that T and C are statistically independent, and that sr., = wj.  Deter-
mine the subdistribution functions Fi (t). 



458 	 MULTIPLE MODES OF FAILURE 

(b) Consider nonparametric estimation of the distribution of (T, C) in this 
case. 

(Sections 9.1, 9.2) 

9.5 Cause removal, As discussed in Example 9.2.1, the question of how failures 
or mortality would change if some specific cause could be removed is often of 
interest, but difficult to study. In some situations, however, it might be reason-
able to assume that if failures of mode j could be prevented, then the marginal 
hazard function for lifetime T would decrease from X(t) to 

= X(t) — Xj(t). 	 (9.5.2) 

(a) Suppose a system's main cause of failure is deterioration over time, but 
that failures are also occasionally caused by accidental external factors. 
Suppose that these two modes of failure have respective hazard functions 
Xi (t) = .3t2  and X2(t) = .1, with time measured in years. Determine the 
survival function S (t) for T both with and Without the second failure mode, 
assuming that (9.5.2) with j = 2 applies. 

(b) Compute the change in expected lifetime that would result from removal 
of mode 2. 

(Section 9.1) 

9.6 For the mouse data of Example 9.3.1, fit Weibull forms (9.3.2) for each of the 
three mode-specific hazard functions, Xi (t). Assess the fi t of the parametric 
models by plotting the corresponding estimates of Ai (t) and the Nelson—Aalen 
estimates (9.2.1) on the same graph. Comment on the fit in each case. In the 
sanie way, compare the parametric and nonparametric estimates of the subdis-
tribution functions Fir (t). 

(Sections 9,2, 9.3) 

9.7 (Continttation of Problem 9,6). Fit an eight-parameter model to the mouse 
data, in which the conditional subdistribution functions Fi(t) of (9.1.6) are 
of Weibull form, 

F7(t) = I — exp[— (t /cri)Yi] 	j = 1, 2, 3 

and with rti ,  7r2, 71-3 satisfying 0 < sri <  1,  gi + ir + 71-3 = 1. Assess 
the fi t of the model by comparing the estimates of F./ (t) = Fi(t) with the 
nonparametric estimates from Problem 9.6. 

(Section 9.3) 

9.8 Davis and Lawrance (1989) considered data from a laboratory test on pneu-
matic tires, The test involved rotating the tires against a steel drum until some 
type of failure occurred. Failures were classified into six modes or categories: 
1—open joint on the inner liner; 2—rubber chunking on the shoulder; 3—loose 
casing low on the sidewall; 4—cracking of the tread rubber; 5—cracking on 
the sidewall; 6—all other causes. The data are shown in Table 9.4, -  with C = 0 
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Table 9.4, Times and Modes of Failure for Pneumatic Tires 

459 

CT CT CT CTCT C 

6 0 135 3 204 6 222 4 244 1 300 0 
30 0 136 6 205 4 222 4 244 3 300 0 
47 5 137 3 205 6 224 4 246 6 300 4 
72 1 142 5 206 4 224 • 6 246 4 300 4 
74 3 144 3 207 4 225 4 249 4 300 0 
81 1 148 3 207 4 225 5 250 4 300 0 
84 3 153 3 207 1 226 4 252 4 300 0 
84 3 155 1 207 4 227 4 253 4 300 0 
84 3 157 6 208 1 227 2 255 4 300 0 
90 3 158 5 208 6 228 4 258 4 300 0 
96 1 159 0 208 4 229 4 259 0 300 0 

101 6 162 1 208 3 229 6 262 5 300 0 
105 5  165  4 209 I 230 5 265 4 300 0 
105 3 172 5 209 4 230 1 266 1 300 0 
106 4 177 2 210 6 230 2 268 2 300 0 
107 1 179 3 210 '6 231 4 269 4 300 0 
111. 6 181 4 210 4 232 1 270 5 300 0 
111  4 188 1 210 6 232 2 270 2 306 4 
II 1 4 188 6 211 4 233 1 271 4 306 4 
118 3 191 6 212 4 233 4 271 4 314 4 
118 4 193 3 213 4 233 4 281 4 318 6 
119 3 195 4 214 4 234 4 281 3 320 4 
120 4 197 5 215 4 234 4 285 1 332 4 
126 5 198 6 215 4 236 4 285 4 335 0 
131 1 200 0 215 4 237 4 286 4 342 6 
132 1 200 2 215 3 239 6 286 4 347 4 
133 6 201 4 216 4 241 4 295 1 
133 3 203 4 217 4 241 4 297 2 
135 4 204 3 220 5 243 4 299 

denoting that a tire did not fail under test, so that its failure time is censored. 
Times are in hours. 

(a) Obtain and plot nonparametric estimates of the mode-specific c.h.r. 
Ai (t). 

(b) At t = 200 hours the inflation pressure in unfailed tires was reduced; it was 
believed that this would accelerate failure. Discuss whether this appears to 
be the case, paying attention to the different failure modes. Discuss how 
parametric models could be used to carry out formal hypothesis tests.. 

(Sections 9.2, 9,3; Davis and Lawrance 1989) 

9.9 Mendenhall and Hader (1958) presented data on the failure times of radio trans-
'Miter receivers. -Failures were. classified:aS one of two types: those confirmed  
on arrival at the maintenance center (Type 1) and those unconfirmed (Type, 2). 
The data consist of a failure time and type for each receiver, except that when 
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Table 9.5. Frequency Distribution of Failure Time and 'Type for Radio Receivers 

Time Interval 
(hours) Type 1 Failures Type 2 Failures Total Failures 

[0,50)  
[50, 100) 

26 
29 

15 
15 

41 
44 

[100, 150) 28 22 50 
[150, 200) 35 13 48 
[200, 250) 17 11 28 
[250, 300) 21 8 29. 
[300, 350) 11 7 18 
[350, 400) 11 5 16 
[400,450) 12 3 15 
[450, 500) 7 4 11 
[500, 550) 6 1 7 
[550, 600) 9 2 11 
[600, 630) 6 1 7 
[630, co) — -- 44 

Total 218 107 369 

observation ceased after 636  hours,  44 of 369 receivers' had still not failed 
and so have censored failure times. 'The data are. shown in grouped form in' 
Table 9.5, as  given by Cox (1959). 

(a) Estimate  the conditional probabilities, qjf, of (9.3.8). 
(b) It is  of  interest whether the hazard functions  for failure types 1 and 2 are 

proportional. Fit a model for which the gig take the discrete proportional 
hazards form 6f Section 7.3.1, 

	

1og(1—q2e)]= log[— log(1 —qie)]-1-p 	t-1 	m (9.5.3) 

Carry out a likelihood ratio test of H: 13 = 0. 

(Section 9.3; Cox 1959) 

9.10 (Continuation of Problem 9.9). For the radio transmitter receiver data in the 
preceding problem, consider an underlying continuous-time failure model with 
constant mode-specific hazard functions 

(t) = 	j.—  1, 2. 	 (9.5.4) 

(a) Fit this model to the data in Table 9.5. Carry out a likelihood ratio 
goodness-of-fit test of the model (9.5.4) against the unrestricted model 
based on the conditional failure probabilities qjf, as in part (a) of Prob-
lem 9.9. 

(b) Fit a model in which the underlying mode-specific hazard functions Mt) 
are of the Weibull form (9.3.2). Carry out a test of the model (9.5.4) 
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through a likelihood ratio test of the hypothesis H;  yj = 1,  y  =  I in 
(9.3.2). Comment on the agreement between this test of (9.5.4) and that in 
part (a). 

(Section 9.3) 

9.11 (Continuation of Problenz 9.10). Mendenhall and Hader (1958) fitted a three-
parameter model in which the conditional subdistribution functions, Fi(t), of .  

(9.1.6) are of exponential form: 

F7(t) = 1 — exp(--Xit) 	j 	1, 2, 	(9.5.5) 

and yri = p, 7r2 = 1 — p. 

(a) Obtain the md.e.'s fOr X1, A.2, and p. Carry out a likelihood ratio test of 
this model against the unrestricted model based on the qie in Problem 9.9, 
part (a). 

(b) Fit a  five-parameter model in which the F7 (t)'s have the Weibull 'form, of 
Problem 9.7. Tek the model (9.5.5) through a likelihood ratio test of I 

L y2 = 1. Comment ori the  results  of this test and,that in part (a). 
(c). The raw (ungrouped) failure time data upon which.Table 9.5 is based  are 

given by Mendenhall and Hader (1958) and Crowder et al. (1991, p. 152). 
Discuss how tests of the. models (9.5.4) or '(9.5:5)  can be based' on the 
iingrouped data. 

(Section 3.3; Mendenhall and Hader 1 95 S) 

.9.12 Censoring with grouped lifetime data. Consider  the grouped data, or life.table, 
setting discussed in  Sections 9.2,  9.3, and earlier in  Sections 3.6  and 4.3. Sup-
pose that censoring or withdrawal of individuals from risk of failure can occur 
within time intervals It = at), L  = 1, , m. Censoring can be thought 
of as a competing failure mode, so define 

gig = Pr (an individual is observed to fail In lei at risk at at_1) 

42e = Pr (an individual is observed to withdraw in lei at risk at  at_ I ). 

(a) Let S(t) be the survivor function for failure time t. In general qie does not 
equal 

1 

	

(s) 	S(ae) 
qg  —  

S(ne—i) 	
= 

 

Give an expression for qie and  42e in the case in which random withdrawal 
times C and failures T  are independent,  with ' C having continuous s.f., 
G(t), and T continuous s.f., S(t). 

(b) Discuss why it is an uncheckable assumption whether censoring time is 
independent of failure time, using only information on the number,of fail- 
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ures and withdrawals in each interval. Discuss the ramifications for testing 
the fit of a parametric model S(t; 0) for T. 

(Sections 3.6, 4,3, 9.2, 9.3) 

9.13 (Continuation of Problem 9.12). Consider the extension of the preceding prob-
lem to the case of k failure modes 1,  2,,..,  k, and let q be the probability 
an individual fails in le of mode j, given that T > ae—i. If we is the number 
of withdrawals in ./e, then an extension of the standard life table procedure of 
Section 3.6 is to estimate q t )  by 

(s) 	die  
ne — .5we 

where die is the observed number of mode j  failures in  le. 

(a) Use this procedure to estimate the q,re )  and thus probabilities F (at) = 
Pr(T < at, C = j). Use the theory of Section 3.6 to develop variance 
estimates for Pi (cif). 

(b) Apply these ideas to the data in Table 9.6 on survival times of 5982 women 
diagnosed with cervical cancer over the year' s 1942-1954 (Chiang 1961; 
Elandt-Johnson and Johnson 1980, Example 12.1). The survival times are 
grouped by years since diagnosis, and deaths are divided into those due to 
the cancer (CI) and those due to other causes (C2). Because of variable 
lengths of follow-up, many women have censored survival times, which 
are also grouped. 

(Sections 9.2, 9.3) 

9.14 Byar and Green (1980) discussed data from a randomized clinical trial on 483 
patients with stage 3 and 4 prostate cancer, Patients were assigned to four treat-
ment groups (Placebo, .2 mg of drug DES per day, 1.0 mg of DES per day, 
and 5 mg of DES per day). During the study, 125 patients died from prostate 

Table 9.6. Survival Data for Women Diagnosed With Cervical Cancer 

Interval 	At Risk 	Cervical Cancer 	Other Causes 	Censored 
(years) 	 ni 	 dii 	 d2i 	 w i  
0-1 5,982 1,175 201 576 
1-2 4,030 588 96 501 
2-3 2,845 221 48 459 
3-4 2,117 121 44 379 
4-5 1,573 63 28 306 
5-6 1,176 27 34 254 
6-7 861 18 16 167 
7-8 660 13 12 161 
8-9 474 6 8 116 
9-10 344 9 5 85 
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cancer, 139 died from cardiovascular-related diseases, and 80 died from other 
causes. The data are reproduced in Andrews and Herzberg (1985), and include 
covariate information, such as age, history of cardiovascular disease, and dis-
ease stage. 

The comparison of survival times for patients in the different treatment groups 
is of particular interest, but DES can have adverse cardiovascular effects as 
well as possibly decreasing the risk of mortality due to the cancer. Use the 
semiparametric proportional hazards methodology of Section 9.4 to carry out 
a thorough investigation of the multiple modes of death, with specific attention 
paid to treatment and covariate effects. 

(Section 9.4; Cheng et al. 1998) 

9.15 Incomplete information on failure modes. Sometimes the time of failure, T. is 
observed but the mode of failure is uncertain; in reliability this is often referred 
to as failure masking. Consider the case of three modes, and suppose that for 
some failures it is possible to say only that the mode was in the set {1, 2). For 
the remainder, the failure mode is known, except for units whose lifetimes are 
censored, Assume that the probability a unit's failure mode is "masked" does 
not depend on the mode or time of failure. 

(a) Examine maximum likelihood estimation for a  model  in which the mode-
specific hazard functions are constant: 4i (t) = Xi (j = 1, 2, 3). 

(b) Consider nonparametric estimation of the Ai (t)'s  Or  Fi(t)'s of Sec-
tion 9,1.1. 

(Miyakawa 1984; 1Dilse 1986) 





CHAPTER 10 

Goodness-of-Fit Tests 

10.1 INTRODUCTION 

It is important to check the adequacy of models upon which inferences or actions are 
'based. Models vary in the complexity and strength of their assumptions, and model-
checking needs vary correspondingly. In the simplest case  a model may involve a 
single random variable, Y, with distribution function, F(y). The main problems 
are often to check whether some specific form, Fo(Y), is consistent  with observed 
data, and whether assumptions about observations Yi (i =  I,...,  n) being indepen-
dent and identically distributed (i.i.d.) are satisfactory. Problems involving covari-
ates or dependence among responses use models for joint distributions of responses 
Y.i  Yn  given covariate vectors xl, , in , Model checking is necessarily  more 
complicated in these cases. 

Informal methods of model checking emphasize graphical procedures such as 
.probability and residual,plots. These diagnostic tools have been discussed and used 
in preceding chapters. In most cases the variation inherent in graphical summaries 
iS substantial, even when the data are generated by the assumed model,  and the eye 
cannot always determine whether features in a plot are within the bounds of natural 
random variation. In addition, some types  of assumptions are difficult to represent 
graphically. Consequently, formal hypothesis tests are an important part of model 
,checking. 

The term goodness-of-fit test is used to denote hypothesis tests concerning the 
distribution of some response variable,  Y, in a population or. process. The objective 
is to test a null hypothesis 1/0 that specifies that the distribution of Y, or of Y given 
covariates x, is of some specified form. For example, well-known statistics such as 
Pearson's chi-squared and Kolmogorov—Smimov statistics can be used to test the 
hypothesis that Y has some specified distribution function, 

110: F(y) = Fo(Y)• 	 (10.1.1) 

For models involving covariates, tests directed at different specific assumptions may 
be used. For example, a location-scale regression model (6.13) may assume that (i) 
only the location of Y's distribution depends on x, (ii) the location parameter  u(x) 

465 
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has a specific form, and (iii) the distribution of Y given x has a specific form. Each 
of these assumptions can be addressed by hypothesis tests. 

Three main approaches to model testing can be identified: 

(i) Tests based on embedding a proposed model Mo in a larger or "expanded" 
family of models M1 (often termed model expansion). 

(1) Tests based on a comparison of a proposed parametric model Mo with a 
nonparametric counterpart. 

(iii) Tests based on the properties of a proposed model Mo. 

These categories are not distinct; for example, in some cases a test of type (ii) can 
also be formulated as type (i). 

If the models Mo and MI in approach (1) are both parametric, then standard 
hypothesis-testing methods apply, as illustrated throughout the book. For example, 
tests of Weibull and log-logistic lifetime distributions were obtained in Section 5.5.2 
by embedding them in the log-Burr family of models. Tests of the proportional haz-
ards (PH) assumption in the Cox model (7.1.1) were based on the expanded model 
(7.1.62) in Section 7.1.9. 

Tests of type (ii) and (iii) are often related to graphical model checks. For example, 
probability plots and other graphical checks in Section 3.3 involve comparisons 
of parametric estimates F(y; -0) and empirical or nonparametric estimates 'fi(y). 
Regarding approach (iii), hypothesis tests for regression models are often based on 
functions of residuals ai = g (yi , xi ; '0) as in (6.2.6). These test statistics are chosen 
to reflect the fact that the corresponding values ei = g (Yi , xi; 0) are i.i.d. and inde-
pendent of the xi if the null model is correct, just as*  plots of the êj are suggested by 
these properties. 

Tests of type (i) involve alternative models M1 to the proposed model Mo, and 
will have good power for detecting departures from Mo that are in, or close to, MI. 
Certain procedures of types (ii) or (iii) are "omnibus" tests without specified alterna-
tive parametric models. They are designed to provide checks for the model against 
broad classes of alternatives and may not have very high power for certain departures 
from the model Mo. 

Graphical methods and model expansion satisfy the majority of practical model-
checking needs, but other procedures are sometimes useful. There is an extensive 
literature on goodness-of-fit tests, both generally and for lifetime models specifi-
cally. It is possible to provide only a short overview here, with references to the 
broader literature. Before discussing general methods of testing fit (Section 10.2), 
some tests for specific lifetime distributions (Section 10.3), and tests for regression 
models (Section 10.4), we note a few points. 

1. Models only approximate reality, and with sufficient amounts of data formal 
tests will tend to indicate statistically significant lack of fit. The important 
question is usually whether a model approximates reality well enough for prac-
tical purposes. 
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2. Small amounts of data may not provide sufficient information to detect depar-
tures from a model. Likewise, censoring and other forms of incompleteness 
can make it impossible to detect certain types of departure. It is generally a 
good idea to assess the sensitivity of conclusions or decisions to model varia-
tion that is consistent with the observed data. 

3. When covariates are present, checks on distributional shape for Y given x and 
on the form of dependence on x are often confounded to some extent. 

4. Many goodness-of-fit tests are not good at detecting outliers or certain  types  of 
mixtures. Influence diagnostics and model expansion are important tools when 
outliers or mixtures are plausible. 

10.2 SOME GENERAL METHODS OF TESTING FIT 

This section describes some general methods of testing hypotheses Ho: F(Y) = 
Fo(y) as in (10.1.1). Tests based on comparing empirical distribution, survivor, 
or cumulative hazard functions with hypothesized models are discussed in Sec-
tion 10.2.1. Tests based on expanded parametric models and on grouped lifetimes 
are considered in Sections 10.2.2 and 10.2.3, respectively. 

10.2.1 Tests Based on Comparing Empirical and Hypothesized Distributions 

The comparison of parametric estimates with nonparametric counterparts is a stan-
dard way of assessing parametric models. For example, the Kaplan—Meier estimate 
F(t) of a distribution function may be compared graphically with parametric esti-
mates F(t; 6); this has been used as an informal model checking tool in vaious 
parts of the book. For most practical purposes such a plot, perhaps enhanced wilh 
nonparametric confidence limits or bands around fr(t), is sufficient. Nevertheless, 
formal goodness-of-fit tests based on measures of the  distance between,  say, .F(t) 
and F(t; 6) have been extensively studied. This area will be described briefly. 

For simplicity we first consider the hypothesis I10: F (y) = Fo(y) in the case 
where Fo(y) is a fully specified distribution and there is a complete random sample 

, 	yn  from F.  The empirical cumulative distribution function (c.d.f.) is then 

n 
5)0. 

f= 1  

Many statistics for testing Ho: F (y) = Fo(Y) have been based on measures of 
the distance between  F(y) and Fo(y); see, for example, D'Agostino and Stephens 
(1986, Ch. 4) or Shorack and Wellner (1986). Two well-known examples are the 
Kolmogorov—Smirnov statistic 

D„ =  sup ifrn(Y) — Fo(Y)1 
	

(10.2.1) 
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and the  Cramer—von  Mises statistic 

f 

Wn2  = n 	Iftri(Y) — Fo(Y)l 2  d Fo(Y) • 
—00 

(10.2.2) 

Sufficiently large values of Dn  or  W, provide evidence against the hypothesized 
model Fo(y). 

The distributions of D„ and lq do not depend on Fo (y), assuming that Ho is true, 
This is obvious from the alternative expressions (see Problem 10.1) 

(i  — 1)1 
D„ = max [— — Fo(y(0), Fo(Y(i)) 

1<i<n n 	 j 
(i 	.5)  ]2 

1 
wr? = 	[Focy(i» 	 + 

12n i= 

(10.2.3) 

(10.2.4) 

since under Ho the Fo(Ym)  's are the order statistics in a random sample from the 
uniform distribution on (0, 1). Finite sample and asymptotic distributions for D„ 
and W, are available; Stephens (1974) and D'Agostino and Stephens (1986, Ch. 4) 
provide discussion and references. 

When data are Type 2 or singly Type 1 censored, the statistics (10.2.1) and 
(10.2.2) are modified so that the supremum and integral are over the range y < C, 
where C is the common censoring value. For W,2, the  expression (10.2.4) is now•
replaced with 

[Fou(0) 	
n [r  _ _ 	Fo(C)} 3 	(10.2.5) 

n 	12n2  3 n 

where r is the number of uncensored observations and C > y(r ) is the upper limit on 
observation, Finite sample and  asymptotic  distributions are available for these cases 
as well (D'Agostino and Stephens, Ch. 4). 

The tésts and distributional results just mentioned are of limited use; rarely does 
one wish to test a . fully specified model Fo(y). When ro(y) contains unknown param-
eters, 0, statistics such as (10,2.1) or (10.2.2) can be modified by replacing Fo(y) 
With the Maximum likelihood estimate (m.l.e.) Fo (y; 6). The distribution theory for 
such statistics is then much More difficult, and in general depends on Fo and on O. 
However, asymptotic theory is available (e.g., see Problem 10.11), and simulation 
can often be used to approximate p-values for specified test statistics. The case of 
location-scale models is more tractable, since test statistic's exist whose distribution 
under Ho does not depend on 0, This is discussed in Section 10.3, along with the use 
Of simulation. 

Generalizations of the preceding approach to the case of arbitrarily right-censored 
data (and also some other incomplete data settings) can be based on comparisons of 
nonparametric and parametric estimates of the c.d.f., F(1). With lifetime data, we 
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can consider, for example, 

Z(t) = ,fti[fr„(t) — Fo(t; 
	

(10.2.6) 

where f.„ (t) is the Kaplan—Meier estimate of F(t) and Fo(t; 0) is the hypothesized 
parametric family. An alternative approach (Hjort 1990a) is to consider 

Z„(t) = -,/t7[1(t) — Ho(t; b)], 	 (10.2.7) 

• where fin  (t) is the Nelson—Aalen estimate and Ho(t; 0) is the parametrically spec-
ified cumulative hazard function (c.d.f.). The asymptotic theory for the processes 
(Z, (t),  t > 01 is in either case rather complicated and does not lead to easily useable 
tests based on statistics analogous to (10.2.1) or (10.2.2). However, the use of (10.2.6) 
or (10.2.7) in connection with the approach of Section 10.2.3 is more promising, and 
in some cases p-values can be approximated by simulation. 

10.2.2 Model Expansion and Smooth Tests 

Suppose we wish to test the hypothesis that the probability density function (p.cl.f.) 
f (y) of a random variable Y has a specified parametric form, 

Ho:  f(y) = fo(y; 	 (10,2.8) 

where 0 is a p x 1 vector of unknown parameters. The most widely used approach 
for testing models is to embed the model in a larger family ,f (y; 0, p) such that 
f (Y1 0,  13o) = fo(y; 0) for some po . The hypothesis (10.2.8) is equivalent to 
Ho;  fi  = Pb  within the extended model, and may be tested using standard paramet-
lie methods. 

This approach has been used extensively in previous chapters. In general, Ho can 
be tested by using a likelihood ratio test within the model f (y; 0, (3). In some cases  it 
is convenient to use partial score tests of Ho:  fi = 13o instead (see Appendix C). They 
require the m.l.e. of 0 under the model (10.2.8) only; it is not necessary to obtain the 
m.l.e.'s of 0 and f3 in the extended•model. To test hypotheses of the form (10.2.8), 
Neyman (1937) suggested a general method of extending a null model, combined 
with a partial score test. These are sometimes referred to as Neyman smooth tests 
and have received a good deal of subsequent study (see Rayner and Best 1989, 1990). 
The general approach is potentially useful, so let us consider it briefly. 

Neyman suggested extended models with densities of the form 

g(y;  0, 13)  = C(0, P)fo(Y; 0) exp [E 	0)], 	(10.2.9) 

where the hi (y , 17)'s are specified orthonormal functions; the model (10.2.8) is given 
by p = 0. Kopecky and Pierce (1979) and Thomas and Pierce (1979) proposed a 
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different extended family, 

k 

g(y;  0, 13)  = C(P)fo(y; 0) exp [E Pi (y; 0)] , (10.2.10) 

where F06; 0) is the c.d.f. corresponding to fo(y; 0). Once again, 13 = 0 gives the 
model (10.2.8). In either (10.2.9) or (10,2.10), one would typically use a small value 
of k (often 1 or 2). 

Let us consider the model (10.2.10) a little further; for discussion of (10.2.9), see 
Rayner and Best (1989, Ch. 6). The partial score test of Ho: p = 0 arising from 
uncensored data and the log-likelihood function 

eo, (3) = E log g(yi;  0, 13)  
i=1 

is based on the statistic (C10), which here becomes 

Wk = Up(k, 0) //103P Up (60, 0). 	 (10.2.11) 

The m.l.e. 60 is that obtained under the model (10.2.8), and the vector U p (0 , 0) has 
elements 

8 E 
— 

 j
Ip=o = E [Fd (yi; 0) — (1 + j) -1 ] 	j — 1 , 	k 	(10.2.12) a 13  

Note that in (10.2.12), (1 + jr I  is the expectation of F61  (Yi; 0) under (10.2.8). The 
matrix ifo3P is the k x k block of the partitioned inverse Fisher information matrix 
1(0, P) corresponding to 13. Thomas and Pierce (1979, Sec. 3) show that the only 
terms in  1(0, 13) that do not already arise for the model (10.2.8) are 

E  [t 	0)] 
j = 1 	k. 	e = 1 ,,,,, p. 	(10.2.13) ae+ 

They and Kopecicy and Pierce (1979) compute the necessary expectations for j < 4 
in the case of exponential, Weibull, and normal models (10.2.8). 

Extending these tests to handle censored data has been problematic, since the 
expectations required to evaluate 1(0, (3)  are not available without a model for cen-
soring. One might expect that the Fisher information matrix could just be replaced 
with the observed information / (0, P) evaluated at (60, 0). However, Gray and 
Pierce (1985) found that this matrix is not necessarily positive definite, so a gen-
eral extension to deal with censored data is lacking. 

Alternatives to models (10.2.9) and (10.2.10), which have advantages for censored 
data, can be based on the hazard function; Pena (1998) considers such models. In the 
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current setting, the extended models would be of the form 

h(t; 0, p) ho ;  o) exp [E j3igj(t; 0)] , 
J=1 

(10.2.14) 

where h(t; 0, p) and ho (t; 0) are the hazard functions for a lifetime variable .T  in the 
expanded and null models, respectively, and the gi (t; 0)'s are bounded predictable 
functions. In particular, the g (t; Ors can be random in this formulation. The log-
likelihood function from a censored random sample  (te,  Be), i = 1, n, when 
written in the form (2.2.17), gives the likelihood store vector in the form (2.2.18). 
For the model (10.2.14) the derivatives ae/ao;  (j  = 1, , k) evaluated at 13 = 0 
and bo, the m.l.e. of 0 in the null model, are 

n 	oo 
Uj(k), 0) = E 	gj(t; 60)[dN1(t)— Ye(t)h(t; 60) dd. 

f 
1=1  o 

(10.2.15) 

These statistics can be used for a partial score test of the hypothesis p = 0 and have 
been investigated by Hjort (1990a), Pena (1998), and others. Note that when k = I 
and we use the data-dependent form gi(t; 0) = , (10.2.15) reduces to 
times the test statistic (10.2.7) involving the Nelson—Aalen and parametric estimates 
of the c.h.f. 

As discussed in Section 10.2.1, asymptotic distributions for statistics of the form 
(10.2.15) can be complicated in cases where the gi(t; bo)'s are data-dependent. For 
fully parametric models (10.2.14), if the functions g (t; 0)  are fixed, then standard 
maximum likelihood theory produces tests that are in principle easily implemented. 
Care is needed in the specification of (10.2.14) to avoid identifiability or estimability 
.problems, and to provide test statistics with good power against departures from 
ho(t; 0). Limited simulation studies (Pena 1998) suggest that standard )( 2  large-
sample approximations for the score statistics are sufficiently accurate for.practical 
purposes. 

16.2.3 Tests  Based on Grouped Data 

With grouped uncensored data, tests of fit can be based on the multinomial dis-
tribution; this yields the well-known 'Pearson and likelihood ratio tests.  These 
are reviewed briefly below, following which the, case of censored data is consid-
ered. 

Take the Usual grouped data setup Where lifetimes T or other observations can fall 
into k 1 intervals Ij = [ai_ii cif), j =  1,...  , k + 1, with an = 0, ak+i = cx5 and 
ak as an upper limit of observation. Let di represent the number.of observations in a 
random sample of Size n that lie in /i and pi = Pr(T e /j) be the  probability  an 
observation lies in b, where E pi = 1. The  objective is to test some hYpothesis 

Ho: pi = pi(0) 	j 	1, . . „ k 	1, 	 (10.2.16) 
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where the parameter 0 is of dimension p < k. In the case where T has a continuous 
lifetime distribution with c.d.f. F(t; 0), 

P.1(0) = F(ni; 0) — F(ai_i; 0). 	 (10.2.17) 

	

Let Pio = pi* denote the m.l.e.'s for pi 	= 1, 	, k 1) obtained from the 

	

multinomial likelihood function based on d1, 	, 

k+I d  

	

L(PI, • • • Plc) = 	pii, 	 (10.2.18) 

under the null hypothesis 'assumption (10.2,16). The Pearson statistic for testing Ho 
is then 

/4+1   
= 	

(di — ei)2  

	

X2  E 	 

	

J=1 	ei (10.2.19) 

where ei = tipi( -6). Under Ho, the limiting distribution of  X2  as n 	co is 4_0 . 
The likelihood ratio test of (10.2.16) is based on the statistic A = 2 log L(1, 	 

PO —  210g L(Pio, 	, Pko), where Pi = di I n is the unrestricted m.l.e. for pi from 
 (10.2.18). It is easily seen that 

k+I 
A = 2 E di log(di lei), (10.2,20) 

with ei defined as for X2 . The limiting distribution of A under Ho is 4_0 , and the 
tests based on (10.2.19) and (10.2.20), are asymptotically equivalent. A nice feature 
of these tests is that a comparison of observed class frequencies di and expected 
frequencies ei under Ho provides insight concerning departures from the hypothe-
sized model (10.2.16). The tests are less powerful than specialized parametric tests 
at detecting specific types of departure from Ho, but are easily used and effective 
in many situations. More power to detect departures is provided by larger values 
of k, though we want k small enough that the x 2  approximations for X2  or A 
are accurate. D' Agostino and Stephens (1986, Ch. 3) discuss the choice of inter-
vals. 

When the grouped data arise from a continuous distribution, we sometimes 
know the exact values ti „ , tn  of the observations. If the m.l.e. of 0 based on the 
ungrouped data is used in (10.2,19) or (10.2.20), the limiting distributions are no 
longer 4_0 , but are given by a linear combination of 4_0  and p 4 1  random 
variables (e.g., Chemoff and Lehmann 1954). This limiting distribution is bounded 
by 4_0  and 4) , and a range for the exact significance level can be obtained from 
this. 
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10.2.3.1 Censored Data: Censoring at Interval Endpoints 
If data are right censored at a common value C, then the Pearson or likelihood ratio 
tests can be used with ak = C. More general censoring patterns create problems that 
can be overcome in various ways. 

First consider the special case where all censoring occurs at the ends of intervals; 
this model was used for life table data in Section 3.6. The numbers of failures and 
withdrawals (censored lifetimes) in /i are denoted by di and tvi, and the number 
of individuals alive and uncensored at ai_i is denoted by ni. As in Section 3.6, let 
V = Pr(T E ljlT>  a j_i) and note that the likelihood function (3.6.8), 

k 
L( qt , 	qk ) 	jui (1 	qj )fli-di 	 (10.2.21) 

.1=1 

is valid under the assumption that censoring depends only on prior events. 
Consider the null hypothesis 

Ho:v = qi(0) 	1, 	, k; (10.2.22) 

where 0 is of dimension p < k and the alternative is that the qj satisfy only 0 < 
qj <1. The unrestriated m.l.e.'s from L(qi qk) are 4i = dilni and the m,I.e.'s 
under Ho are 4.1 0 = qi(6). The likelihood ratio statistic for testing 1:-/0 is 

A = 2 log L(c1, • • • 4k) — 2 log L(L10, • • • , 4k0) ,  

This can be written as 

A = 2 E di  log(difilio)+2 E(ni  —di) log((ni —di)/(ni —dio)], 	(10.2.23) 
f=1 	 j=1 

where djo = nj tjO estimates the expected number of failures in lj,  given ni. tinder 
assumptions about censoring discussed in Section 3.6, the limiting distribution of 
A under Ho is 4_p) . As for the earlier tests based on (10.2.19) and (10.2.20), 
this result applies when the m.l.e. 6 is obtained from the grouped data likelihood 
(10.2.21); if 6 were obtained from data before grouping, the limiting distribution 
would be that of a linear combination of 4_,,, and p xA )  randôrri variables. 

A Pearson-type test of (10.2.22) can also be developed for this case (Cook 1988, 
Ch. 3); the test statistic is 

x2 Ek  fij(t./ 4./0) 2  (10.2.24) 
gio(1 —40) 

In the case where there is no censoring, this statistic and the standard Pearson statistic 
(10.2.19) are different but asymptotically equivalent. Likelihood ratio procedures are, 
on the other hand, invariant under reparameterization, and (10.2.23) is the same as 
(10.2.20) when there is no censoring. 
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Table 10.1. Life Test Data for 89 Wood Specimens 

Interval 
(year) j 

At Risk 
(nj) 

Failures 
(c/j) 

Withdrawals 
NO 

1 89 19 1 
2 69 6 1 
3 62 6 1 
4 55 3 1 
5  51 4 1 
6 46 1 I 
7 44 3 1 
8 40 4 1 
9 35 3 1 

Example 10.2.1. Cook (1988, Ch. 3) presented data from a test of preservative 
treatments for wood, in which 89 pieces of wood were treated and partially embedded 
in soil. The test covered a period of many years. At the end of each year the pieces 
were examined and any with more than a specified amount of decay were designated 
as failures. In addition, one unfailed piece was randomly removed at the end of each 
year so it could be tested for strength. The data are shown in Table 10.1. 

The Weibull distribution is widely used in this area, so let us carry out a test of fit. 
With the survivor function (s.f.) written as S(t; 0) = exp[—(010 92 ], with t in years, 
the m.l.e.'s obtained by maximizing (10.2.21) are 61 = .083, 6.2 = .594. The values 

Jo are then computed as 

= [SU — 1; — SC1; 	— 1; ô) 	j= l 	9  

The observed values of the likelihood ratio and Pearson test statistics (10.2.23) and 
(10.2.24) are A = 4.56 and X2  = 4.32, respectively. Comparison with 47)  quantiles 
shows there is no evidence against the Weibull model. 

10.23.2 Censored Data: General Case 
If censoring times are distributed across intervals, then the approach of the preceding 
subsection no longer applies. If the intervals j = 1, . , k are not too long and 
censoring not too heavy, then an ad hoc approach in which the likelihood (10.2.21) 
is replaced with 

L(.71 	qk ) 	 n ,p( ,_ qi) ni -dj -.511)) 	 (10.2.25) 

is often satisfactory (see Problem 3.18). Although the limiting distribution for the 
likelihood ratio  statistic  .A  under Ho; qj =qj(0) is not 4._p)  and is) is not consistent 
for 0 under H0, the test and associated X 2  approximation are reasonable in many 
situations. 
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Tests can also be developed by considering pseudo interval frequencies  lj  
defined through the Kaplan—Meier estimate of the distribution or survival func-
tion, or through the Nelson—Aalen estimate of the c.h,f. This approach assumes that, 
although goodness-of-fit is to be checked using grouping intervals, the exact failure 
and censoring times are available for individuals i = 1, , n. 

An approach based on the Kaplan—Meier estimate is as follows. Let  S(t) denote 
the Kaplan—Meier estimate (3.2.2) and for the interval  Ij = [ai_i , of) define the 
pseudo relative frequencies 

= ,§(af _1) — :S(ai) 	j = 1, . , k. 	(10.2.26) 

Consider the parametric model S(t; 0) and the corresponding hypothesis Ho given 
by (10.2.16), with 

pi (0) = S(af_i; 0) — S(af; 0). 

Let D(0) be akxk symmetric matrix and consider estimators Ô that minimize the 
quadratic form 

- P(0)l i  1, (0) 2 [11— 

where fi = 	, 	and P(0) = (Pi(0), • • P k (0)) /  . Under mild conditions, 
Li and Doss (1993) show that, under Ho, D (0) — P (0)] is asymptotically normal 
with mean 0 as n --> co. They also give a quadratic form in [0 — p(6)] that has a 
limiting 4_0  distribution, and can be used to test Ho. 

Alcritas (1988), Hjort (1990a), and others have considered tests based on the 
Nelson—Aalen estimate (3.2.13). The idea here is to compare the Nelson—Aalen 
estimate 11(t) of the c.h.f. with the parametric estimate H(t; 6) at time points 
al, , ak. Conditional expected frequencies for the interval /i are defined as 

a)  
eft =Y.(s)h(s; 	ds 	j = 1,  

4.1 _ 1  

where "6 is the m.l.e. based on the ungrouped data and where Y.(s) is the total number 
of individuals alive and  uncensored  ai  time s. Asymptotically, X 2  test statistics for 
Ho that are the sum of 

X2  = E(„,, ei) 2 /ei 	 (10.2.27) 
1=1 

and a second term that depends on the model H(t; 0) can be obtained. Hjort (1990a) 
indicates that a slightly conservative procedure is to use just X2  and treat it as asymp-
totically 4)  under Ho. 

Simulation might also be used to approximate p-values in many cases. For 
arbitrarily censored data, it is often satisfactory to assume the independent random- 
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censorship model (Section 2.2.16) and to estimate the censoring time distribu- 
tion nonparametrically through the Kaplan—Meier es' titnate P(c). By simulating 
lifetirries Ti from Fo(t; 6) and censoring times Ci from 'fr(c), bootstrap samples 

=- min(Ti , Ci),  8  = 1(ti = TO, j  = 1 n) and realizations of the goodness-
of-fit test statistic can be obtained. This and simulation procedures when only 
grouped data are available do not appear to have been examined closely. 

10.3 TESTS OF FIT FOR SPECIFIC DISTRIBUTIONS 

Tests of fit for several important lifetime distributions are considered briefly in this 
section; all of the models are of the log-location-scale type. The development and 
use of tests with complete or Type 2 censored data is relatively easy. In addition to 
existing distribution theory, tables, and special-purpose software, one can use sim-
ulation to obtain p-values in most cases. With arbitrarily censored data the main 
approaches to model ,  assessment are the graphical procedures introduced in Chap-
ter 2 and hypothesis tests based on model expansion. Tests based on approaches 
such as those in Sections 10.2.1 and 10.2.3 tend to have complicated asymptotic dis-
tribution theory, although simulation can often be used for evaluation of p-values. 
These methods have not yet been carefully assessed. 

10.3.1 Tests of Fit for the Exponential Distribution 

We Consider three approaches that deal with decreasing degrees of specificity con-
cerning departures from the exponential model. 

First are tests based on model expansion. By embedding the exponential distribu-
tion with survivor function 

Ho 	S(t) = 	t  > 0 	 (10.3.1) 

in a larger family, simple parametric methods may be used. Two models that include 
the exponential as a special case are the Weibull distribution (1.3.5) and the gamma 
distribution (1.3.15). The former, for example, has s.f. 

S(t) = exp[ — (t/8)] 	t > 0 	 (10.3.2) 

and testing Ho is equivalent to testing fi = 1. Such parametric procedures have 
been considered  in Chapters 4 and 5. They have the advantage of handling arbitrary 
censoring or other forms of incomplete data, but may lack power against departures 
from (10.3.1) that are not approximated by (10.3.2). 

We next mention a test that has good power against alternative distributions with 
monotone hazard functions, but deals only with Type 2 censoring. It is constructed 
as follows; let t ,(1) < t(2) < 	< 109 be the r smallest lifetimes in a random sample 
of n, and define the scaled spacings 

= (n — 	1)(1(i) — 41-1)) 
	

i = 1, . 	r, 
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where t(o) = 0. The test  is based on the so-called Gini statistic (Gail and Gastwirdi 
1978), 

r-1 
= 	 (r - 1) E w,. 

i=1 
(10.3.3) 

Values of G,. close to 0 or 1 provide evidence against the exponential model; val-
ues close to zero suggest increasing hazard function alternatives, and values close to 
one suggest decreasing hazard function alternatives. Under Ho, the Wi/e's are inde-
pendent standard exponential random variables (see Theorem 4.1.1), and it therefore 
follows that the distribution of G,. depends on r but not on  9 or n. The mean and 
variance of G,. under Ho are .5 and [12(r -  1)1_I,  respectively (see Problem 10.7), 
and for r larger than 20 the approximation [12(r - 1)] 1 / 2 (Gr  - .5) ^-• N(0, 1) is suf-
ficiently accurate for all practical purposes. Gail and Gastwirth (1978) provide tables 
for n - 3 20; alternatively, p-values for G,- are readily obtained by simulation. 

Omnibus tests that aim to detect arbitrary departures from the exponential dis-
tribution can be based on the approach of Section 10.2.1. In this case it is neces-
sary to replace values Fo(y) in statistics such as (10.2.3) or (10.2.4) with Po(y) = 
1 - exp(-y/5), where 9 is the m.l.e. of O. Percentage points for certain statistics 
have been given for complete samples and for samples with a single censoring point; 
D'Agostino and Stephens (1986, pp. 133-145) provide details. For arbitrarily cen-
sored data the approaches based on (10.2.6) or (10.2.7) can be considered; Hjort 
(1990a) considers the latter possibility in some detail. However, distribution theory 
for such tests is often quite intractable, so unless the evaluation of p-values by sim-
ulation is an option, this approach is not very feasible. 

Tests can be based on grouped data, as described in Section 10.2.3. This approach 
can be thought of as a comparison of empirical and parametric distribution functions 
at grouping interval endpoints. 

Tests for the one-parameter distribution (10.3.1) can also be used for the two-
parameter exponential model (4.5.6) in the case of complete or Type 2 censored 
data. This is because if Y() is the ith-order statistic from the two-parameter model, 
then O  - Y(j)  - Yo), i -  2, 	n  can be treated as the order statistics in .a sample C - 
of size n  -1 from (10.3.1). 

Example 10.3.1. Proschan (1963) gave data on the time, in hours of operation, 
between successive failures of air-conditioning equipment in 13 aircraft. The data foi 
plane number 3 are as follows: 

90, 10, 60, 186, 61, 49, 14, 24, 56, 20, 79, 84, 44, 59, 29, 118, 25, 156, 310, 76, 26, 

44, 23, 62, 130, 208, 70, 101;208. 

An important question is whether the times Ti between successive failures are 
i.i.d. This may be assessed informally, for example, by plotting ti versus t1+1 
(i = 1, , 28), or formally by methods described in Chapter 11, We assume 
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here that the times are i.i.d. and test whether they are consistent with an exponential 
distribution (10.3.1). 

A probability plot of the data as in Section 3.3.1 is reasonably close to linear, but 
let us consider formal tests of fit. A test of the hypothesis fi = 1 within the Weibull 
model can be carried out using either large-sample methods or exact methods of Sec-
tion 5.2.2. We consider the former with the test statistic Z = (log fi  - 0)/se(log /3); 
this gives /3 = 1.294, Z = 1.85, and a (two sided) p-value obtained from treat-
ing Z as N(0, 1) of .065. The G test statistic (10.3.3) gives G29 = .441, and the 
N(0, 1) approximation to [12(28)] 1 /2 (G29 — .5) gives a p-value of .279. The empir-
ical cumulative distribution function (e.c.d.f.) statistic (10.2.4) with Fo(y) replaced 
by 1 — exp(—y/8)  = 1 — exp(—y /83.52) gives an observed value 1419  = .1216. 
Using Table 4.11 in D'Agostino and Stephens (1986), we find the associated p-
value to be about .23. Finally, a test could be based on a grouping of the data, as in 
Section 10.2.3. With the intervals [0,50), [50,100), [100,200), [200,00) the grouped 
data mix. for  8 in (10.3.1) is found to be 79.11, and the Pearson and likelihood ratio 
statistics (10.2.19) and (10.2.20) are 1.89 and 1.80, respectively. On 41)  these give 
p-values of .17 and .18. 

None of the tests indicates significant evidence against the exponential model. The 
test based on the Weibull model gives a smaller p-value than the others; it is sensitive 
at detecting monotone hazard function departiires from (10.3.1). An examination of 
an exponential probability plot of the data or a comparison of the e.c.d.f. and F (t; 61. ) 
suggests that the three largest failure times are largely responsible for the Weibull 
test's mild indication that fi in (10.3.2) could be bigger than 1. 

10.3.2  Tests  of Fit for the Weibull and Extreme Value Distributions 

Consider the extreme value model with survivor function (1.3.9), 

S (y ; u, b) = exp[—e (Y -0111 	— oo  <y  < oc, 	(10.3.4) 

where  —oc  < u  < oc and b > 0 are unknown parameters. Because T = exp(Y) has 
a Weibull distribution (1,3.6), tests of (10.3.4) also provide tests of fit for the Weibull 
model. As for the exponential model, we mention tests based on model expansion, 
on order statistics, and on e.c.d.f. statistics. 

As discussed and illustrated in Sections 5.5.2 and 5.5.3, the extreme value model 
can be tested as a submodel of either the generalized log-Burr or generalized log-
gamma families of distributions. We therefore turn to the second approach, which 
involves spacings of order statistics and is similar in spirit to the test of exponentiality 
based on (10.3.3). These tests apply to complete or Type 2 censored data only. 

The spacings tests are based on the fact that if Y(I), i = 1 r are the r smallest 
observations in a random sample of size n from a location-scale distribution, then 
the normalized spacings 

Y(j1) 	Y(j) 
Li = 	 i = 1, 	, r — 1 	(10.3.5) 

E[Yu+t) — Yu)] 
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have distributions that do not depend on u or b. In addition they are asymptotically 
independent standard exponential random variables (Pyke 1965). Mann et al. (1973) 
and Mann and Fertig (1975) proposed goodness-of-fit tests for the extreme value 
distribution based on statistics of the form 

	

r- 1 	m 
= E Li ELI, 

	

i=m+1 	1=1 
(10,3.6) 

where 1 < 	< r — 2. Under the extreme value model (10.3.4), the distribution of 
niMl(r — 1 — m) is well approximated by the F distribution Fmr--1--nt),2,0  for r 
bigger than 20 or so. Large values of M provide evidence against the extreme value 
model. 

Tiku and Singh (1981) suggest the statistic 

r- 2 	 r — I 
=  2(r  — i -1- 1)Li /(r — 2) E Li. 

t=t 	 i=i 
(10.3.7) 

Large or small values of Z* provide evidence against the extreme value model, and 
they provide a normal approximation for calculation of p-values. 

The statistics (10.3.6) and (10.3,7) require the expected values E[Y(i+i) — 
Mann et al. (1973) provide tables for small n, and for larger n the approximation 
(Blom 1958,  P.  73) 

E[Y(01= b log [— log (1 	)] 
n 	.25 

(10.3.8) 

can be used. Note that the scale parameter b disappears in (10.3.5) and (10.3.6), and 
that approximate p-values for either test can be calculated by simulating data from 
the standard extreme value distribution. 

Tests based on e.c.d,f. statistics, such as (10.2.3) and (10.2.4), have also been stud-
ied. D' Agostino and Stephens (1986, Sec. 4.2) provide results for complete data. For 
either complete or Type 2 censored data, the distributions of  these  types of statis-
tics under the null (extreme value) model do not depend on u or 1,, so the simplest 
approach is again to approximate p-values by simulating data from the standard 
extreme value distribution. The following example provides an illustration. 

Example 10.3.2. Example 3,3.2 gave a Weibull probability plot of data on the 
failure times of 23 ball bearings in an endurance test. The plot looked roughly linear, 
with a slight amount of curvature at one end. Here we consider formal goodness-of-
fit tests of the Weibull model; we do this by testing that the log failure times follow 
an extreme value distribution. 

The M statistics (10.3.6) can be computed using values of E[Y(, ÷i)— Yu)] given 
by Mann et al. (1973) or else they can be approximated using (10.3.8). The M statis-
tic with nz = 11 (r = n = 23 here) is considered by Mann et al., so we use it, finding 
that M = 1.302. The approximation (10.3.8) gives M = 1.323. The p-value IS 
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given by tables in Mann et al. as just over .25, indicating there is no evidence against 
the extreme value model. The approximation M — F(22,22) mentioned following 
(10.3.6) gives the p-value for M = 1.302 as .27 and for M = 1.323 as .26. If one 
does not have access to the tables or wants to consider other test statistics of the form 
(10.3.6), then exact p-values can be estimated to any desired degree of accuracy by 
simulation. To do this we generate B random samples of size 23 from the standard 
extreme value Model (u = 0, b = 1) and for each sample obtain the statistic M. The 
estimated p-value is the fraction of the B values of M that exceed 1.302 or 1.323, 
depending on whether we used (10.3.8) or not in the calculation of M. For example, 
using B = 1000, we estimated the p-value as .28 for the M-value 1,323 based on 
(10.3.8) .  

Tests based on the e.c.d.f. can also be used. The m.l.e,'s of the extreme value 
location and scale parameters were obtained in Example 5.5.2. as a = 4.405, 13 = 
.476, The Cramer—von Mises statistic (10.2.4) with Fo(Y) 1 — exP[— exP((Y -- 
0/6)] gives WL = .05793, Table 4,17 in D'Agostino and Stephens (1986) shows 
the p-value to be over .25. The exact p-value can be approximated by simulation bï 
generating B standard extreme value samples as earlier, obtaining the m.l.e.'s  û , b, 
and the value of W73  for each, and then determining the fraction of these B values 
that exceed .05793. Using the same B = 1000 samples as for M, we estimated the 
p-value for W13  as .41. 

Finally, consider the parametric test of fit obtained by embedding the extreme 
value distribution within the generalized log-gamma family. This was considered in 
Example 5,5.2, where the likelihood ratio statistic for testing the extreme value model 
was found to be 1.45. The p-value, obtained from the approximation  P(X) > 1.45), 
is .23. In this case, all of the goodness-of-fit tests are in close agreement, and there 
is no evidence against the extreme value model. 

10.13 Tests of Fit for the Normal and Log-Normal Distributions 

Many tests of the normal distribution have been propos .ed, but relatively few handle 
censored data, As for the extreme value model, we mention three types of approach. 

The normal distribution is a special case within several larger families, so 
parametric tests of normality are always available. Two useful models that include the 
normal are the generalized log-gamma model (5.5.10) and the family of Student's-I 
distributions with location and scale parameters. The former is useful for deal-
ing with asymmetric alternatives, and the latter deals with symmetric longer tailed 
alternatives to the normal distribution. 

Among omnibus tests, one that has been found effective with uncensored data is 
the Shapiro—Wilk (Shapiro and Wilk 1965) test. It is based on the statistic 

(10.3.9) 

where yi 	 yn  is a random sample and the ai are functions of means, variances, 
and covariances of standard normal-order statistics. Small values of W indicate , 
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departures from normality. Tables (e.g., Pearson and Hartley 1972, Table 15) and 
software are available for this test. 

Tiku (1981) gave a test based on spacings that can handle Type 2 censored data. It 
uses the same form of statistic (10.3.7) as for the extreme value distribution, except 
that the values E[Y(i +j) — Y(0] in (10.3.5) are now based on a normal sample. Tiku 
gives a large-sample approximation for the null distribution of the statistic; p-values 
can also be obtained by simulation. This test is effective against asymmetric alterna-
tives to normality, but not against symmetric alternatives. 

Finally, tests based on the e.c.d.f. can be used with either complete or Type 2 
censored samples, in the same way as for the extreme value model.. D' Agostino and 
Stephens (1986, Sec. 4.8) survey this area and provide tables. Simulation is a recom-
mended way to obtain p-values with these types of ,  tests when tables or software are 
not available. 

Example 10.3.3. (Example 10.3.2 continued) Consider once again the ball 
bearing failure time data for which a Weibull model was found consistent in 
Example 10.3.2. Here we examine the adequacy of a log-normal model by test-
ing a normal model for log failure time. 

The Shapiro—Wilk test based on (103.9) can be carried out with the aid of Tables 
15 and 16 in Pearson and Hartley (1972). Table 15 gives the observed value W = 
.984 and Table 16 gives a p-value of approximately .93. The Cramer—von Mises 
test based on (10.2.4) with Fo(y) given by cti(y — y)/s] = cl, [(y — 4.1504)/.5333] 
gives W1.3  = .0289. Tables in D'Agostino and Stephens (1986, Sec. 4.8) only show 
the p-value to be over .25. Finally, the parametric likelihood ratio test based on the 
generalized log-gamma family in Example 5.5,2 gave an obsetved value of .35 and 
a p-value on 4)  of .55. There is no evidence against the normal distribution of log 
failure times. 

10.3.4 Additional Remarks 

A few special tests for other frequently used lifetime distributions exist, mainly for 
the complete-sample case. For example, D'Agostino and Stephens (1986, p. 156) 
consider the logistic distribution. Since it is a location-scale model we can use  any 
of the e.c.d.f. test statistics with parameters estimated by maximum likelihood in the 
case of complete or Type 2 censored samples, obtaining p-values by simulation. 

Models for which log failure time distributions are not of location-scale form are 
more difficult to handle, since even for complete samples the distributions of test 
statistics typically depend on unknown parameter values. See, for example, O'Reilly 
and Rueda (1992) for a discussion of the inverse Gaussian model. Problem 10.11 
gives the asymptotic distribution of V7z[frn  (t) Fo(t; it)], where f',1 (t) is the e.c.d.f. 
of  F(t).  from a complete sample. When there is a censoring process that is, speci-
fied fully enough,  simulation can be used to compute approximate p-values for test 
statistics, as described at the end of Section 10.2.3 for statistics based on grouped 
data. 
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Finally, it is hard to discriminate between certain models when sample sizes are 
small. For example, Tiku and Singh (1981) show the power of some complete-sample 
goodness-of-fit tests for the extreme value model against normal and logistic alter-
natives. For n = 25, the power of a size .05 test based on the statistic (10.3.7) is .39 
against a normal alternative; for n = 40 the power is .62. In settings where it is of 
interest to compare alternative parametric models, guidance on power or choice of 
sample size can be obtained by simulation. 

10.4 TESTS OF FIT WITH REGRESSION MODELS 

10.4.1 General Remarks 

For the case of fixed covariates x a regression model is a specification of the dis-
tribution F(y1x) of a response variable Y, given x. In many applications the most 
crucial issue is the nature of the relationship between Y and x, the precise form of 
the distribution being secondary. For example, it may be more important to know 
that a location-scale model 

F(y1x) = Fo (Y  :(x) ) 
	

—oo < y < oo 	(10.4.1) 

provides a reasonable description than to know the precise form of the c.d.f. Fo (z). A 
practical difficulty is that the assessment of different components of a model usually 
cannot be separated fully. For example, checks on the form of Fo in a model (10.4.1) 
could be affected by departures from an assumed form for u(x) or by nonconstancy 
of the scale parameter. Model specification involves the iterative application of model 
fitting and model checking, and it is easiest if at the start some robust assessment of 
the form of F(y jx) is possible. This can be difficult when there are many covariates 
present. 

Sections 6.1 and 6.2 discussed regression models and Methods for assessing their 
suitability in some detail. Other parts of Chapter 6 considered location-scale models 
further, and Section 7.1.9 presented methods for checking PH models. The emphasis 
in those sections was on plotting techniques and on tests based on model expansion. 
Sometimes omnibus tests of the full specification of F(y1x) are also helpful. Such 
tests can be associated with the methods of Sections 10.2 and 10.3, and we consider 
them briefly here. 

Many omnibus tests are based on the fact that if a specific continuous model 
F(y ix) is "true," then there exist functions of the data and parameters that have 
known distributions. For continuous responses, for example, the quantities (11 = 
F(Yilxi) are independent Uniform(0, 1) random variables, given xi, , x n . This 
suggests that one might ' consider "uniform residuals" ûj = F(yilxi; 6) and test 
statistics that "compare" the  ûj  to Uniforrn(0, 1) variables. The  û1 are only approxi-
mately Uniform(0, 1), independent, or identically distributed, so consideration must 
be given to the distribution of any such statistic. In addition, censoring or other forms 
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of incompleteness in the data may make it difficult to find test statistics, and in that 
case the reliance on model expansion is more pronounced. 

The next two sections consider the location-scale and multiplicative hazards mod-
els that were studied in Chapters 6 and 7. 

10.4.2 Location-Scale Regression Models 

Chapter 6 presented many examples where location-scale models (10.4.1) were 
checked using plots or tests based on model expansion. Assessments of the location-
scale form, the constancy of h, and the specification of u(x) were considered. In 
addition, tests of the form of the "error" distribution Fo(z) were based on expanded 
parametric models Fo(z; k) in Section 6,4. Another approach in this direction would 
be to use smooth tests discussed in Section 10.2.3; this has not yet been fully 
explored for censored data settings. 

Tests of fit like those in Section 10.3 can be based on residuals from location-scale 
models. Consider the hypothesis Ho that Fo (z) in (10.4.1) is of some specified form, 
such as standard normal or standard extreme value. Assume further that the model is 
linear with u(x) = fl'x, which includes an intercept term. Let  13  and /3 be the m.l.e.'s 
of 13 and the scale parameter b obtained from an uncensored random sample (yi , 
i = 1, 	, n, and define residuals 

„ 

 — 
yi  — 	Yi  — 

Zi   	 i 	1, . . . , n. 	(10.4.2) 

Tests of Ho can be based on straightforward generalizations of statistics used to test 
the hypothesized distribution Fo(z) in the ordinary location-scale model where 

	

Fo[(y 	u)/b] 	i = 1, . . .  ,n 	 (10.4.3) 

are i.i.d.  random variables. 
For  example, consider a  test based on the Cramer–von Mises form (10.2.4) of 

e.c.d.f. statistics. The statistic to be used in the  regression getting is 

6, _ . 512 n r  

141  = E [F°(2(I)) 	n 	—12n 

where 2 (j ) is the ith smallest value among 2i, 	 in . Pierce and Kopecky (1979) 
and Loynes (1980) show that (10.4.4) and, more generally, other test statistics that 
are permutationally invariant functions of the  2  have the same limiting distribution in 
the  regression  case as in the 	case (10.4.3). This means that asymptotic approx- 
imations for the 	case Can be used in the regression setting for sufficiently large 
n, although the acCuracy for finite n might need investigation. A more important 
fact is that the distributions of (10.4.4) .  and other test statistics based on the resid-
uals 2, is parameter-free (independent of 13 and b) for, all n, although they depend 
on xi ,   xn . This follows directly , from Theorem  E5 in Appendix E; which shows 
the  2j are ancillary. Therefore, p.-values for any such test statistic can be obtained by 
simulation, as follows. 

(10.4.4) 
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1. Generate response values yi , 	, yn  from the standard distribution Fo (z), that 
is, (10.4.1) with = 0 and b = 1. 

2. Obtain the m.l.e.'s 	under (10,4.1), using the data  (ye, xi), i = 1 ,,,,, n. 
3. Obtain the residuals ie in (10.4.2) and the test Statistic, say W,?'. 

By repeating this process B times, we generate a random sample from the distribu-
tion of W,?, given xi,   x„, and can use  this to estimate the probability that 14/ 
exceeds any observed value. 

The simulation procedure can be applied quite generally to test statistics based on 
the 21 and, in particular, to statistics that are not symmetric functions of 2  , . 
However, it applies to uncensored samples only; test statistics defined for arbitrarily 
censored samples do not have distributions that are parameter-free. In the spirit of the 
parametric bootstrap, one could obtain approximate p-values with censored data by 
simulating data from the hypothesized family with parameters j§, 6. The censoring 
process 'must be known or estimated in order to generate relevant censored data; this 
can be problematic when the censoring times are related to covariate values. Some 
authors (e.g., Akritas and Torbeyns 1997) have developed test statistics • that have 
.asymptotic x 2  distributions under the null model, but the limiting distributions are 
obtained under assumptions about censoring - that may. not be reasonable in certain 
settings. Further development of this area would be useful. 

10.4.3 Multiplicative Hazards Models 

The PH model, for which the hazard function of lifetime T given covariate vector x 
is of the form 

h(tix) = ho(t)g(x; 13), 
	 (10.4.5) 

was discussed at length in Chapter 7. The multiplicative hazards extension with x 
depending on t was also considered. Model checking, based on plots and on model 
expansion, Was examined in Section 7.1.9. 

There are two main assumptions in any model of the form (10.4.5): the  multi-
plicative assumption that  h( Ix)  can be represented as a function of t times a func-
tion of x, and the assumption regarding the form of g(x; 13). Most applications of 
(10.4.5) leave ho(t) unspecified, so there is no parametric form to be checked or 
tested. The procedures described in Section 7.1.9 are satisfactory for most practi-
cal purposes, but there have been some attempts to develop omnibus tests of fit. 
These are effectively based on comparisons of c.h.f.'s H(tlx) = Ho(t)g(x; p) or 
s.f.'s S(t lx) = exp[—H (t lx)] estimated under (10.4.5) with nonparametric estimates 
of H(t  lx) or S(t ix); for examples, see McKeague and Utikal (1991), Marzec and 
Marzec (1996), or Burke and Yuen (1995). Some approaches use grouping intervals 
for lifetime and covariates, and compare expected and observed frequencies (e.g., 
Schoenfeld 1980). This approach, however, can often be viewed as arising through a 
parametric test of (10.4.5) against an expanded model in which covariate-time inter-
actions are introduced. Other goodness-of-fit tests, based on expanded models, have 
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also been proposed. Quantin et al. (1996), for example, consider the family 

H(t Ix) = exp (0) Ho (t) exP(r'x) , 	 (10,4.6) 

where the case 'y = 0 gives a PH model. 
Parametric PH models are sometimes used, in which h0 (t)  is specified as ho(1; a). 

In this case, one can consider omnibus test statistics based on residuals such as 

ai = fi(tiki) = Hoct; iog oci; 	 (10.4.7) 

where 'a and are m.l.e.'s. The functions ei = H(Tilxi) are independent standard 
exponential random variables when (10,4.5) with ho(t) = ho(t; a) is true, so one 
might, for example, consider statistics that compare the ai to censored exponential 
samples, either conditionally on x values or unconditionally. Approximate p-values 
could be obtained by simulation, assuming sufficient knowledge of the censoring 
process. Lin and Spiekerrnan (1996) consider tests of Ho(t; a) based on a com-
parison of Ho(t; ift) and the semiparametric Breslow estimator (7.1.32). They also 
proposed omnibus tests based on martingale residuals for both proportional hazards 
and accelerated failure time models. 

The need to identify the nature of departures from a fitted model generally points 
to directed tests, so the appeal of omnibus tests of fit seems less in the regression set-
ting than in the case of identically distributed observations. Nevertheless, empirical 
study of their effectiveness for proportional hazards (and other) regression models 
would be useful, 

BIBLIOGRAPHIC NOTES 

Goodness-of-fit tests associated with empirical processes, as in Section 10.2.1, have 
an extensive literature. D'Agostino and Stephens (1986, Ch. 4) give many refer-
ences; see also Durbin (1973, 1975). Shorack and Wellner (1986) discuss empirical 
processes generally. The literature dealing with censored data is more limited. Hjort 
(1990a), Andersen et al. (1993, Sections 6.3, 6.4) and  Y.  Sun (1997) give some results 
and references; see also references below for grouped data. Fleming and Harrington 
(1991) and Andersen et al. (1993) consider empirical processes associated with the 
Kaplan—Meier and Nelson—Aalen estimates. 

Smooth tests of fit are discussed by Rayner and Best (1989), but they do not 
consider censored data or regression models in any detail. Gray and Pierce (1985) 
consider tests based on an extension of (10.2.10). Pena (1998) provides many results 
and references for hazard-based models. 

Tests based on grouped data have a long history. D'Agostino and Stephens (1986, 
Ch. 3) has many references and extensions to the material in Section 10.2.3 for 
uncensored data, including the choice of .grouping intervals and the use of data-
defined intervals. 'Turnbull and Weiss (1978)  considered censored data tests based 
on (10.2.23); Cook (1988) examined these and related tests and carried out some 
simulation studies. Tests for which the Kaplan—Meier estimate from ungrouped data 
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is used to define expected frequencies are considered by Habib and Thomas (1986), 
Li and Doss (1993), and others. Alcritas (1988) and Hjort (1990a) consider similar 
tests based on the Nelson—Aalen estimate. 

Tests for the exponential distribution have been studied extensively, but rather few 
methods deal with arbitrarily censored data. D' Agostino and Stephens (1986, Ch. 10) 
provide an overview, and also (1986, Ch. 9) survey tests of normality. 

Tests for regression models based on functions of residuals were considered by 
Pierce and Kopecky (1979) and Loynes (1980), building on work of Durbin (1975), 
Gray and Pierce (1985) consider smooth tests designed to assess the uniformity 
of residuals F(tj Ix; 6). In principle similar tests could be used with time-varying 
covariates in parametric models (Duchesne and Lawless 2000). Pena (1998) studies 
hazard-based smooth tests. Lin and Spiekerman (1996) consider statistics based on 
martingale residuals. 

Omnibus tests for the Cox PH model have been proposed by various authors. In 
addition to those already mentioned, the test of Lin and Wei (1991) is interesting; 
it uses the "IM" approach of White (1982), and is based on a comparison of robust 
and model-based variance estimates for /1. Many goodness-of-fit tests are based on 
functions of martingale residuals; Therneau and Grambsch (2000) and Verweij et al. 
(1998) provide discussion and references. It should be remarked that the Cox model 
is setniparametric and the idea of omnibus tests for it is a little different than for 
fully parametric models. Many of the so-called omnibus tests in the literature can 
be obtained as tests of parametric hypotheses within an expanded model (e.g., see 
Moreau et al, 1986, May and Hosmer 1998), 

PROBLEMS AND SUPPLEMENTS 

10.1 Show that the statistics (10.2.1) and (10.2.2) can be written in the forms 
(10.2.3) and (10.2.4) by noting that for an uncensored sample yi , 	, yn  the 
e,c,d.f. satisfies fr(y (o ) = i/n and .fr„ (y(i)—) = (i — 1)/n for i = 1, 	, 
Generalize both expressions to the case of Type 2 censored data y(1) « 
Y(r). 

(Section 10.2.1) 

10.2 Consider a lifetime distribution with parametric hazard function ho(t; a). 
Derive smooth tests Of fit for the model by considering the expanded fam-
ily 

h(l; a, g) = ho(t; a)eflet ) , 

where  g(t)  is a specified function. In particular, consider the partial score test 
of Ho: p = 0. Specialize this to obtain tests for the exponential distribution. 

(Section 10.2.2) 

10.3 Consider the grouped data goodr....,ss-of-fit tests based on (10.2.23) and 
(10,2.24) in the case of a simple null hypothesis Ho:  qj = 9jo(i = I 	k), 
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where the qio are specified probabilities. One concern about these tests is that 
they may lack power against certain types of departures from Ho. We can 
develop parametric tests of Ho by considering the expanded family of models 

ik 	= (q o) +  fi, 	 (10.5.1) 

where I1r(x) is a function taking values in (—oo,  oc)  for x in (0, 1). 

(a) Derive the partial score test statistic for the hypothesis fi = 0, assuming 
that the observed data give a likelihood function of the form (10.2.21). 

(b) Show that in the case where* (x) = log(x/ (1 — x)), the statistic derived 
in part (a) specializes to give 

k 	 1k  
X 2  = E(d,— niqi0) 2  En, q,00 —q,o) 

J=1 	 j=1 
(10.5.2) 

in the notation of Section 10.2.3. The asymptotic distribution of X 2  is xli)  
under Ho, assuming that censoring occurs only at interval endpoints. 

(Section 10.2.3; Oleinick and Mantel 1970) 

10.4 Table 10.2 is an adaptation of data given by Gail and Ware (1979) on the 
ages at death of a cohort of males who worked in a particular manufacturing 
plant during the period 1943-1947. The table shows the number of deaths and 
withdrawals (due to loss of follow-up)' for various age intervals. Conditional' . 

 probabilities of death qi for the male population at large are also shown. 

Compare the lifetime distribution for the cohort of workers with that for the 
population at large. You may want to combine the last two or three age inter-
vals because of the large numbers of withdrawals there. Alternatively, you 
might consider a modification of (10.2.23) to handle withdrawals within inter-
vals. 

(Section 10.2.3) 

Table 10.2. Survival of a Cohort of Manufacturing Plant 
Workers 

Age Interval 
(years) n i  

[40,45)  191 8 0 .02529 
[45,50) 183 6 0 .03672 
[50,55) 177 11 0 .05709 
[55, 60) 166 8 0 .08600 
[60,62) 158 5 14 .04640 
[62, 64) 139 8 51 .05470 
[64 , co) 80 80 1.0 
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Table 10.3. Failure Time Frequencies for Centrifuge 
Cloths 

Interval 
(weeks) 

Number of 
Failures 

Interval 
(weeks) 

Number of 
Failures 

[0, 2) 24 [30, 32) 4 
[2, 4) 36 (32, 34) 4 
[4, 6) 27 [34, 36) 5 
(6, 8) 23 [36, 38) 2 
(8, 10) 15  [38,40)  2 
[10,12)  9  [40,42)  2 
[12, 14) 12  [42,44)  2 
[14,16)  11 [44, 46) - 2 
[16, 18) 13  [46,50)  0 
[18,20)  4  [50,52)  4 
[20,22)  12  [52.56)  0 
[22, 24) 5 [56, 58) 1 
[24, 26) 4 [58, 76) 0 
[26,28)  4  (76,78)  1 
(28,30)  1 

10.5 Jardine (1979) presented the data in Table 10.3 concerning the time to failure 
for 229 sugar centrifuge cloths. 

Assess the fit of (1) a two-parameter Weibull distribution, and (2) an expo-
nential distribution to these data,. 

(Section 10.2.3) 

10.6 Consider the  current-status, data 'on the times to initiation  of  cracks  in metal 
turbine 'wheels in  Example 3.5.5: Carry out a test of :fit of the Weibull mOdel•
considered in  Example 4:3.2 by using a likelihood ratio statistic. Discuss 
whether a x 2  approximation is liable to be adequate for  computation  of the 
p-value, and the alternative use of  parametric bootstrap  simulation. 

(Section 10.2.3) 

10.7  Consider  the exponential goodness-of-fit statistic G given by (10.3.3). Noting 
that under an exponential distribution  the quantities Di = W1 I =1 W., (1= 
1„ . „ n') have a Dirichlet distribution (see Wilks, 1962, p. 177), express .  Gr  
as  

- I 

9r "=": r —1E iD1+1  1=1 

and deduce that E(G r ) 	and Var(Gr) = [12(r — 1)r l . 
(Section 10.3.1; Gail and Gastwirth 1978) 

10.8 Let t(j) < 	< t(r) be the r smallest observations in a random s'ample of size 
n that is hypothesized td come from an exponential distribution with unknown 
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mean O. Let WI ..... W,. be defined as in Section 10.3,1 and Problem 10.6, 
and define 

Tj = 	+ • • • + Wj. 

(a) Show that the joint p.d.f. of Ti„ , Tr-1, given Tr  = tr , is 

(r —1)! 
tr-1  

0 < ti « 	< t,.. 

This is the distribution of the order statistics from a random sample of size 
r — 1 from the uniform distribution on (0, tr); equivalently, the quantities 
Zi = Ti/ (i =1 ..... r —1) are distributed like the order statistics in a 
random sample of size r —.1 from U(0, 1). 

(b) The result of part (a) removes the nuisance parameter 61 and allows one to 
use the goodness-of-fit tests of Section 10.2.1, which are for completely 
specified distributions. Test the hypothesis that the data in Example 10.3.1 
come from an exponential model by using the statistics D„ and W,2, (that 
is, test that the unordered Zi are independent U(0, 1) random variables). 
Compare the results of these tests with those carried out in the example, 

(c) Suppose one plots Zi against i/r, the expected value of the ith-order 
statistic in a random sample of size r — 1 from the U(0, 1) distribution, 
for i = 1, 	, r — 1. Relate this plot to the tests in part (b). To what types 
of departures would you expect the tests in part (b) to be sensitive? 

(Sections 10.2.1, 10.3.1 ) 

10.9 Consider , the data of Problem 5.8 on failure times for five samples of ball 
bearing specimens. 

(a) Test that the data for each of samples 1 to 5 is a random sample from a 
Weibull distribution, using tests based on (10.3.'7) or on the e.c.d.f. statis-
tic (10.2.4). Use either tables mentioned in Section 10.3.2 or simulation 
to evaluate the p-value in each case. 

(b) Discuss how to combine  the results of the five tests. Two possibilities 
are to (1) combine the test statistics by addition, and (2) to calculate a 
.combined p-value by Fisher's argument that if the null Weibull model 
is true for each sample, then the p-values o ,j  (j = 1, . , 5) should be 
realizations of independent Uniform(0, 1) random variables. Thus W = 
—2 E log a j should be 4 0) , and large values of W will provide evidence 
against the null model. 

(Section 10.3.2) 

10.10 Confidence iniervals for threshold parameters. Suppose that T has a three-
parameter Weibull distribution (4.5.1) with threshold parameter y. Then Y = 
log(T —y) has an extreme value distribution and if To) « To.) are the 
r smallest observations in a random sample of size n, test statistics based on 
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spacings (10.3.5) for Yu) = log(7(n — y) depend on y but not on the other 
two model parameters. Use this fact to show how you could use either of the 
statistics (10,3.6) or (10.3.7) to obtain confidence intervals for y, assuming 
the Weibull model to be correct. Discuss how to apply this approach with 
other log-location-scale models. 

(Section 10.3.2; Mann and Fertig 1975) 

10.11 Suppose that yi , 	, y,, are a random sample from a distribution with c.d.f. 
F(y; 0). Let 0 be the m.l.e. of 0 and 111 = F (yi; 6) the uniform residuals 
(i = 1 n). Let  G ,, (u) be the e.c.d.f. based on  ûj,  , a n ; then Durbin 
(1973) showed that under standard regularity conditions the stochastic process 
n 112 [6 n (u) — u] on (0, 1) approaches a Gaussian process limit as n -+ co. 
The covariance function for the limiting process is 

min(u, v) — uv — g(u; 0)'I(0) -1  g(v; 0), 	0<  u < 1, 	0 <  y  < 1, 

where 1(0) = E[—a2  log f (y; o)/aoaol is the Fisher information matrix 
for a single observation and g(u; 0) = a Fly; ovao, evaluated at y = 
F-1 (u; 0) 

(a) If F(y; 0) is of location-scale form F0[(y u)/b], show that the covari-
ance function just given does not depend on u or b. Why must this be the 
case? 

(b) Discuss how the limiting processes could be used to develop goodness-
of-fit tests for an arbitrary model F(y; 0). 

(Section 10.2; Durbin 1973) 

10.12 Use simulation combined with the statistic (10.4.4) to test the adequacy 
of the extreme value regression model M3 for the log failure voltages in 
Example 6,3.2. Compare the results with those based on model expansion in 
Examples 6.3.2 and 6.4.1, 

(Section 10,4,2) 



CHAPTER 11 

Beyond Univariate Survival Analysis 

11.1 INTRODUCTION 

This book deals with the analysis of single lifetime variables, while taking into 
account explanatory variables and other factors. As noted in Section 1.5, many stud-
ies involve several types of events, leading to processes with multiple response, dura-
tion, or survival times for a single individual. The multiple failure modes setting of 
Chapter 9 is an . example, since failures of different types can occiir for an individual. 
However, it is a  very  simple example, since each individual can experience only one 
failure time; T, along with the failure mode, C.  

More generally, several events may occur for each individual. Some examples Will 
illustrate this, and how lifetime Variables are associated with such events. 

Example 11.1.1. Sometimes the units in a study consist of a group or "cluster" 
of two more individuals whose lifetimes are nonindependent. For example, in study-
ing the effects of heredity on life length, investigators have considered the lifetimes 
(T11, T21) of identical twins (e.g., Hougaard et al. 1992). 

Example 11.1.2. Stone (1978) gave data from experiments to investigate the 
failure of epoxy electrical-cable-insulation specimens .under conditions of constant 
voltage stress. Failures occur because of a  phenomenon known as electrical treeing. 
In this process there is an inception, or initiation, phase in which nothing appears to 
be happening (when viewed under a  microscope),. but at some point a defect becOrries 
visible in the material and it then grows, eventually pausing failure of the insulation. 
The data on each specimen consist of the time, 71, to defect inception (or  detection) 
and the  subsequent additional time,  7'2,  from inception to failure. Table 11.1 shows 
data from an experiment in which 20 specimens were subjected to a 55-kV stress; 
times are in minutes. For three of the specimens inception still had not occurred when 
observation ceased. This resulted in TI being censored,  and T2 being unobservable. 

Example 11.1.3. Data on patients treated for colon cancer (Moertel et al. 1990; 
Lin et al. 1999) were discussed in Example 3.3.3 and subsequently. Some of the 

491 



492 	 BEYOND  UNI  VARIATE SURVIVAL ANALYSIS 

Table 11.1. Cable-Insulation Failure Data 

Specimen T1 T2 Specimen T1 T2 

1 228 30 11 1,227 39 
2 106 8 12 254 46 
3 246 66 13  >2,440 - 
4 700 72 14 435 85 
5 473 25 15 1,155 85 
6 > 1,740 - 16 > 2,600 - 
7 155 7 17 195 27 
8 414 30. 18 117 27 
9 1,374 90 19 724 21 

10 128 4 20 300 96 

patients have a recurrence of the disease and later die from it. Exarnple 3.3.3 consid-
ered the time, Ti,  from treatment to recurrence of the cancer, but two other lifetime 
variables are also of interest for an individual; T2 = time from treatment to death, 
and  7'3 = time from cancer recurrence to death from the cancer. The variables satisfy 
T2 > T1 ,  so are not independent. Moreover, not all individuals may experience the 
event "cancer recurrence"; for those who do not, the variable T3 does not exist. It is 
also possible that a person may die from other causes, either before or after colon 
cancer has occurred. 

Example 11.1.4. Proschan (1963) gave the time intervals, in hours of operation, 
between successive failures of air conditioning equipment in a number of Boeing 720 
aircraft; these data have been discussed by many authors (see, e.g., Lawless 2000). 
The times between failures for the first four planes are given below. Times appear in 
the order in which they occurred; that is, for plane 1 the first failure was after 194 
hours of operation, the second was after 209 (= 194 + 15) hours, and so on. 

Plane 1 

Plane 2 

194, 15, 41, 29, 33, 181 (n = 6) 

413, 14, 58, 37, 100, 65, 9, 169, 447, 184, 36, 201, 118, 34, 31, 18, 18, 
67, 57, 62, 7, 22, 34 (n  = 23)  

Plane 3 90, 10, 60, 186, 61, 49, 14, 24; 56, 20, 79, 84, 44, 59, 29, 118, 25, 156, 
310, 76, 26, 44, 23, 62, 130, 208, 70, 101, 208 (n = 24) 

Plane .4 74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27, 153, 26, 326 (n = 15) 

An important question is whether the times Ti,  T2, 	between successive failures 
for individual aircraft can be considered to be independent and identically distributed 
(i.i.d,) or whether time trends exist. 

Example 11.1.5. A study on the occurrence of pulmonary exacerbations for per-
sons with cystic fibrosis (Fuchs et al. 1994) was described in Example 1.1.8 and 
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Normal. 

     

Exacerbation  

     

     

      

Figure 11.1. A process with recurring states, 

considered in Example 3.2.4 and later. The individuals in the study were liable to 
experience exacerbation spells, alternating with periods of normal (for them) pul-
monary function. All individuals were exacerbation-free at the start of the study, and 
analysis Of the data earlier in the book focused on the.time, T1, to the first exacerba-
tion. However,the process in question involves possibly repeated events, which it is 
convenient to represent as follows. At any given time an individual is in either of two 
states: (1) normal pulmonary function, or (2) affected by an exacerbation. The pro-
cess for an individual consists of a series of sojourns in states 1 and 2, as represented 
by Figure 11.1. 

Events.can be associated with a transition from one state to the other, and various 
lifetime, variables can be defined within the process. The times Ti = length of the 
jth Normal period and Si = length of the jth Exacerbation period (j =. 1, 2, ...) 
are of interest. 

The fields of multivariate failure time analysis and event history analysis deal 
with settings like those cited in the  examples.  A thorough treatment of  these fields 
is beyond the scope of the book. However, many problems can be addressed using 
simple extensions of the univaiiate lifetime methodology from earlier chapters. The 
present chapter will show how this is done for problems involving clustered life-
times (Section 11.2), sequences of lifetimes (Section 11.3), and more general pro-
cesses (Section 11.4). References to more comprehensive treatments of multivariate 
lifetimes and event histories are given in the Bibliographic Notes at the end of the 
chapter. 

Another topic that arises in lifetime settings concerns processes that are internal 
to individuals and may be associated with the lifetime in question. Such processes 
often describe time-varying physical characteristics of the individual, in which case 
they are often called marker or condition processes. For example, in studying sur-
vival time for persons infected with the human immunodeficiency virus (HIV), it is 
common to consider measures Z(t) such as blood-cell counts or viral load. In stud-
ies of the lifetimes of electronic microdevices one may consider measures Z(t) that 
reflect degradation or deterioration of a unit over time. These types of problems often 
require joint models for lifetime and the related processes. This topic is considered 
in Section 11.5. 

11.2 MULTIVARIATE LIFETIME DISTRIBUTIONS 
AND CLUSTERED LIFETIMES 

The preceding seCtion gave examples of multiple lifetime variables Tit, Tv , • • • , Tki 
associated with the ith individual in some population. Sometimes the individuals are 



Pr(Tj <t  At 	> t, T2 > t) 
Xj (I) =  urn 	  

At-+0 Li 

X12(ti It2) = Hui 
At -40 	 At 

Pr(T2  <t2  -I-  tITi =  t1,  T2 > t2) 

Pr (Ti < ti + tITi>tj, T2 = t2) 

A.21(t21 11) = lim 

(11.2.4) 
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separate, physical units that can experience two or more events (Examples 11.1.2, 
11.1.3, 11.1.4, 11.1.5), and sometimes they are clusters of two or more units on which 
lifetimes are defined (Example 11.1.1). In either case, the lifetimes Tit  Tic, are 
not in general independent, so it is necessary to consider their joint distribution. 

Approaches used with multiple lifetimes vary according to the setting. This sec-
tion considers cases where the lifetimes T1 , , Tki associated with an individual or 
cluster  are unconstrained relative to one another. That is, there is no prior ordering 
associated with the times, and they can typically be observed in parallel, or simul-
taneously in real time. This would apply, for example, to the lifetimes  Tj1,  T2i of 
a pair of twins, or to the times T11, T2i until a certain condition appears in the left 
and right eyes of persons with diabetes (e.g., Huster et al. 1989). Situations where 
multiple lifetimes for an individual are associated with events that are time-ordered 
are considered in Sections 11.3 and 11.4. 

In this section the term unit will be used to denote individuals or clusters of indi-
viduals within which the multiple lifetimes are defined. 

11.2.1 Multivariate Lifetime Distributions 

Suppose there are lifetime variables Ti . . , Tk associated with a typical unit. Denote 
their joint probability density function (p.d.f.) as f (ti  tk), and the survivor and 
distribution functions, respectively, as 

S(11 , 	 (k) — Pr(Ti >Ii 	Tk >1k) 
	

(11,2.1) 

F(ti„ tic) = Pr(Ti < 	• Tk < 1k) 
	

(11.2.2) 

for ti > O,...,  tk > O. Continuous-time models will be emphasized here, in which 
case 

f(tj, 	tk) — 	art ...ark 
	rk) 

The marginal survivOr and distribution functions will be denoted by 

(11.2.3) 

(tj) = Pr(T ti), 	Fj(ti) 	Pr(T 	tj). 

Hazard functions can be defined in various ways for multivariate mcidels. For 
simplicity, consider the bivariate case. The hazard functions 
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are often useful, and it is easily seen that they specify the joint distribution of Ti 
and T2. In terms of the joint survivor function S(ti , 12), it is seen that 

—a soi, 	twati  

	

Ad o) _ 	 tri=i2=i S(t, 12) 

, 	—8 2  soi, r2vatiat2  

	

xl2O1112) = 	a 	, t2)/at2 
Ii > 12 

with similar expressions for X2(t) and X2I (t21 1 1)• 
In applications, interest often centers on marginal and conditional distributions 

associated with (11.2.1), on the degree of association among Th , Tk, and on 
the relationship of covariates to these features, Parametric families that have been 
proposed as multivariate lifetime distribution models include the multivariate log-
normal model, for which (log  T1 log Tk) is Multivariate normal, and multivari-
ate generalizations of Weibull and exponential distributions. A thorough discussion 
of this area is beyond the scope of this book, so only a few models will be consid-
ered. References to comprehensive sources are provided in the Bibliographic Notes, 
and some supplementary material is included in the Problems and Supplements 
section. 

We will focus on problems in which the marginal distributions of the Ti are of 
primary interest; association among the Ti must be considered, but is secondary. 
Section 11.2.2 shows how univariate models and methods discussed earlier in the 
book can be applied in such settings. First, some multivariate models in which the 
marginal distributions have specific forms are considered, 

11.2.1.1 Models with Specified Marginal Distributions 
The bivariate case will be considered for simplicity. When the marginal distributions 
are continuous, it is possible to represent the joint gwvivor function 5(11, /2) in the 
form 

S (ti, 12) = C[St (t1), 52 (12A, 
	 (11.2.5) 

where Si (ti) is the marginal  survivor function for Ti (j = 1, 2) and C is a bivariate 
function called a copula. Since Ut = St (T1) and U2 = S2(T2) are Uniform(0, I) 
random variables, the function q(ol, 142) must be a bivariate distribution function 
with uniform marginals defined on 0 <.ut < 1, 0 < u2 < 1. In particular, C(u ; 112) 
must satisfy C(ut, 1) = u1 and C(1, u2) = u2, 

A useful way to develop bivariate lifetime models is through the specification of a 
parametric family of copulas C(ut, u2; 4)) along with a specification of the marginal 
distributions. This gives a family of the form (11.2.5), in which the parameter 0 
determines the association or dependence structure. Fully parametric or semipara-
metric models are obtained by choosing parametric or semiparametric specifications 
for Si (t1) and S2(t2). 
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A family of models of this type was considered by Clayton (1978). With 0 > 0 it 
has the form (11.2.5) with 

S(ti, t2) = (St (t1) -q5 	S2(t2) -95  — 1] -1 /95 	(11.2.6) 

This model represents only positive association between T1 and T2 (see Prob-
lem 11.3). It can be extended to include negative association by allowing q5 < 0; 
in this case, the right side of (11.2.6) is negative for some pairs  (t1, t2), but a 
proper joint survivor function is obtained by replacing it with 0 whenever it is 
negative. In the limit as q5 -4- 0, (11.2.6) approaches the independence model 
S(ti, 12) = (II )S2(t2)• 

Fully parametric models in the family (11.2.6) are easily handled, as shown in 
the next section. In some applications the marginal survivor functions for T1 and T2 
are constrained to be identical. Covariates x can be incorporated by using one of the 
approaches considered in Chapter 6 to model S (t Ix). The association parameter 0 
is usually assumed not to depend on x. Semiparametric specifications for the Si (ti)'s 
in (11.2.6) are also of interest. This is a little more difficult to handle, but some 
approaches are discussed in Section 11.2.2. 

An extension of (11.2.6) to the,case of k > 3 variables is to take the joint survivor 
function as 

S(th ...,tk) =[E Si(t j) —Q5  — (k 
	

(11.2.7) 

for 0 > 0. This is easily seen to be a legitimate surVivor function with marginals 
(ti.). A drawback of this model is that association among the variables 71, , Tk 

is governed by a single parameter, .q5. This is adequate in cases where the T.; are 
exchangeable and the Si(t)'s are identical, but is an undesirable restriction in many 
settings. Multivariate models in which S(ti , , tk) takes the form C[Si(ti)  
Sk(tk); cl, ] with .43 a vector of parameters can be considered; this provides More flex-
ibility. 

11.2,1.2 Some Other Models 
Many parametric families of multivariate distributions have been studied in the lit-
erature, and can be applied to lifetime data. The multivariate log-normal family, in 
which (log T1 log Tk) has a k-variate normal distribution, is often useful and 
allows flexibility in association structure. Some models, on the other hand, make 
strong assuniptions about association. For example, an often discussed model is the 
multivariate Burr family (e.g., Crowder et al. 1991, p. 140; Hougaard 2000, p. 235), 
for which 

S(ti, • . , tk) =[1 	 (11.2.8) 
J=I 
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Association is governed by the single parameter, u (see Problem 11.4). In addition, 
the marginal survivor functions are 

Si (ti ) = [1 + Xi 03-1 1 —u , 

sou also affects the marginal distributions and is not purely an association parameter. 
Another common approach to the specification of multivariate models is through 

random effects; Hougaard (2000) provides an extensive treatment of this topic. The 
standard approach is to define a random vector ai associated with the ith unit, and to 
assume that (1) given a , the lifetimes ,,,,, Tki are independent, and (2) the a; 
are across units i — 1 n  A widely used model is the shared frailty family, 
in which ai is a positive-valued scalar and the hazard function for Tii given ai is 
of the form aiXi(t) for j = 1, . , k. If ai has distribution function G(a), then the 
joint survivor function for TH, , Tki iS 

k 
S (t ! , 	 tk) = f

co, 
 exp

[
. —a E.Ai(ti)] dG(a), 	(11.2.9) 

where Ai (t) is the cumulative hazard function (c.h.f.) for T.», given ai. An inter-
esting special case is where ai has a gamma  distribution (1.3.15) with mean 1 and 
variance 0. It is easily seen that (11.2.9) then gives 

S(t1 , 	 tk) = 1 + q5 	Ai(ti) 	 (11.2.10) 
1=1 

This is of the same form as the Clayton model (11.2.7); to see this, note from 
(11.2.10) that the marginal survivor function for Ti is 

Si (ti) = [1 + omor 	 (11.2.11) 1 /0 

and rewrite S(ti, 	, tk) in terms of the Sj(ti)'s. 
For k > 2 the fact that the model involves only a scalar random effect and a single 

parameter 0 affecting association is often a drawback, and models with vector ran-
dom effects are called for. Note also that although the families (11.2.7) and (11.2.10) 
have the same form, the marginal survivor functions (11.2.11) arising from (11.2.10) 
depend on 0, whereas in copula Models of the form (11.2.7) it is typically assumed 
that the Si (ti)'s do not depend functionally on 0. As a specific illustration, note that 
by defining j = Xi v, we can write the multivariate Burr model (11.2.8) as 

S(ti 	 tk) — [1 1 
k 	TP—  

"which is of the  form (11.2.10) with (b = 	and Ai (t)• 	Although this 
appears  to be a rather general family, the Marginal distributions and association struc-, 
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ture are linked. For example, as 	co, the case where T1 , . . . , Tk are independent 
is obtained, and the marginal distributions are Weibull: 

s/  

	

(ti) = exp(—&/ ti  ) 	j — 1 	k 	(11.2.12) 

For any other given value of y, the marginal distributions are of another log-Burr 
form (1.3.21), determined by y: 

1 si l" 

	

Si ( ) = [1 + 	t 
v 

This may be contrasted with a model (11.2.7) in which the Si (ti)'s are of Weibull 
form (11.2.12) no matter what 0 = y —  equals. 

Random-effects models like (11.2.9) and (11.2.10) with covariates added, and 
analogous models with fixed unit effects cri, specify the relative effects of covariates 
on lifetimes Tit  Tki within the same unit. Thus, they are valuable in designed 
studies where different treatments or covariate factor levels are assigned to individ-
uals within a unit or cluster. However, when marginal effects of covatiates are of 
interest, models like (11.2.7) with covariate effects for the Si Ors separated from 
association parameters are preferable. The following example illustrates these issues 
in the important context of paired data. 

Example 11.2.1. Paired Data. Suppose that the effect of a single scalar 
covariate is of interest and that it is possible to run studies involving pairs of individ-
uals, with different covariate values xi i, x21 assigned to the two individuals in pair i. 
A commonly used model is one where the hazard functions for  T11 and T21 are of the 
form 

Xii(tixit) = Xoi(t)e fix ." , 	j = 1, 2, 

and where Tit and T21 are independent given xi i and x2i. In Problem 7.2, a stratified 
proportional hazards (PH) analysis with the pairs defining the strata was considered 
for inference about /3. An alternative model is one for which 

(t ix ji, cei) 	ai X0 (t)efi x» , 	j = 1, 2, 

where ai  is a cluster or pair effect. This makes the stronger assumption that the 
hazard functions Api (t) are proportional to one another. If the ai are regarded as fixed 
effects, the stratified PH analysis is still the approach of choice, although if there is 
no censoring, some parametric alternatives are available (Holt and Prentice 1974). 
A more widely used approach  (e.g., Wild 1983) is to assume that the ai are 
random effects, independent of the xji; this offers the possibility of more efficient 
inferences for fi. 

The conditional (On ai or on individuals being in the same pair) hazard ratio for 
7) and T21 under these models is 
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Xli(tlxli, ai)  
== exp[13(xli — X2,)], 

X2i(tlx2i, ai) 

so exp(fi) is the hazard ratio when xii — x2r = 1. This is not the same as the hazard 
ratio for two randomly selected individuals not in the same pair. For example, if the 
ai follow a gamma distribution with mean 1 and variance q5, then the joint distribu-
tion of  T1, and T21 is of the form (11.2.10), and the marginal distribution for either, 
conditional on the covariate value x, is given by (11.2.11) as 

SO ix) = 	95Agt)efix ] -1/0  

The hazard function corresponding to this is h(tlx) = —Si (t lx)/S(t lx), and so the 
ratio of the hazard functions for two random individuals from different pairs and with 
covariate values xi and x2 is 

	

hoixo 	 „, (.,,_xi, r  i + q5A0(t)efix2

] = e'' 	 (11.2.13) 

	

h(tix0 	 Ll + 95A0(t)Oxi  • 

This ratio does not equal exp(i3) when xi — x2 = 1, and in fact (11.2.13) is closer to 
one than exp(fi) for all t if (i5 > 0. 

The hazard ratio (11.2.13) is not constant, unlike the pair-specific ratio. An  alter- . 

native, Model for which the Marginal hazard functions were of PH tOrm Might be 
desirable in simile contexts. For example, one could use the bivariate model (11.2.7), 
with 

	

s;  ( t Ix» ) 	exp[—Ho (t)efix.n], 	j = 1, 2. 

Whether this model or the pair-specific random-effects PH model was preferable 
would depend on their relative abilities to fit the data and on the desire for a pair-
specific or marginal representation of the covariate effect. It is often noted. that  if a 
positive stable law is taken as the distribution for the random-effects cei (Hougaard 
1986), then both the pair-specific and marginal hazard ratios are of PH form. How-
ever, the ratios take on different (constant) values, reflecting the fact that they are still 
measuring two different things. 

The distinction between pair-specific and marginal effects disappears for log-
location-scale models. For example, suppose that given i.i.d. random effects cci, the 
joint distribution of (Y11, Y21) = (log Tie, log T21) is specified by 

Yji = 	fio + filxii + 	j = 1, 2, 

	

where eii and e21  are 	and independent of cj, and where E(ai) = E(eii)  = 0. 
Then, 

	

E(Yli — Y21 	X21, ai) = E(Yii — Y2i Ixli, X2i) = p (xi, - x2;), 

so the differences of conditional and marginal means coincide. 
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On a fi nal point, it should be noted that the models discussed here all make the 
assumption that the conditional p.d.f.'s for T11 satisfy 

f (t1i1X1/ x2i, cri) = f (tulxit al) ,  

and similarly for Tv. Neuhaus and Kalbfleisch (1998) show that this is sometimes 
unwarranted, and consider models where, for example, 

E(111/ 'XI/ X2it ai) = ai 	tio 	finii 	,t3w(xij — ii), 

where j = (x11 	xv)/2. In this case, it is possible to distinguish between pair- 
specific effects and the effects of covariates for individuals in different pairs. Such 
models may be useful in observational studies with pairing or clustering. 

11.2.2 Maximum Likelihood and Pseudolikelihood Methods 

11.2.2.1 Maximum Likelihood 
Let (T11, 	, TN) have continuous survivor function (s.f.) S(ti 	 tk) as in (11.2.1). 
Suppose the lifetimes of a random sample of individuals i = 1, , n are subject 
to right censoring, so that potential censoring times C»  (j = 1 ..... k) may be 
associated with the T.  We will assume that (Cu ..... Cki) is independent of 
(Tu i  Tki). Note that Cu, , Cki are allowed to be related; in cases where all of 
the lifetimes in a cluster are subject to the same censoring time, they would be equal. 
ObServed data for cluster i include times (tu, • • • , iki), where tii = min(Tii, C»), 
and censoring indicators (5u „ , 8kt), where Sit = ! (Ti ,  = tir). 

To keep the notation and discussion as simple as possible, the following will deal 
with bivariate lifetimes (Tit, T21); extensions to larger cluster sizes are straightfor-
ward, An observation is one of four types, since Tu and Tv can each be either cen-
sored or not: The likelihood function takes the form 

L 	f(lu, 121) 611621  

[ _ a  scti, , t2116"(1-421) 
 Las(C: 

t211(1—su)rs'i 
art , 	 a2u  i=1 

s(t„, (20 (1—si 1 0--82,) 

where f (tt 12) is the p.d.f. for  (Ti, T2). For models involving fixed covariates, 
S(tu , tv) in (11.2.14) is replaced by 

S(tu, tvIxt) = Pr(TI 	tit, T2 > t21lx1). 	 (11.2.15) 

Maximum likelihood estimation for fully parametric models can be implemented 
using general-purpose optimization software (Appendix  D), 

Nonpatametrie estimation of a joint survivor function S(ti , t2) from censored data 
is a complex i§sue. When S(ti , t2) is continuous, a unique' m.l.e. does not exist. A 
variety of procedures have been suggested in the literature; Many exhibit occasional 
peculiar behavior (e.g., nonmonotonicity), and asymptotics  and variance estirnatipn 

(11.2.14) 
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are difficult, Van der Laan (1996), Hougaard (2000, Ch. 14), and Oakes (2001, 
Sec. 7.2) provide surveys of the area. 

The portrayal of discrete bivariate distributions is also more awkward than for uni-
variate distributions, and the descriptive value of univariate nonparametric estimates 
S(t) is pretty much lost for bivariate estimates §(t1, 12). However, nonparametric 
estimates are still desirable for joint and conditional probabilities, and they allow 
checks of parametric assumptions. A practical approach that is fairly easily imple-
mented is to discretize the time scales for 71 and T2 and consider a joint probability 
function 

f (ti, t2) = Pi' (TI =  Ii , 7 '2 = t2) 

for  (ti, 12) on some finite grid. Terms in the likelihood function (11.2.14) are express-
ible in terms of f (t1, t2); for example, 

Pr(Tti = tj, T2t > t21) = E f(fli, 

is the relevant term for an  individual With 811 = 1, 2i  = 0. The likelihood Lean be 
maximized numerically subject to E E f (t1,12) = 1 to give ;co l , /2), 

To check parametric models S(tI, t2; 0) one can first compare marginal distribu-
tions SI (ti ; 0) and S2(12; 6) with the  corresponding univariate Kaplan—Meier esti-
mates. Estimates for joint or conditional probabilities such as Pr(Tt < a, Ti 
or Pr[Ti < ajT2 E (b 1, b2)] can also be compared. The main difficulty is for con-
ditional probabilities in which the event conditioned on has low probability; in that 
case, nonparametric estimates will be imprecise unless there is a lot of data, 

As  discussed  in Section 11.2.1, semiparametric regression models' cari also be 
considered; Section 11.2.3 provides an example. Semiparametric maximum likeli-
hood as described in Section 7.4 is more difficult with multivariate marginal models. 
However, regression models for whieh the baseline hazard functions are piecewise 
constant are fairly easy to handle, and standard parametric results apply. As the num-
ber of pieces increases, something similar to semiparametric estimation results. In 
practice, estimates of regression coefficients and Cumulative hazard or survivor func-
tions usually change little as the number of pieces increases above five or six. Some 
semiparametric conditional PH models (11.2.9) based on random effects can be han-
dled by existing software; we discuss this in Section 11.2.3 and the Computational 
Notes. 

The main objective in many applications is tO assess the effects of coyariates on 
the marginal distributions for Th , Tk. One approach is to adopt  a  full inultivariate 
model. A simpler alternative is to specify only the marginal distributions for the Ti 
and to use estimating function's that assume the Ti  are independent; this is often 
called the working independence model approach. Because the Ti  are not usually 
independent, it is necessary to develop variance estimation procedures that recognize 
this We consider this approach next; it is less efficient than one based on a correct 
full model, but it is more robust and can be implemented using univari ate lifetime. 
methodology. 
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11.2.2.2 Pseudolikelihood Methods Based on Working Independence Models 
Consider clusters that involve k lifetimes T1, 	 Tk and a vector of covariates  X.  
Suppose that no joint distribution S(ti , , tic  ix) is specified, but that marginal dis-
tributions Si Of Ix) are. Let Si (ti Ix) depend on parameters Of and let 0 denote all of•
the parameters used, with redundancies removed. It is not assumed that the Of are 
functionally unrelated; in applications where the Tj have identical marginal distri-
butions we would in fact have 01 = = Ok. Let us consider the bivariate case 
further. 

If T1 and T2 were independent, then S(ti tz) = SI (11)S2(t2) and the likelihood 
function (11.2.14) based on data  (lit , t21), (8 1i, 821) , Xij, X2i for independent clusters 
i — 1 n factors into 

77 	 71 

L(0) = 	(tirlxii) 311  St(ttilxli) 1 	n fz(t2tlx20-82152(t2i1x201-821, 
i=1 	 i=1 

where f; (II Ix) and f2(t21x) are the marginal p.d.f.'s. The estimating function U(0) = 
log Lia o is then 

n 2 	a 
 u(0) 	8 	
log ff (tfi ix») + 0  8ii) a  log Teti/ ix»)  _ Eu,(o), E E ,, ao 1=1 J=1 	 ,=i  

(11.2.16) 
If the marginal models are correctly specified, this is an unbiased estimating function, 
since the expectation of each of the 2n terms in the sum equals zero even when Tu 
and T21 are not independent. COnsequently, under mild regularity conditions on the 
marginal Models, the estimate .0 obtained by solving U(0) = 0 is consistent and 
asymptotically normal, although it is not an 	unless Til and T21 are independent. 
As described in Appendix C, 	— 0) has asymptotic .  covariance matrix V(0) of 
"sandwich" form C(29); 

V(0)  = A(Or l  BMA (0) —I , 	 (11.2.17) 

where 

A( .0)  = E r  _um 
ae,  J' 

] 	 1 
n L 13(0) 	—Var[U(0)]. 

A consistent estimate of  V (0)  is obtained by replacing A (0) and 13(0) by 

= n •E 	, 
80'  — E u, 

1=1 
(11.2,18) 

In the case where Si (r  Ix) depends on Of (j =  1,2) with 01 and 02 functionally 
independent, we can utilize existing software for univariate lifetime models. To see 
this, note that with 0 = OD', the matrices A(0) and A are then block diagonal, 
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and 

A1(01) -1 	0 
A(0) -1  

0 	A2(02) -1  ) ' 
o 

where A1 and Â2 are the observed information matrices from the univariate models 
for Ti and T2. Therefore, ;1 —i  1  and A 2-1  are the standard covariance matrices for 

— 01) and 	— 02) from separate univariate analyses. The matrix fi is 
also needed; it takes the form 

EUI/t1ç i  
1 	1 -1 

B = 
n 	" 

1=1 

(11.2.19) 

where U;(0) = (U11(01)', U21(02)T and the notation t/11 = Ulf (61), 021 = 
U2i (62) has been used. Some software provides these values as score residual vec-
tors; otherwise, they are easily calculated. Models where 01 = 02 can also be han-
dled in a similar way. 

These methods allow univariate lifetime methodology to be applied to bivariate 
settings in which the marginal distributions are of primary interest. The extension 
to deal with models of dimension k > 2 is straightforward. Semiparametric mod-
els can also be considered. Rank-based procedures for semiparametric accelerated 
failure time models, which were discussed in Chapter 8, are fairly easy to adopt 
when the estimating functions for regression parameters can be written as a sum 
over j = 1, , k. Methodology for PH models is a little more complicated, par-
ticularly when the baseline hazard functions or covariate vectors for the different Ti 
are the same. Some software packages for the Cox PH model do, however, provide 
variance estimates for /-3 in the models for which the marginal survivor functions 

Si (t Ix) = exp[ — Ao(t)el3'] 	j = 	k 	(11.2.20) 

are the same; see the Computational Notes at the end of the chapter. 
An alternative approach for PH models is to use piecewise-constant hazard func-

tions, as in Section 7.4. In this case, the problem is rendered parametric and can be 
treated as described earlier. Estimation of baseline c.h.f.'s and of marginal survival 
probabilities Si (t ix) is also easily handled with this approach. 

Finally, situations sometimes arise in which there are no covariates, and the 
marginal survivor functions S1(t), , Sk(t) are assumed identical. In that case 
it is appropriate to estimate the common survivor function S(t) using the stan-
dard Kaplan—Meier estimate based on all the observations (t», 3»),  J  — 1 k. 

 i = 1, . . . , n. However, the standard formula (3.2.3) is not an appropriate variance 
estimate. Problem 11.10 shows that under somé mild conditions a variance estimate 
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that allows for within-cluster association is 

E E  (Ce") — Yi(tPd(re")/ Y  
:5(02  

Y(tt) — d(1) 
(11.2.21) 

where .... , t are the distinct times at which deaths occur, d OD and  Y(t) are 
the total numbers of deaths and individual  at risk at 1, and di (I) are the 
numbers of those who are in cluster 1. 

11.2.3 An Example 

Huster et al. (1989) and many other authors  have discussed data from the Diabetic 
Retinopathy Study (DRS). Diabetic retinopathy is a condition that arises in persons 
With diabetes; it involves abnormalities in the retina of the eye and is a leading caUse 
of vision loss and blindness. In the DRS a large group of patients with diabetes and 
meeting certain eligibility criteria was followed for an extended period. For each 
patient, one eye was treated with laser photocciagulation, and the other eye WaS an 
untréated„control. The response.variables are the tithes T) (j = 1,2) until the first 
occurrence .of visual acuity less than 5/200 in  each oie of a patient. The Primary 
objective of  DRS Was to assess the effectiveness of the laser treatment in delaying 
loss of visual acuity. The data set discussed here consists of results for a subset of 
n = 197 subjects who. represent a 50% sample of  high-risk patients in the study. 
Huster et al. (1989) give further discussion of the study, including the fact that the 
times T1 to loss of visual acuity are measured with error. As have other authors, we 
ignore this measurement error in the discussion that follows. 

The data (see Appendix G) consist of times or censoring times (1h,  121) to the 
bass of visual acuity in each dye, the treatment indicator XI)/ = I (eye j is treated) 
for  J = 1, 2, and the additional covariate x211 = x221 = (diabetes is adult-onset), 
which indicates whether a person's diabetes was adult-onset or juvenile-onset. Of the 
197 patients, 83 had adult-onset and 114 had juvenile-onset diabetes. The Covariate 
xi thus takes on different values 0 and 1 for the two eyes of a given subject, whereas 
x2 is the same for both eyes. The possibility of an interaction between treatment 
and type of diabetes will be considered through a covariate xix2; its values are also 
different for the two eyes of a subject. 

Let us first consider marginal or  population-average effects for the covatiates. Pro-
portional hazards models will be considered in which the marginal  hazard functions 
for Tj, and T21 are of the form. 

hii(t Ix») = .110(t).exp(Pixlii 	/32X21i ± P3xifix2p), 	(11.2.22) 

where xi/ = (xi),, x21i) for j = 1, 2. The failure time distributions for the two 
eyes of a subject or the eyes of any two subjects have the same baseline hazard 
function and differ only in as much as their covariate values differ. Diagnostic checks 
described in Chapters 6 and 7 show the models considered here to be consistent with 
the data. 
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lble 11.2. Covariate Effects and SEs for Marginal PH Models 

Model 

Regression Coefficients 

trt (se) type (se) ut*type (se) 

Cox PH (independence) —.43 (.22) .34 (.20) —.85 (.35) 
Cox PH (robust) —.43 (.19) .34 (.20) —.85 (.30) 
Weibull PH (independence) —.43 (.22) .36 (.20) —.87 (.35) 
Weibull PH (robust) —.43 (.19) .36 (.20) —.87 (.31) 
Weibull  BY Clayton —.43 (.22) .37 (.20) —.84 (.35) 
PC  BY Clayton —.42 (.19) .36 (.22) —.82 (.32) 

Table 11,2 shows fits of three models: 

1. A semiparametric PH model fitted with a working independence assumption 
using S-Plus function. coxph; the output includes both proper robust variance 
estimates and variance estimates based on the assumption that 7.11 and Tv are 
independent, given xii and x21. The latter are incorrect since there is evidence 
of association between T11 and T21, but are shown for the  sake  of comparison. 

2. A parametric PH model for, which the baseline hazard function /40(t) 
Xat' l  is of Weibull form (Fluster et al. 1989); pseudolikelihood estimates 
are shown for the independence working model approach, with independent 
variance estimates plus ones obtained from (11.2.17) and, for comparison, for 
a bivariate (BV) Clayton model (11.2.6) fitted by maximum likelihood. 

3. A parametric BV Clayton model (11.2,17), in which h(t) is pieccwise-
constant; six pieces, with cut points at t = 5.43, 10.57, 17.88, 27.60, and 43.5 
were used (He 2001). 

The results for the six approaches shown in Table 11.2 are in close agreement. 
Although the BV Clayton models fitted. indicate nonindependence for T11 and Tv , 

with tii; = 1.01(s e = .34) for the Weibull model, the robust and independence stan-
dard errors (SE's) for the regression Coefficient estimates are not very different. As 
one would expect when there is positive association between T11 and. T21 ,-the inde-
pendence standard, errors are (slightly) larger than the robust SE's for covariates that 
vary within individuals (i.e., treatment (trt) and trt*type). However, the  BY  Weibull-
Clayton model actually gives SE's.here that are closer to the independence SE's. 

These results indicate significant effects due to treatment and type of diabetes. A 
significant interaction is also indicated, with adult-onset diabetics benefitthig , inore 
from the treatment than juvenile-Onset diabetics. The Cox PH .model relative risks 
(hazard ratios) for treated to untreated adults is about exp(—.43 — .85) = .28., and 
for treated to untreated juvenile cases is about exp(—.43) = .65. 

These regression coefficients and relative risks are marginal or population average 
values .  That is, they give estimated relative effects for two randomly selected indi-
viduals in the population. This is a reasonable way to quantify the effect of type of 
diabetes; any individual has one type or the other, and the covariate effect describes 
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Table 11.3. Covariate Effects and SEs for Conditional PH Models 

Model 

Regression Coefficients 

trt (se) type (se) trt*type (se) 

1. Clayton semiparametric 
2. Clayton PC hazards 
3. Stratified Cox PH 

—.51 
—.52 
—.56 

(.22)  
(.23)  
(.26) 

.40 

.40 
(.26)  
(.27)  

— 

—.99 
—.99 
—.99 

(.36) 
(.38) 
(.43) 

the hazard ratio for two persons whose eyes are treated the same way but who have 
different types .  For the effect of treatment, however, the paired study design allows 
a comparison that is individual-specific. That is, the difference in treating versus not 
treating the eyes of a given individual may be assessed. The, marginal models just dis-
cussed do not do this; they compare the effects of the  treatments  for two randomly 
selected individuals. 

We can consider individual-specific effects by fitting conditional PH models, as 
discussed in Example 11.2.1. Table 11.3 shows the results of fitting three models: 

1. A Clayton semiparametric model (11,2.10), in which 

Ai (t) = Ao(t)e°9  , 	j = I, 2, 

and Ao(t) is left unspecified; this can be fitted using S-Plus software (see the 
Computational Notes) for the Cox PH model using the gamma frailty option. 

2. A Clayton model (11.2,10) with the same form for Ai (t) as in (1), except 
that Ao (t) is piecewise linear; this model can be fitted by ordinary parametric 
maximum likelihood (He 2001). 

3. A Cox PH model in which A ., (t) is as in (1), but where the stratified Cox partial 
likelihood of Section 7.1.6 and Example 7.2 is used for estimation. In this case, 
only the effects for covariates that vary within individuals are estimated, so the 
type effect is absent in Table 11.3. 

These models all arise from a Model for which there is an unobservable individual-
specific effect (xi such that the hazard function for the j. th eye (j = 1, 2) of individual 
i is of the form 

X(t Ixt, (xi) = Xo(t)ate 13'xi i 	 (11.2.23) 

Thus, for example, exp(/31 fl3x2) represents the hazard ratio for  the treated versus 
untreated eye of an individual with x2 = / (diabetes is adult-onset); the incorporation 
of the treatment-type interaction allows this effect to be different for individuals with 
the two types, of diabetes. 

Table 11.3  shows that the three approaches give similar results, particularly for 
the relative risks for treated and untreated eyes for adult-onset and juvenile-onset 
diabetes. The estimated treatment effects are further from zero than those for the 
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marginal models, as expected. This reflects the fact that the conditional and marginal 
specifications are different models, as discussed in Example 11.2.1. Technically, both 
cannot be correct specifications of the process in question. However, all models are 
approximations to reality, and model checks of the conditional models (11.2.23) 
show that, like the marginal models, they describe the data quite well. 

A final point is that the estimates of from the Clayton models (1) and (2) would 
be expected to be similar to those from the marginal models (11.2.22). This is the 
case, with = 1.02(se = 0.33) from approach (2) and if) = .93 from approach (1). 

11.3 SEQUENCES OF LIFETIMES 

11.3.1 Some Models and Methods 

Many event history problems can be formulated in terms of a series or sequence of 
lifetime variables T1, T2, ... that represent the times .between a specified series of 
events, or the lengths of the sojourns in a specified sequence of states for an individ-
ual; Examples 11.1.2 to 11.1.5 describe settings of this type. Let us consider such 
sequences Ti (j = 1, 2, ...), where Ti > 0. For a given j = 1, 2, the variable 
Ti represents the same phenomenon for all individuals. In addition, the phenomena 
occur sequentially in real time; that is, T1 cannot be observed unless Ti_i has already 
been observed (j = 2, 3, ...). 

Quite generally, models for T11, T21 	. for an individual i, given a vector of fixed 
covariates xi, can be formulated as a sequence of conditional distributions 

Ff(tixi, tP -1) )= Pr(Tit < tixi , tp —I) ), 	 (11.3.1) 

where tP -1)  = (Ili, 	, ti_i,i) and ti(0)  is null. If covariates are time-varying, it is 
convenient to specify models in terms of hazard functions, 

Pr(Tit  <t 	At I Tit > t, xi' (t), t iCI—  I)) 
, 	(11.3.2) A.i (t ixii (t), 11(1-1) ) = urn 	  

At 	 At 

where xii (t) represents the values of the covariates after time t has elapsed since 
the occurrence of The analysis of Sequences of times T1,  T2t , undersuch 
models can be based on a direct application of the univariate lifetime methodology' 
of previous chapters. The main challenges are frequently .  in deciding hoW ta repre-
sent the effects of tP —I)  in (11.3.1) or (11.3.2), and in how to interpret the effects of 
covariates across a whole sequence of times. Example 11.3.1, which follows, illus-
trates these points .  In general, successive times 2-11, T21, ... will not be independent 
(given covariate values),  but if they are then modeling, analysis, and interpretation 
of effects is more straightforward. 

Sometimes the marginal distributions of Tii given xi are of interest for specific 
values j > 2. Conventional regression models for  T»  given xi and , as in 
(11.3.1) and (11.3.2) generally give complicated forms for the marginal distributions 
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of Tji,  given xi for J > 2, and of the corresponding covariate effects. It is possible 
to use multivariate models like those in Section 11.2.1:for sequences of times, but 
it is not in general possible to employ the simple pseudolikelihood methods, based 
on independence models, which were described in Section 11.2.2. The reason is that 
if the times (j = 1, 2, ...) are not mutually independent given the covariates, 
then in most applications the potential censoring time for T11 depends on tP -11 , and 
is therefore not independent of Tj,. For example, when individual i is followed for 
a specified length of time, Ch then if Tu = tu is observed, the potential censoring 
time for T21 is Ci — tn. A case where separate marginal analysis of T21 would be 
permissible is where the observation scheme is such that both Tu and Tv are always 
fully observed. 

The one family of lifetime models that gives simple representations for covariates 
In both conditional and marginal distributions is the log-normal family. In this case, 

log 7:11 and the conditional distributions (11.3.1) are taken to be of the form 

	

= 	 , 	j =  1,2 	(11.33) 

where zji = (yu ,  	pi  and 	are vectors of regression coefficients, and 
Eji — N(0,91) are independent for j = 1, 2, ... and for i = 1, . , n. As is well 
known, the.marginal distribution of  Y»  given xi for  any  j = 1, 2, . under (11.3.3) 
is univariate normal with a mean that is a linear function of xi, and the joint distri-
bution of any set of Yj,  is multivariate normal. For other models, simple conditional 
specifications (11.3.1) or (11.3.2) generally give complex marginal specifications for 
T21, T31 .... ; Section 11.3.2 gives an example. 

The likelihood function for typical data is easily written down in terms of con-
ditional distributions, as in (11.3.1) or (11.3.2). In general, the number of times To 
that are observed Will depend on the length of follow-up Ci for that individual, and 
can be different for two individuals who are follovied for the Same length of time. If 
observation of individual I starts at calendar time 0, which corresponds to the. value 

= 0, and 'continues until calendar time Ci, then the likelihood contribution for 
the individual is of the form 

	

n f (tillxi , ti  —I) ) 	 (tkillxi, t i(k1-1) )41 1 	ti(k1-1) ) 1-8ki 1 l , 	(11.3.4) 
.i=1 

where kj is the number of random variables, Tit, that are observed, and 8ki 1  = 
I (Tk, f = tk, ) indicates whether the kith lifetime is observed or censored. For (11.3.4) 
to be valid it is sufficient that censoring be independent in a sense equivalent to that 
in Section 2.2.2. That is, the censoring process may depend on prior lifetimes or 
event history, but it cannot be anticipatory. 

In some settings the initial lifetimes Tu may also be subject to left truncation, as 
discussed in Section 2.4.1. As long as the left-truncation mechanism is independent 
in the sense discussed there, the same likelihood as in (11.14) applies, except with 
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f (tii 'xi) replaced by (assuming lc (  > 1) 

f (rii1x1)15(uilx(), 

where ui is the left-truncation time for individual i. An excellent discussion of the 
requirements on the beginning and end of the observation period when studying 
sequences of events is given by Aalen and Husebye (1991). 

It is usually of interest whether times Tie, T21, 	are independent, given the 
covariate values. The simplest way to approach this question is through conditional 
models (11.2.1) or (11.2.2), in which the dependence of Tii on ti(i—  I ? can be assessed. 
If the Tii (j = 1, 2, ...) are independent, given covariate values, then marginal 
interpretations and analysis are much simpler. Problem 11.12 considers the case of 
Kaplan—Meier estimation for marginal distributions in this setting. 

11.3.2 An Example 

Data on the occurrence of pulmonary exacerbations in persons with cystic fibrosis 
were introduced in Example 1.1.8 and have been discussed in several other examples. 
The time T1 to a first exacerbation in subjects who were randomized to either the 
treatment rhDNase or to a placebo was considered in Examples 6.3.4 and 7.2.1. Both 
treatment and the covariatelorced expiratory volume (fey), measured at the start of 
study, were important factors, with the active treatment (rhDNase) and higher fey 
measures associated with longer times to  exacerbation. 

The 645 subjects in the study were followed for 169 days and could experience 
more than one  exacerbation. In, particular, when a subject experienced an exacer-
bation they were treated with antibiotics, and once the exacerbation had cleared 
up the person was at risk of a new exacerbation. The process can be portrayed as 
in Figure 11.1, with a person reverting to  the Normal (nonexacerbation) state after 
'antibiotic treatment. A more extensive analysis of the study data might therefore take 
aceount of this process, and consider the durations of the successive periods of time 
spent in the Normal and Exacerbation states by a subject. Since the durations of the 
sojourns in the Exacerbation state (i.e., during antibiotic treatment) were roughly., 
the same for most subjects, we will consider just the clUrations of the subsequent 
exacerbation-free periods T1, T2,   

A total of 139 out of 324 Placebo subjects and 104 out of 321 Treatment sub-
jects experienced a first exacerbation, so had uncensored values for.  T1.. Assuming 
their antibiotic treatment and recovery from the exacerbation occurred before the 
end of the follow-up period, these subjects wOuld then start,  a. second Normal,. or 
exacerbation-free, period; for some the time T2 to the second exacerbation would be 
observed and for Some it would be Censored. Those who experienced a second exac-
erbation could then become at risk for a third one, and so on. Table 11.4 shows the 
total numbers of exacerbations across the study group. 

Let us consider analyses of the successive times T1,  T2 , . . given, the .covariates 
xi  = I (Treatment -= rhDNase) and x2 =  f eu (centered baseline fey) considered 
in Examples 6.3.4 and 7.2.1. Those examples indicated that both accelerated failure 
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Table 11.4. Numbers of Pulmonary Exacerbations for 
Patients 

Number of 
Exacerbations 

Number of Patients 
Placebo Group 	Treatment Group 

0 185 217 
1 97 65 
2 24 30 
3 13 6 
4 4 3 
5 1 0 

324 321 

time (AFT) and PH models provide reasonable descriptions of the data for T1. We 
will consider both approaches. 

A PH approach for second and later exacerbation times T2, T3, ... could use a PH. 
specification for the conditional hazard functions (11.3.2) for Tj given ti ,   ti _1 
and x = (x i, x2)'. Here we consider such models with 

(t I xi , ti(j—  I) ) = Xo j (t) exp(gj xi 	yisP-1) ) 	(11.3,5) 

for j = 1, 2, ... , where sP)  = t ii  + 	t», with sr)  = O. These models are 
suggested by preliminary analysis and are supported by diagnostic checks described 
in Chapter 7. It is assumed that the durations of the periods during which subjects are 
in the exacerbation state are independent of the Ti. This appears appropriate, but if 
it were not true, then it would be necessary to include terms in (11.3.4) for previous 
exacerbation durations, in order to render the censoring process independent. 

An AFT approach would be to assume conditional specifications (11.3.1) based 
on one of the parametric models in Chapter 6. A log-normal model for Ti was 
found to be satisfactory in Example 6.3.4, so one might consider models of the form 
(11.3.3) for subsequent times; note that in this case the models include an intercept 
term, so covariate xi in (11.3.3) is (1, xi , x21)' and pi  = (poi,  i j , ,82.0 1  

There is a substantial number of observed duration times only for T; and T2, so 
we will focus on them. Table 11.5 shows the estimated regression coefficients and 
standard errors for the Cox PH models for Ti and T2, and the estimated regres-
sion coefficients and scale parameters "dri (j = 1, 2) for the log-normal models. To 
fit these models it is only necessary to carry out two univariate lifetime analyses 
using standard software. The results for Ti are reproduced from the earlier analyses 
in Examples 7.2,1 and 6.3.4. The results for T2 are interesting: whereas the effects 
of rhDNase treatment and high  lev on Ti (time to first exacerbation) were positive 
(associated with larger TO, the m.1,e.'s for the regression coefficients for  7'2  point in 
the opposite direction, though the effects are not statistically significant. This should 
not necessarily surprise us. A strong positive association between T2 and Ti is indi-. 
cated by the estimated regression coefficients for 11 and log ti in the PH and AFT 
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Table 11.5. Fitted Log-Normal and PH Models for Exacerbation Times T1  and T2 

Cox PH 	 Log-Normal AFT 

Model 
	

Parameter 	 Estimate (SE) 	 Estimate (SE) 

T1  Ix 
	

intercept 	 — 	 5.403 (.105) 
treatment 	 —.383 (.130) 	 .430 (.137) 
fey 	 —.0206 (.0028) 	 .0217 (.0029) 
scale 	 — 	 1.446 (.074) 

T2  Ix,  ti 	 intercept 	 — 	 3.209 (.487) 
treatment 	 .358 (.225) 	 —.227(211)  
fey 	 .0009 (.0054) 	 —.0045 (.0047) 
ti or log ti a 	 —.0143(.0039) 	 .417 (.132) 
scale 	 — 	 1.228 (.105) 

ail for PH model and log r1 for AFT model. 

models for T2 given è1 and x. Because of the strong association between Di and x, 
the, values of x and t1 in the analysis of T2 are rather strongly correlated, so it is not 
possible to get an unambiguous picture Of the conditional covariate effects on T2. 
Examination of third exacerbations (T3) shows a similar picture, though in that case 
the small number of observed exacerbations provides little informatidn, and no sig-
nificant effects even for ti , t2 are seen. 

The question as to whether the effect of treatment (which is administered daily) 
tends to diminish over time is important, and the analysis of T2, T3, ... given covari-
ates and previous exacerbation times does not provide much insight. It is possible to 
consider the marginal distribution of T2 (or T3 or T4...) given the covariates treat-
Merit and  fey. These can be derived for either of the PH Or AFT models represented in 
Table 1 .5, but is particularly easy for the log-normal AFT model. Linder the model 
(1 1.3.3) for j =  1, 2, the marginal distribution of Y21 given xi is normal, 

A 	p (2) , 	() 	0 (2) 	2 
Y21 	iv (Po 	pi

2  xli 'r P2 X2i 0"(M)2) ,  (11.3.6) 

where, letting tl,ç j)  for r = 0, 1, 2 be the regression coefficients in the model (11.3.3) 
with j = 1, 

(2) = /3,2 + 
	 r= 0, 1,2 

and °a-2 04)2 — y22a 2  -1- oi ' The m.l.e.'s and se's of the regression COefficients for — 	1 	2  
treatment and fey are obtainable from 'Pable 11.5 plus  the Asymptotic covariance 
Matrices for those Analyses. We find the estimate (and se) for treatment to be Al2)  

—.048(.215) and the estimate for fey to be 13 2) = .0045(.0053); neither dovariate 
effect is significant. 

A qualification concerning the marginal analysis just described is that the study 
involved follow-up of only 169 days, and under half of the subjects experienced even 
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a first pulmonary exacerbation. It may be a misleading extrapolation to consider the 
marginal distribution of Y2 or T2, which implicitly assumes that everyone eventually 
experiences a first exacerbation, and also to assume that the normal model (11.3.3) 
describes the upper half of the distribution for Y1 or 71. An alternative approach is 
to consider the distribution of Y2 given that Y1 < log L, where L is a value, such as 
169 days, that reflects the limited information about the distribution of Y1. Similarly, 
we would consider probabilities 

Pr(T2 < t2ITI < L, x) 	 (11.3.7) 

for which 12 + L was not too much larger than 169 days. 
Probabilities (11.3.7) can be calculated for either the AFT or PH model just con-

sidered. The log-normal model gives 

/tog L G  (21-1.42__t—rzyt) r, 	dyi  
a2 	) 	a l ) 

Pr (T2 < t2ITI 	L, x) — 	—cc 	 , 	(11.3.8) 
G 	\ 

	

al 	) 

where x = (1, xi, x2 )' Pi = (Po» Pli, PO' as in (11.3.3) and G and g are the stan-
dard normal distribution function and p.d.f., respectively. For the PH model (11.3.5), 
the corresponding probability is 

P r (T2 < t2ITI < 1,,x) — 
Jo  (1 — exp[—A2(t21x,  t1)l}A.1(ti  ix) exp[—Ai (ti Ix)) dti 

1 — exp{—Ai (Lix)} 	
(11.3.9) 

where Ai (t Ix) and A2(tIX, ti) are the c.h.f.'s corresponding to  Àj  (ix)  and A.2(t Ix, ti) 
in (11.3.5). 

Calculation of estimates of (11.3.8) and (11.3.9) based on the models represented 
in Table 11.5 show estimated probabilities for L = 169, t2 < 119, to be slightly 
smaller for the placebo group than for the rhDNase group, but the differences are not 
statistically significant. This is consistent with the marginal log-normal model for Y2 
given x, fitted previously. 

More general models for the onset of exacerbation spells, based on event history 
modeling, provide alternative ways to examine whether the treatment effect is persis-
tent. These types of models are discussed in the following section. Cook and Lawless 
(2002, Section 6) illustrate such an approach on the data in this section. 

11.4 GENERAL EVENT HISTORY PROCESSES 

As described in Section 11.1, many studies involve processes in which several types 
of events can occur over time for individuals in some population. Section 113 dis-
cussed how univariate lifetime analysis can be applied to sequences of events that 
occur in some fixed order. Univariate methodology can also be applied to more com-
plex processes; how this is done will be described briefly. 
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Processes involving multiple events or states, as in Examples 11.1.2-11.1.5, can 
quite generally be represented in the following way. Suppose that k different tyPes of 
events can occur for an individual over (continuous) time. For a specific individual 
at time t, let 7-t(t) denote the history of events plus covariate information up to time 
t—, and for s < t let Ni (s, 1) denote the number of times event type j occurs in the 
interval [s, t). Then event intensity functions are defined as 

	

Pr[Nj(t, t 	At) = 117-((t)]  
Xj[t rH(t)] = lirn 	 j —  1, 	k 	(11.4.1) 

Ar —.0 	 At 

and under the assumption that no two events of any kind can occur simultaneously, 
they specify the events process. This assumption is made throughout this section. The 
intensity functions (11.4.1) can be thought of as generalizations of hazard functions; 
the mode-specific hazard functions (9.1.1) used for multiple failure mode problems 
are a special case of (11.4.1). 

The forms that the intensity functions will take in a specific setting depend on the 
process in question. Consider the following simple but important example. 

Example 11.4.1. The Illness-Death Process. Figure 11.2 portrays A process 
in which individuals start in state 1, and may subsequently enter states 2, and/or 3.. 
This is often referred to as the illness—death process, since it applies to settings where 
an individual starts off as "healthy" (state 1), may acquire a certain illness or dis-
ease (enter state 2), and may die (enter state 3) with or without having acquired the 
disease. In. this case, we can identify three types • of  events with the three types of 
transitions between states, say as follows: 

Event type 1: 1 	2 transition 
Event type 2: 1 —> 3 transition 
Event type 3: 2 	3 transition. 

If there were no covariates, then one might consider specifications for the intensity 
functions Xi [tJNW ]  for j =  1,2  and t > 0 as 

	

X,/ It In(t)] = 	(On (t), 	j = 1, 2, 	 (11.4.2) 

2 

N 7 
Figure 11.2. The illness—death process. 
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where Yi (t) = I (individual is in state 1 at time t—),  and the et .' (t) are specified 
functions. The  Y1 (t) term is used in (11.4.2) because if the individual is not in state 1 
just prior to time t, no transition out of state 1 can occur. Specification of A.3[tIR(t)] 

would require consideration of whether it should depend on the time of entry to 
state 2 as well as on t Models for which it depends only on t are called Markov 
models (e.g., Ross 1983). 

In many applications the intensity functions for different event types are func-
tionally independent, and do not have any parameters in common. Such situations 
give rise to likelihood functions that can be factored.into pieces and treated using 
univarlate lifetime methods, provided that event and censoring times are observed. 
To see this, suppose that an individual i is observed over the time interval (0, C), 
and suppose that during this period the individual experiences m I events, at times 
tu  < ti2 < < ilmi • For notational convenience, an eventis considered to occur at 
CI; this may be the event "end of follow-up" or one of the event types 1 ,,,,, k. 

A key result in what follows is that for a process specified by intensities (11.4.1) 

Pr [no events in  (t,  t 	s)17--((t)] = exp — f[u19-1(14)] du } 	(11.4.3) 

This is a generalization of (9.1.2) for multiple failure modes and of (1.2.18) in Sec-
tion 1.2.3. It is proved by noting that 

[

E Ni (t, t + At) = ON (t)] = 1 — Exi [timo]At + o(At) 
.1=1 

and using the product-integral introduced in Section 1.2.3 to evaluate (11.4.3) as 

ri Pr {no events in [u, u du)In(u))• 
[si)  

The likelihood contribution for individual i can now be found to be 

flexp

itu k  

— E [t 	OA di n A.j[tie17-1101e)]'"i , 
e=t 	4.e-1 i=i 	 i=1 

(11.4.4) 

where to  = 0, Su,/ = I (event of type j occurs at tig for individual i), and it is 
understood that 00  = 1. To obtain (11.4.4), note that the event history observed for 
individual i consists of gaps (ti,e_i , tie) with no events that are "followed" by events 
at the times tie. This approach is completely analogous to that used to justify the 
likelihood function for right-censored univariate lifetime processes in Section 2.2.2. 

The property that makes univariate lifetime data methods applicable is that 
(11.4.4) can be factored into separate pieces for each j = 1 ,,,,, k: 
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mi 	1Lj = n  exp —Aj  It I71 (0) dt Xi [tie 	(tre)]sit)  • 
	(11.4.5) 

Each term (11.4.5) takes the form of the likelihood for a univariate  lifetime  variable 
with hazard function Xi ft (t)1,  subject to left truncation at tik..1 and to possible 
right censoring at tit. The event time tit in Lif is equivalent to an observed lifetime 
of type j if bit./ = 1 and to a censoring time if i tj = O. The likelihood func-
tion obtained for multiple failure mode models in (9.1.11) and (9.1.13) of Chapter 9 
is a special case of (11.4.5). As there, parametric univariate lifetime data analysis 
software can be applied directly to (11.4.5), provided that it accommodates left trun-
cation as well as right censoring. Semiparametric models are in some cases a little 
more difficult to handle. However, in the case of PH or multiplicative hazards mod-
els, the justification used in Section 7.4 for serniparametric likelihood can be used to 
show that standard Cox partial likelihood methods can be quite generally applied to 
the separate event intensity functions for j = 1, . , k. 

Note that in (11.4.5), a specific event type j may not appear in some or all of the 
terms Liit; it will, in fact, appear only if individual i is at risk of a type j . event over 
(ti,e_i, tie]. The following example illustrates the likelihood calculation for a model 
corresponding to Figure 11.2. 

Example 11.4.2. Consider the illness—death model of Example 11.4.1, in which 
three types of transitions, or events, are possible. Suppose that a Markov model is 
considered, for which the event intensity functions are 

[t N(t)] = 	(t)aj (t), 	j = 1, 2, 3, 	(1 I .4.6) 

where Y1 (t)  = l'2(t) = I (individual is in state 1 at time t —), Y3 (t) = I (individual 
is in state 2 at time t — ),  and al (t), 2(t), 3(t) have separately specified paramet-
ric forms, with no covariates present. For simplicity, suppose there are prespecified 
follow-up times, Ci, that determine censoring. 

Now, each of the event types 1, 2, 3 can occur at most once, and there can be at 
most two events in total, so mi = 1 or 2. Let 41 be the time of the first event, which 
is of either type 1, type 2, or end of follow-up. If it is of type 1, then tni = 2 and 
the individual becomes at risk for a second event (of either type 3 or end of follow-
up); otherwise, mi = 1. It is then easily seen that under (11.4.6), the likelihood 
contributions Lif for j = 1, 2, 3 from individual i are, respectively, 

Li' = exp — •
41 
	co at I al (41) 811,  

= exp {— f a2(t) dt} az (ti ) 6112 

 L13 = exp ffi t:23itia3(t) dt a3 (ti2 )6123 6t1 
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Note that the likelihood contributions (11.4.7) and (11.4.8) have the form for (possi-
bly right-censored) lifetimes tii , and (11.4.9) has the form for a lifetime that is left 
truncated at tii and possibly right-censored at 42. 

The following example considers a study that has been examined by many differ-
ent authors. The rather brief treatment here is designed to illustrate the application 
of univariate methods to one specific model that fits the data satisfactorily. 

Example 11.4.3. The Stanford Heart Transplant Study. The data set con-
sidered here concerns the survival of patients who were admitted into the Stanford 
University heart transplant program, from 1967 to 1973. This observational study 
has been considered by many authors, including Crowley and Hu (1977), Kalbfieisch 
and Prentice (1980, Sec. 5.5.3), Cox and Oakes (1984, Sec. 8.9), and Therneau and 
Grambsch (2000, Sec. 3.7.1). The data consist of information on each individual; 
their time of admission to the program, their time of transplant and factors associ-
ated with the transplant (if it occurred), and their time of death or end of follow-up. 
The data considered here are those used by Crowley and Hu (1977) and are available 
in electronic form (see Appendix G). 

The following factors are those found most relevant, and attention is restricted to 
them: 

age of patient at admission (in years)-48 

X2  = / (previous heart surgery) 

= year of admission to program 

x4(t) = I (transplant occurred by time t), 

where t > 0 is time since admission to the  program. One approach to analysis, dis-
cussed extensively in the references just cited, is to use -multiplicative semipararoetric 
regression models for the time T to death from admission. In this approach, the effect 
of the heart transplant on the hazard function for death is examined through the effect 
of the time-varying covariate x4 (1), and possible interactions with other explanatory 
variables. Such an analysis can be carried out by using standard Cox model software 
and the methods discussed in Chapter 7. A clear picture does not emerge from such 
an  analysis.  The strongest effect indicated is a positive association between survival 
time and the year of admission to the program, suggesting perhaps that individu-
als admitted in earlier years were typically in poorer condition than those admitted 
later on. No other factors are strongly significant, though there is mild evidence of 
an interaction between year of admission (x3) and transplant (x4(t)), suggesting that 
a mild (but nonstatistically significant) benefit from transplant applied primarily to 
persons admitted in the earlier years. 

•An alternative approach is to consider the three-state framework portrayed in Fig-
um 11.2, with 
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Transition Intensity Covariate Estimated Coefficient se 

State 1 	State 2 xi .031 .014 2.20 
x2 .047 .315 .14 
x3  .002 .070 .03 

State 1 	State 3 —.275 .106 —2.61 

State 2 	State 3 xi .051 .021 2.43 
X2  —.833 .447 —1.19 

State 1E.--_- Admitted to program, alive, pretransplant 

State 2 Alive, posttransplant 

State 3 Dead. 

Markov model with event intensities Xi [tl'H(t)] for transplant, X2Irin( ,  )1 for 
death without transplant, and Xl[t l'H(t)] for death following transplant offers some 
useful insights. Let us consider the multiplicative models 

[trh(t)) = Y (t)Xbi (t) exp(x), 	j = 1, 2, 3, 	(11,4.10) 

where Yi (t) = / (individual is at risk for event j at time t) and x involves only the 
fixed covariates xi, x2, x3. It is unnecessary, and redundant, to consider the transplant 
indicator x4(t), because the models (11.4.10) allow the hazard function for death to 
be different pre- and posttransplant. That is, (11.4.10) is a little more general than 
the model discussed earlier; the former model is equivalent to assuming the baseline 
death intensities X02 (t) and X03 (t) in (11.4.10) are proportional. 

This model can be fitted using software for the semiparametric Cox model, sep-
arately for each event type j = 1, 2, 1 For event types 1 and 2 (corresponding to 
transitions from States 1 to 2 and  I to 3, respectively), there is no left truncation, and 
the events are like two competing modes of failure. For event Type 3 (a State 2 to 3 
transiticn), the left truncation time is ti , the time at which the transplant occurred. 
Table 11.6 shows some fitted models that describe the data well. The analysis shows 
that the year of admission (x3) is significant only for Type 2 events, and that age is 
significant for Type 1 and Type 3 events. Prior therapy (x2) is not significant any-
Where. These results suggest that persons admitted to the program in earlier years 
were more likely to die before receiving a transplant and that younger persons are 
associated with a longer wait for transplant, but also a lower risk of death after trans-
plant. 

Parametric maximum likelihciod analysis for quite general event history mod-
els is straightforward via (11.4.4) and (11.4.5). Semiparametrie PI-1 analysis as 
in the preceding example is also available for  many situations; as rioted prior to 
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Example 11.4.2. References provided in the Bibliographic Notes can be consulted 
for details and examples. 

11.5 FAILURE AND RELATED PROCESSES 

Time-varying processes are frequently of interest in problems involving failure or 
lifetimes. Situations in which external time-varying factors are treated as covariates 
have been discussed earlier in the book, most specifically in Sections 6.4.3 and 7.1.8. 
This addresses factors such as varying temperature or voltage stresses in a life test 
experiment on electronic parts, or the effect of air pollution on the occurrence of 
respiratory problems in humans. In many applications internal processes are also of 
interest. Measurements on the amount of deterioration in a piece of equipment or on 
biological markers in persons with ultimately fatal illnesses are of this type. Such 
processes are in many cases physically related to the failure process, and can be con-
sidered as responses, rather than as covariates. It is often important to understand and 
model such processes, both individually and jointly with failure. This leads to topics 
on stochastic processes that cannot be discussed In detail here. A brief overview of 
some important topics, and approaches to modeling, will be provided. 

11.5.1 Some Context and Objectives 

The following examples give some settings in which failure and other processes are 
of joint interest. 

Example 11.5.1. Usage Measures and Patterns. In problems involving the 
reliability of equipment, the way in which the equipment is used is generally an 
important factor. This is often characterized through one or more usage measures 
x (t). For example, with automobiles t might represent the age (total time in service) 
of the vehicle and xi (t) the distance driven by time t. Another usage factor would 
be the cumulative number of engine cycles x2(t) up to time t. The usage measure 
histories (x(t), t > 0) are random in populations of vehicles in service, and it is ' 
important to understand their relationship with specific types of failure (e.g., Lawless 
et al. 1995). In some cases it would be sensible to .  treat a usage measure as the 
primary time scale for analyzing failures. For example, the distance driven is often 
used for certain types of vehicle failures. 

Example 11.5.2. Degradation Measures. Many failure processes are linked 
to some type of deterioration or degradation in the physical units for which fail-
ures occur. For example, Bogdanoff . and Kozin (1985) discuss the growth of fatigue 
cracks in metal test specimens that are subjected to cyclic loading cycles. Crack size 
Z(t) .is measured as the length of the crack, where the time variable t is the number 
of test cycles. Failure time, T, is often defined in this context as the time (number. 
of cycles), t, at which the crack size first exceeds some value, zo. The degradation 
process (Z(t), t > 0) thus defines failures, so by modeling this process we also 
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determine the failure time distribution. More importantly, in contexts where failures 
are rare or must be avoided, the identification and study of degradation processes can 
largely replace failure time considerations. For example, conditioned-based mainte-
nance methodology uses degradation or other measures of the condition of equip-
ment to decide when to overhaul or replace units before failures occur. 

Whitmore et al. (1998) consider a more complex example concerning the produc-
tion of aluminum by electrolysis in reduction cells that consist of a carbon anode 
in a carbon-lined steel box. The reduction cells degrade over time through physical 
distortion of the box and iron contamination of the aluminum resulting from cracks 
in the box's lining. Replacement and occasional catastrophic failures of the reduc-ti  
lion cells is examined in terms of three degradation measures: zi(t) = percent iron 
contamination at time t, z2(t) = horizontal distortion (in inches) of the box at t, and 
Z3(t) = displacement (drop) of the cathode (in inches) at t. 

Example 11.5.3. Performance Measures. Sometimes there are measures 
that specify how well a unit or individual is functioning, or performing, at time t. 
For example, Tseng et al. (1995) considered the design of fluorescent lamps, whose 
performance at time t in service was measured by their luminosity Z(t). This tends 
to decrease over time, and the lifetime for a lamp is often defined as the time t at 
which the luminosity falls below a certain value. Tseng et al. (1995) considered the 
effect of design and manufacturing factors on the luminosity curves (Z(t), t > 0) 
for a certain type of lamp, and were thus able to draw inferences about the lifetimes 
of the lamps. 

Example 11.5.4. Biological Markers. For many human illnesses or chronic 
conditions there are biological "markers" or measures that are associated With the 

'-course  of the illness; and thus With lifetime variables related to the illness. For 
example, the disease pattern and time to death for persons infected with HIV is 

'related to variations in CD4 T4ymphoçyte blood-cell counts Z1 (t) and to the HIV 
viral load or prevalence Z2(t) (e.g., Shi et al. 1996; Lee et al. 2000). Such markers 
are predictive of survival in the sense that the risk of death becomes high when the 
,marker values fall into certain regions (e.g„ when CD4 counts become very low), 
generally because they are Associated with either the physical condition of the indi-
vidual or the progression or virulence of the disease. However, because of factors 
such as the long and highly variable course of HIV disease, and  evolving methods 
of treatment, precise predictions concerning the survival time of relatively healthy 
bût  infected individuals are not possible. Marker processes have other uses,  though. 
One of the most important is in serving as responses in comparative treatment trials; 
a second is in serving as an adjustment or stratification factor in disease progres-

":,. Sion studies involving infected persons, especially when the ,times of infection are 
unknown. 

The processes Z(t) considered in Examples 11.5.2-11.5.4 are internal to indi- 
I,Viduals, and if  lifetime  T corresponds to the death a an individual the process 

t > 0) terminates at T.  This is also true of the usage process fx(t), t > 0) 
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in Example 11.5.1, although in applications such as designed experiments the usage 
process patterns can be prespecified, and thus are external. In each case the relation-
ship between the processes and failure is of interest as a way of understanding the 
failure process, of preventing failure or extending lifetime, of aiding decisions about 
maintenance or treatment, and so on. Indeed, the future of lifetime analysis and of 
efforts to extend life in specific fields lies in a deeper understanding of failure and 
related processes. To deal with such issues it is necessary to consider joint models 
for failure and related processes. We discuss this next. 

11.5.2 Some Approaches to Modeling and Analysis 

Let us consider the following framework. Individuals are observed on some time 
scale t > 0, in terms of which they have some lifetime T.  During their lifetime, 
certain internal processes Z(T) = (Z(I), 0 < t < T) may be observed. In addition, 
certain observable external processes X = {x(t), t > 0) or covariates may affect T 
and Z(T). The key issue is to consider models for T and Z(T) given X. We outline 
some important approaches. References cited below and in the Bibliographic Notes 
can be consulted for further information. 

11.5.2.1 Process-Defined Failures 
In many settings failure is defined in terms of some internal process; Examples 11.5,2 
and 11.5.3 provide illustrations. For simplicity consider a single positive-valued mea-
sure Z(t) and suppose that failure time T is defined as 

	

T = inflt Z(t) = Zr. }. 	 (11.5.1) 

that is, the first time that Z(t) reaches the specified threshold value zT > O. Given 
a model for the stochastic process (Z(1), t > 0), the distribution of T tan be deter-
mined from (11.5.1). If Z(t) is monotonic in the sense that Z(s) < Z(t) for s < t, 
then the relationship 

P r{T > t) = Pr {Z(t) < 
	

(11.5,2) 

can be used. 
Models for which the distribution of T is fairly easily calculated include 

1. Random growth-curve models (e.g., Carey and  Koenig 1991; Lu and Meeker 
1993), such as 

Z1 (t) = 	(t; eh P) 	 (11.5.3) 

where 0; is a random vector of parameters specific to individual i and p is a 
vector of parameters common to all individuals. It is usually assumed that we 
cannot observe  Z1 (t), but only Zr (t) = Zi (t) ei(t), where {ei(t), t > 0} is 
an error process. In many cases, el (t) is assumed to include only measurement 
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error, so that ei(t) and  e(s) are independent for s 	t. Covariates can be 
included in fLi (t). 

2. Wiener processes (e.g., Doksum and Hoyland 1992; Doksum and Normand 
1995; Whitmore 1995), for which {Zi (t), t > 0) is a stationary, independent 
increments Gaussian process with positive drift (e.g., Ross 1983). In this case, 
the process is not monotonic, but the distribution of T defined by (11.5.1) is 
inverse Gaussian, as considered in Sections 1.3.7, 4.2.2, and 6.5.2. 

3. Jump processes (e.g., Taylor 1975; Cinlar 1977; Ditlevsen 1986). An example 
is compound Poisson shock processes, for which 

NO) 	t 
Z(t) = E y, = 

f 
Y(t) dN (t) 

J=1 	0 
>  o,  

where N (t) is the number of shocks over (0, t) and follows a Poisson process, 
and Yi is a positive-valued random variable associated with the jth shock. 

To fit models of these types it is necessary to have data on the individual processes 
(Z1 (t), t > 0)  for a sample of individuals i = 1, . . . , n. In most applications this is 
available at a discrete set of time points for individual j,  say tii, , ti„„, Where tim , 
may correspond to Ti or to a final observation time at which failure has still not 
occurred. We will not pursue the details of writing down the likelihood contributions 
based on data {pi, j = 1, . , nit )  for any of the models mentioned. These 
and other ,models are treated in references cited previously and in the Bibliographic 
Notes. 

It should be noted that if a process {Z (t), t > 0) is considered as a response with-
out reference to any associated failure time, then the same modeling and analysis 
issues arise. However, when failure is present one must recognize the explicit con-
nection between the Z(t) process and failure in constructing the likelihood. The next 
subsection considers this for the more general setting in which T is associated with 
the Z(t) process, but not necessarily defined by it. 

11.5.2.2 Process-Related Failures 
Consider the case where T and the process for Z(t) are related; models for (7',. Z(T)) 
are now wanted, where Z(t) = {Z (s), 0 < < t). A way to approach this is through 
a model for the hazard function of  T,  given the past process history, along with a 
model for the evelliition of the process. The hazard function is 

Pr{r< t  AtiT > 1,. (t)} 
 htt IZ(t)] = lim  	(1 i..5.4) 

At 

A model for the evolution of Z(t) over (t, t At), given T > t and Z(t) must also 
be considered, Segall and Kailath (1975) and others show that if the Z(t) process 
is predictable with respect to its past history and that of the failure process, then 
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(11.5.4) is rigorously defined and that for t > 0, s > 0, 

t+s 
Pr[T t sIT t, Z(t)] = E exp [— 	h(uIZ(u)) dull, 	(11.5.5) 

where the expectation is with respect to the process history Z(t + s), given Z(t) and 
T > I. The case where I = 0 gives the marginal survivor function for T, conditional 
on any pertinent information at t = 0. 

The exact calculation of (11.5.5) is intractable for most models. Jewell and 
Kalbfleisch (1992, 1996), Singpurwalla (1995), Shi et al. (1996), and Bagdonavicius 
and Nikulin (2001) are among authors who consider reasonably tractable models, 
but few have been fitted to data. 

The modeling approach just considered makes expliciLthe dependence of the fail-
ure time hazard function on the Z(t) process. This is useful when one wants to assess 
the effect of covariates x on the Z(t) process, but any effect of x on failure is con-
founded with the effect of the marker process. A different approach that is useful 
when the objective is to consider the marginal effect of x on failure is to take a model 
for T, given x, combined with a model for Z(T), given T and x. Some Gaussian 
models of this type are reasonably tractable (e.g., Cox 1999). A third approach is 
to link the failure and marker processes by assuming that they depend on common 
unobservable random effects  (e.g., Faucett and Thomas 1996; Wulfsohn and Tsiatis 
1997). 

Typical data, mentioned in the preceding subsection, consist of observations on 
the Z(t) process at discrete time points, along with the information that failure had 
or had not occurred by the last follow-up time. For the sake of discussion, suppose 
that a sequence of potential observation times tii (j = 1, 2, ...) is prespecified for 
individual i, and that if an individual fails at ti between two planned observation. 
times, the value of ti is observed. The data on individual i then consist of either 

1. { ZOO. j = 	, mi ; Tj > 	}, or 

2. {ZOO, j — 1 	 nzi; Tj 	tj,  where tit < -i.Pni4-1, • 

For maximum likelihood it is necessary to consider the probability of outcomes I. 
or 2. For most Models this is challenging to write down or  compute.  For calculations 
with defined failures and Wiener processes, as in  Subsection  11.5.2.1, see Lu (1995); 
Whitmore et al. (1998) and Lee et al. (2000) extend this to a model involving a' 
Gaussiân marker process that is associated with failure. 

11.5.2.3 Composite Measures 
Another class of problems concerns measures that are functions of failure time, T,. 
and process histories over (0, T). We mention two specific examples below. In each, 
setting the objective is to choose relatively simple models rather than to derive results 
from complex joint models for failure and the other processes. 
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1. Composite Time Scales In this case, the objective is to select a time scale 
other than real time. With equipment, such scales are often a function of real-
time and usage processes  {x (t), t > 0); an example is the use of mileage 
driven or a combination of mileage and time in service with motor vehicles 
(e.g., Duchesne and Lawless 2000). 

2. Total Lifetime Cost or Quality The emphasis here is on some accumu-
lating measure of cost or quality associated with an individual's lifetime. For 
example, an individual who experiences a bout of disease may accumulate cost 
associated with its treatment. If T > 0 denotes the duration of the treatment 
period and Z(t) is the total cost of treatment up to time t in that period, then 
the total lifetime cost is Z = Z(T). Attempts are often made to find reasonably 
simple models for Z (e.g., Lin et al. 1997). A methodological challenge is that 
if data are observed in which some treatment durations Ti are censored at ti, 
then the corresponding censoring value zi 	Z(ti) for Zi is not in general the 
result of an independent censoring mechanism in the sense of Section 2.2.2. 
Equivalent problems occur with measures of total quality of life  (e.g., Zhao 
and Tsiatis 1997) and other problems where a "mark" variable Y is observable 
at failure time T (Huang and Louis 1998). 

BIBLIOGRAPHIC NOTES 

Event history analysis is discussed in several books, including Blossfeld et al. 
(1989), Lancaster (1990), Andersen et al. (1993), Hougaard (2000) and Therneau 
andGrambsch (2000). Tuma and Hannan (1984) and Trussell et al. (1992) emphasize 
applications in the social sciences and demography, respectiyely. 

The books by Kotz et al. (2000) and Joe (1997) provide extensive coverage of mul-
tivariate distributions and concepts of dependence or association. Hougaard (2000) 
discusses applications and statistical methods for multivariate lifetime distributions; 
Crowder et al. (1991, Ch. 7) and Klein and Moeschberger (1997; Ch. 3) give brief 
treatments with examples from engineering and medicine. Liang et al. (1995) review 
random effects and marginal models. 

Copulas and multivariate distributions are thoroughly discussed by Joe (1997); 
Frees and Valdez (1998) give a useful survey, including applications to insurance. 

" Clayton (1978) and Cook and Johnson (1981) introduced the model (11.2.6). 
There has traditionally been a strong emphasis, on random-effects models for 

Multivariate lifetime data. Hougaard (1986) and Oakes (1989) are important early 
sources, and Hougaard (2000) covers the area Vm11. Lindeboom and van 'den Berg 
(1994) stressed the need for multivariate random effects; see also McG ilchrist (1993), 
Petersen et al. (1996), and Hougaard (2000, Çh. 10). There is a close connection 
between random-effects models and copula models  (e.g., Marshall and Olkin 1988; 
Oakes 1989), though different regression specifications tend to be used with the two 
types, as discussed in Section 11.2. 

Paired experiments involving lifetimes were discussed by Holt and Prentice 
(1974), Kalbfleisch and Prentice (1980, Sec. 8.1), and Wild (1983). Manatunga and 
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Oakes (1999) provide an excellent discussion of the different ways of specifying 
covariate effects, as in Example 11.2.1, Neuhaus and Kalbfleisch (1998) discuss 
marginal and conditional covariate effects in a broader context. 

Maximum likelihood for parametric multivariate models is standard (e.g., Huster 
et al. 1989; Crowder et al. 1991; Frees and Valdez 1998), Nonparametric estimation 
of a continuous multivariate survivor function S(ti ,   tk) from censored data is 
difficult; Van der Laan (1996), Hougaard (2000, Ch. 14), and Oakes (2001, Sec. 7.2) 
discuss the topic. 

Huster et al. (1989) considered pseudolikelihood methods for independence work-
ing models and compared their efficiency with maximum likelihood based on the 
bivariate Clayton model. Wei et al. (1989) and Lee et al. (1992) considered a similar 
approach with semiparametric PH models for the marginal distributions. Further con-
tributions, some using weighted estimating functions, are in Liang et al. (1993), Lin 
(1994), Spiekerman and Lin (1998), Cai and Prentice (1995), and Prentice and Hsu 
(1997). He and Lawless (2002) consider PH models with flexible piecewise-constant 
and regression spline baseline hazard functions. Working independence approaches 
for models with accelerated failure time marginal distributions have been consid-
ered by Lee et al. (1993). Genest et al. (1995), Shih and Louis (1995), and Fine and 
Jiang (2000) consider pseudolikelihood estimation of copula parameters like 49 in 
(11,2.6), along with estimation of marginal distributions. Williams (1995) and Law-
less (2003) consider variance estimation for Kaplan—Meier estimates as in (11.2.21). 
For simple semiparametric PH frailty models, a  maximum  likelihood approach is 
available (e.g., Klein 1992; Nielsen et al, 1992; Andersen et al. 1997; Hougaard 
2000, Ch. 8). For models with multivariate random-effects see Liang et al, (1995, 
Sec. 2) and Hougaard (2000, pi. 10). Bandeen :-Roche and Liang (1996), Lin (2000), 
and Lawless (2003) consider marginal methods that can be applied to sample survey 
data. 

Sequences of gap times were considered under PH models by Cox (1972b), Gail 
et al. (1980), Kalbfleisch and Prentice (1980, Sec. 7.3), and Prentice et al. (1984 
Fofirnan and Goldberg (1988) and Aalen and Husebye (1991) considered simple 
random-effects models of PH and AFT form; Xue and Brookmeyer (1996), Cook et 
al. (1999), and Fong et al. (2001) consider more complex models. Dabrowska et al: 
(1994) provide a rigorous discussion of semiparametric PH analysis. Visser (1996), 
Wang and Wells (1998), and Lin et al. (1999) consider nonpararnetric estimation of 
the marginal distributions for second and subsequent gap times. Lawless and Fang 
(1999) and Lawless et al. (2001) discuss modeling and analysis of recurrent durations 
and gap times. 

Statistical methods for more general event history processes, especially of Markov 
type, are discussed by Blossfeld et al. (1989), Andersen  etal.  (1993), Hougaard 
(2000) and Therneau and Grambsch (2000). Andersen and Keiding (2002) review 
multistate models; Lawless (1995) and Cook and Lawless (2002) survey methodol-
ogy for recurrent events. Ascher and Feingold (1984) provide extensive discussion 
of repeated failures in reliability. Kalbfleisch and Lawless (1985, 1988a), Gentleman 
et al. (1994), and Lindsey and Ryan (1993) consider incomplete data for multistate 
models. Pepe and Mod (1993) discuss marginal characteristics of multistate models. 
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There is a large literature on joint models for failure and associated processes. 
.Cox (1999) provides a synopsis of model types. Degradation models with defined 
failures are very well studied, with approaches that include damage processes (e.g. .  
Bogdanoff and Kozin 1985; Desmond 1985; Sobczyk 1987), diffusion processes 
(e.g., Doksum and Hoyland 1992; Doksum and Normand 1995; Lu 1995; Whitmore 
1995; Whitmore and Schenkelberg 1997), and random-effects models (Meeker and 
Escobar, 1998, Ch. 13; Lu et al. 1997; Sun et al. 1999). Aalen and Gjessing (2001) 
survey models with random boundaries or starting points. The  operations  research 
literature contains many papers,  for example, on discrete time, discrete Z(t) Markov 
models for maintenance and replacement planning (e.g., Valdez-Flores and Feldman 
1989). 

Jewell and Kalbfieisch (1992, 1996), Self and Pawitan (1992), Jewell and Nielsen 
(1993), Singpurwalla (1995), and Shi et al. (1996) discuss aspects of hazard-based 
models for process-related failures. Joint Gaussian models for T and Z(T) are 
considered by Taylor et al. (1994), Tsiatis et al. (1995), Cox (1999), and oth-
ers. Models involving random-effects linking lifetime and marker process vari-
ables are discussed by Faucett and Thomas (1996), Wulfsohn and TsiatiS (1997), 
Hogan and Laird (1997a), Xu and Zeger (2001), and others. Hogan and Laird 
(1997b) review different approaches to modeling. Models based on multivari-
ate diffusion processes are considered by Whitmore et al. (1998) and Lee et al. 
(2000). 

The analysis of data on lifetimes and total lifetime cost or quality measures has 
been considered by Lin et al. (1997), Zhao and Tsiatis (1997), Cook and Lawless 
(1997), Huang and Louis (1998), Bang and Tsiatis (2000), Ghosh and Lin (2000), 
and others. Cook and Lawless (2002) provide additional references. A related area is 
the treatment of alternative time scales (e.g., Kordonsky and Gertsbakh 1993; Oakes 
1995; Duchesne and Lawless 2000; Wilson 2000), in which scales that are functions 
of external usage or exposure processes are considered. 

COMPUTATIONAL NOTES 

Specialized software for specific parametric multivariate models and  censored data is 
not widely available, so the use of general optimization methodology (Appendix D) 
is recommended. Marginal analysis of the semiparametric PH model, as discussed 
by Wei et al. (1989), Lee et al. (1992), and Spiekerman and Lin (.1998) .  is avail-
able in S-Plus (see function coxph with the cluster 'Option) and  other systems such 
as SAS and STATA. Lin (1994) discusses other software for Marginal PH analysis. 
Survey data-analysis software such as SUDAAN and WESVAR also provide  rneth-

• ods of variance estimation for working independence models, emphasizing data from 
sample surveys. 

Conditional semiparametric PH random-effects models such as (11.2.23) are han-
dled by S-Plus function coxph with the frailty option. Gamma and other distributions 
for the shared random effects are allowed. 

Gap time analysis can utilize standard univariate survival analysis software, as can 
certain analyses for multistate models or multiple events. In addition to the examples 
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in Sections 11.3 and 11.4, the books by Hougaard (2000) and Therneau and Gramb-
sch (2000) can be consulted for detailed instructions. 

Not much specialized software has been developed for the models of Section 11.5, 
though for the analysis of some marker processes alone, software for continuous or 
discrete longitudinal data can be utilized. 

PROBLEMS AND SUPPLEMENTS 

11.1 Give expressions for the joint survivor function and p.d.f. of bivariate lifetimes 
T1, T2 in terms of the three hazard functions in (11.2.4). 

(Section 11.2) 

11.2 Dependence or association measures. Let  (Ti,  T2) have continuous c.d.f. 
F (4,12). Two measures of the association between T1 and T2 are Spearman 's 
p and Kendall's r, defined, respectively, as 

p = Corr[ (TO, 52(7.2)] 

r = Elsign[(71 — T)(T2 — TZ)i) 

where (Ti,  T2) and (T1', TD are independent pairs from F(ti, t2) and Corr(X, Y) 
stands for the correlation of random variables X and Y 

(a) Show that 

oo f oo 

	

p = 12 f 	F1(4).602) dF(ti, t2)  —3  

	

JÛ 	o 

and 

r 
 =4fT

F(tt, t2) d F(ti t2) — 1. 
0 0 

Show that p and r equal zero when T1 and T2 are independent. 
(b) Write p and r in terms of the associated copula C(u , u2) of (11.2.5). 

Show that p and r are invariant to strictly monotone increasing transfor-
mations of Ti or T2 

(C) The covariance  Of  T1 and T2  is equal to E (T1 T2) — ECT1)E(T2). Prove 
that (assuming it exists) 

This generalizes a result in part (a) of Problem 1.1, and represents 
Cov(Ti , T2) in ternis of S(ti , /2). 

(Section 11.2) 

CO f C 

E (T1 T2) = fo 	S(ti t2) dti dt2. 
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113 Consider the bivariate Clayton family (11.2.6). 

(a) Show that Kendall's r defined in Problem 11.2 equals 0/(0 + 2). There 
is no simple closed form for Speamian's p. 

(b) Show also that for any 01, (2) 

lim 
Pr(T2 < (2+ AtIT1 = T2 > (2)  

—l+ Ç.  
Pr(T2 < t2, + At171 > tt, T2 > (2) 

(Section 11.2; Clayton 1978; Cook and Johnson 1981; Oakes 1982) 

11.4 For the multivariate Burr model (11.2.8), show that Corr(log  T1,  log T2) = 
7,11(v)/[111(v)+ 7r 2 /6], where *0 is the digamma function (B10). 

(Section I 1,2) 

11.5 Another bivariate family of the form (11.2.5) has 

5 (t1, t2) = exp{—R— log Si (ti )) i" 	(— log S2 (t2)) I /ci f' 1, 

where a < 1. Show that the case where T1 and T2 are independent is given by 
ci  = 1. Show that Kendall's r is 1 — a, so smaller values of dcorrespond to a 
higher degree of association. 

(Section 11.2; Hougaard . 1986) 

11.6 Consider the Clayton family (11./6) in terms of the p.d.f. and S.f.'s for r 
log Ti and Y2 —t• log T2. Graph contours of the p.d.f. f (yi, y2) for different 
values of ip in the case where the Marginal distributions Fi (YI) and P2 (Y2) are 
standard noimal. Compare the shapes of these  contours with Ones.  from the 
.p.d.f: of a bivariate normal distribution with  N(0, I) marginal distributions 
and correlation parameter p; it has p.d.f. 

f(yi, y2) — 2.7r(1 p2)1/2 exp 
— (Y; + Yi — 2PY1Y2)  1 

for —oo  <Y1  <00, —co <Y2  <QQ. 
(Section 11.2; Cook and Johnson 1981) 

11.7 Consider the paired data of Prob1em 15.15 on the survival times of treatment 
and control rats in a toxicology test. Give an alternative to the analysis sug-
gested there by assuming that the log survival times Y1 and Y21 for the treat-
ment and control rats in the ith pair have  normal  marginal distributions with 
means pd, and t.c2 and common variance 6.2 . Use the working independence 
procedure of Section 11.2.2 to estimate 'Li — /12 and obtain a robust standard 
error via (11.2.17). Consider the alternative of fitting a bivariate normal distri-
bution for (Y11, Y21). Discuss how you could check on the equality of marginal 
variances in each case. 

2(1 — p 2 ) 

(Section 11.2) 
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'Me 11.7. Times to Tumor for Treated (T) and Untreated (U1, U2) Rats 

Litter T  Ul U2 Litter T  Ul U2 

1 101.0' 49.0 104.0° 26 89.0° 104.0° 104,0° 
2 104,0" 102,0" 104.0^ 27 78.0° 104.0° 104,0° 
3 104.0" 104.0° 104,0° 28 ' 104.0" 81,0 64.0 
4 77.0" 97.0" 79.0" 29 ' 	86.0 55.0 94.0° 
5 89.0" 104.0" 104.0° 30 34.0 104.0° 54.0 
6 88,0 96.0 104.0" 31 76.0' 87.0" 74.0° 
7 104.0 94.0° 77.0 32 103.0 73.0 84.0 
8 96.0 104.0" 104.0" 33 102.0 104.0" 80.0° 
9 82.0" 77.0" 104.0" 34 80.0 104.0" 73.0° 

10 70.0 104.0" 77.0" 35 45.0 79.0" 104.01  
11 89.0 91.0" 90.0" 36 94,0 104.0° 104.0° 
12 91.0" 70.0" 92.0" 37 104.0° 104.0° 104.04  
13 39.0 45.0° 50.0 38 104.0" 101.0 94.04  
14 103.0 69.0" 91.0" 39 76.0° 84.0 78.0 
15 93.0" 104.0" 103.0" 40 80,0 81.0 76.0° 
16 85,0' 72.0' 104.0' 41 72.0 95.0° 104.04  
17 1040 63.0' 104.0" 42 73.0 104.0' 66.0 
18 104.0" 104,0° 74.0' 43 92.0 104.0" 102.0 
19 81,0° 104,0" 69.0° 44 104.0° 98.0° 710" 
20 67.0 104.0° 68.0 45 55.0° 104.0° 104.0° 
21 104.0° 104.0" 104.0" 46 49.0' 83.0" 77.0" 
22 104,0" 104.0° 104.0" 47 89.0 104.0" 104.0° 
23 104.0" 83.0°  40.0 48 88.0° 79.0° 99.0° 
24 87.0" 104,0" 104.0". 49 103.0 91.0" 104.0' 
25 104.0° 104.0° 104,0" 50 104.0° 104,0" 79.0 

'"Right-censored times. 

11.8 Mantel et al. (1977) discussed data from an animal carcinogenicity study in 
which three rats from each of 50 litters were' selected. One rat from each 
litter was treated with a suspected carcinogen and the other two rats were 
untreated controls. The response was time-to-tumor or censoring, recorded to 
the nearest week. The data are given in Table 11.7. 

Use the working independence approach to fit Cox PH models for the 
marginal distributions of time to tumor T,  given the treatment covariate 
x = I.  (suspected carcinogen received), and test for the absence of a treatment 
effect. Compare the test that assumes independence of the times (T11,  T21,  T31). 
for  rats  in the same litter with one that uses a robust variance estimate. 

(Section 11.2) 

11.9 (Continuation of Problem 11,8). It is permissible to compare the Kaplan-
Meier estimates S(t) based on the times to tumor for treated animals and 
untreated animals, respectively. (Why?) 
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(a) Plot the two estimates on the same graph; this prevides another picture of 
the population-level treatment effect, 

(b) Standard errors or confidence limits based on the  usual variance estimate 
(32.3) are appropriate for the.treated group, since there is only one animal 
per litter. If there is significant within-litter association, then because there 
are two untreated animals per litter, (3.2.3) is tait valid for this. group. 
Compute and  compare  standard errors for :§(t) based on  0.1:3 and on 
the estimate (11.2.21), which accounts for within-litter association, 

(Section 11.2) 

11.10 Derive the variance estimate (11,2.21) by considering a diScrete-time setting 
for S(t), t = 1, 2, ... , where h(t) = Pr(T = Pr(T > t) is the hazard 
function. Proceed by noting that the working independence model that gives 
the standard Kaplan—Meier estimate based on all nk times tit and.censoring 
indicators .3» (j =1 ,   k; i = 1, ,n) can be obtained from the  estimat-
ing functions 

n 	k 	 --. h(t)  I Ur  =E E y (t) 
h(t)[1 —h(t)] 	

t — 1 	 M, 
1=1 

where dii (t) = 	= t o5ii = 1), Y11 (t) = /(t, ?_ t), and M is the upper 
limit of the support for S(t).  Use  the sandwich variance  formula  (C30) to get 
an estimate of the asymptotic covariance matrix for fi = (1) ii(M))', 
and from this obtain a variance estimate for 

.=, 

(Section 11.2; Williams 1995; Lawless 2003) 

11.11 Consider the data in Example 11.1.2 on time T; to initiation and subse-
quent time T2 to failure for electrical-cable-insulation specimens subjected 
to a high-voltage life test, Examine using methods of Section 11.2 or 11.3 
whether there appears to be any association' between T1 and T2. 

(Sections 11.2, 11.3) 

11.12 Aalen and Husebye (1991) gave data from a study on muscular activity (motil-
ity) of the small bowel in humans. Nineteen subjects were each given a stan-
dard meal and then followed over a period of about 14 hours. One response 
of interest was the time intervals or gaps between successive digestive cycles, 
called migrating motor complex (MMC) cycles. Data on these gap times are 
given in Table 11.8; the lengths of successive gaps (in minutes) are shown. 
The numbers of cycles observed varied from subject to subject, so the number 
of gaps varies; in addition, each final gap time is censored because observation 
terminated during the gap. 
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Table 11.8. Lengths of Successive Motility Cycle Gaps 

Individual Times (minutes) 

1 112,145,39,52,21,34,33,51,54° 
2 206,147,30° 
3 284,59,186,4° 
4 94,98,84,87° 
5 67,131' 
6 124,34,87,75,43,38,58,142,75,23° 
7 116,71,83,68,125, 11 1' 
8 III, 59, 47, 95, 110" 
9 98, 161, 154, 55, 44° 

10 166, 56, 122° 
11 63, 90, 63, 103, 51, 85'n 
12 47, 86, 68, 144, 72° 
13 120, 106, 176, 6° 
14 112, 25, 57, 166, 85° 
15 132, 267, 89, 86° 	, 
16 120, 47, 165, 64, 113, 12" 
17 162, 141, 107, 69, 39°' 
18 106, 56, 158, 41, 41, 168, 13° 
19 147, 134, 78, 66,  100,4°  

"Censoring  Urne  

(a) Show that there is no strong association among the successive gap times 
for an individual. 

(b) Compare Kaplan-Meier estimates for thel  gap duration distributions for 
(1) first gaps, and (2) all subsequent gaps; Explain why it is permissible 
to use  the Kaplan-Meier estimate for (2) if there is no association between 
gap times, but not if there is association. 

(Section 11.3) 

11.13 The data in Table 11.9 were given by McGilchrist and Aisbett (1991) and 
show the recurrent times to infection at the  point  of insertion of the catheter 
for 38 persons undergoing kidney dialysis. Data for the first two occurrences 
of infection are given; either one or both may be censored, because catheters 
were sometimes removed for causes other than infection. Covariates are also 
given: age (years), sex (1 = male, 2 = female), and kidney disease type (0 = 
glomerulo nephritis, 1 = acute nephritis, 2 -= polycystic kidney disease, 3 = 
other). 

Assess the effects of covariates on times to infection, bearing in mind that 
there may be association between times for a given patient even after condi-
tioning on covariates. 

(Sections 11.2, 11.3; McGilchrist and Aisbett 1991) 
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Table 11.9. Times to Two Successive Infections for 
Patients on Dialysis 

Patient Times Censoring Age Sex 
Disease 

Type 

1  8,16 1,1 28 1 3 
2  23,13 1,0 48 2 0 
3  22,28 1,1 32 1 3 
4  447,318 1,1 31-32 2 3 
5  30,12 1,1 10 1 3 
6 24, 245 1, 1 16-17 2 3 
7  7,9 1,1 51 1 0 
8 511,30 1,1 55-56 2 0 
9  53,196 1,1 69 2 1 

10 15, 154 1, 1 51-52 1 0 
11  7,333 1,1 44 2 1 
12  141,8 1,0 34 2 3 
13  96,38 1,1 35 2 1 
14  149,70 0,0 42 2 1 
15  536,25 1,0 17 2 3 
16  17,4 1,0 60 1 1 
17  185,177 1,1 60 2 3 
18  292,114 1,1 43-44 2 3 
19  22,159 0,0 53 2 0 
20  15,108 1,0 44 2 3 
21  152,562 1,1 46-47 1 2 
22  402,24 1,0 30 2 3 
23  13,66 1, 1 62-63 2 I 
24  39,46 1,0 42-43 2 1 
25 12,40 1,1 43 1 1 
26  113,201 0,1 57-58 2 I 
27 132, 156 1, 	1 10 2 0 
28  34,30 1,1 52 2 1 
29  2,25 1,1 53 1 0 
30  130,26 1,1 54 2 0 
31  27,58 1,1 56 2 1 
32  5,43 0,1 50-51 2 1 
33  152,30 1,1 57 2 2 
34  190,5 1,0 44-45 2 0 
35  119,8 1,1 22 2 3 
36 54, 16 0, 0 42 2 3 

'37 6,78 0,1 52 2 2 
38  63,8 1,0 60 1 2 

'1-uncensored, 0-censored 



532 	 BEYOND UNIVARIATE SURVIVAL ANALYSIS 

11.14 Poisson processes for recurrent events. Consider a process where the same 
event can occur repeatedly for an individual or unit. A (nonhomogeneous) 
Poisson process is one for which the event intensity function defined by 
(11.4.1) (with k = 1) is of the form X(17-1(t)] = p(t). That is, the event 
intensity depends on t, but not on the history of:event occurrences prior to 1. 

(a) Suppose that a single individual is observed over the specified time inter-
val (0, r). Show using (11.4.4) and (11.4.5) that the probability density 
for the outcome "n events occur, at times t1, « tn " is given by 

[n p(ti)] exp [— f p (u) du] 	 (11.6.1) 
o 

(b) Consider the parametric model with p(t) =,exp(a ± Pt). Write down the 
likelihood function L(a, p) using (11.6.1). , 

(c) The likelihood function for a and 13 is also 'given by (11.6.1) in the case 
where r is defined as the time tn  of the nth failure, where n is prespecified. 
Explain why this is so. 

(d) Consider the data on the times of repeated failures in aircraft air condi-
tioning systems, given in Example 11.1,4. Fit the model of part (b) sep-
arately for each plane, by maximizing log L (a, P). Test the hypothesis 
that /3 = 0 in each case; this examines whether there is a trend toward an 
increasing (or decreasing) failure rate as time passes, 

(e) The Poisson process has the property that the expected number of events 
in (0, t) is 

E[N (0, t)] f p(u) d = R(t). 
Jo 

Check the fit of the models in part (d) by plotting N(0, t) versus t and 
R(1; er, 13) versus t on the same graph for each  plane. 

(Section 11.4; Cox and Lewis 1966; Ascher and Feingold 1984) 

11.15 Consider a  discrete-time model for the Setting in Subsection 11.5.2.2 of Sec-
tion 11.5.2 involving process-related failures, where  t = 1, 2, 3, ... , and 

= t 	1, Z(t 	1)1Z(t), T 	t) 

= PriZ(1 1)12(t),T > 	r{T = .t 112(t + 1),T > t), 

with 2(t) = (Z(1) 	Z(0) the history process for.  Z(t). Give an expres- 
sion for Pr{T > t 	> t, 2(1)) and give a heuristic argument leading to 
(11.5.5). 

(Section 11.5) 
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11.16 Process-related failures, Suppose that in (11.5.4) the hazard function for fail-
ure depends only on the current value Z(t); that is, 

h[trZ(t)] = g[Z(t)]. 

Outline a procedure for estimation of the function g(z), assuming that you 
can observe the data  (ti, di , (4)) for a random sample of individuals i = 
1 n  Here, ti is either a failure or censoring time, with di = 1 indicat-
ing a failure at ti. Discuss an ad hoc procedure for dealing with intermittent 
observation of the {Zi(t), t > 0} processes. 

(Section 11.5; Fusaro  etal. 1993) 





APPENDIX A 

Glossary of Notation 
and Abbreviations 

A.1 NOTATION AND SYMBOLS 

a 
a', A' 
G (a) 
a G/aa 
azG/aaaa' 
1(A) 
o(x) 
GO—) 
G(t+) 
dG(t) 

Bold denotes vectors (column form) 
Transpose of a vector a or matrix A 
Function G(ai 	ak) for vector a — (al 	ak) 1  
Vector (aG/acil , 	, 8 G / actkr 
k x k matrix (02 G/actiaai) 
Binary indicator function (see Example 2.1.1) 
Denotes a function g(x) satisfying limo[g(x)/x] = 0 
limx tt  G(x) 
lim G(x) 
Defined for nondecreasing, right-continuous functions or pro-
cesses G(t) (see Section 1.2.3) 

f b dG(u) 

J.bg(u) du 

n
a 

{i+dG(u)} 
(a,b] 

Ni(t), Ci(t), 	(t) 

Pr(A) 
' Y F(y) 
E(Y) 

E(YilY2) 
Var(Y) 

Riemann—Stieltjes integral (see (1.2.9) in Section 1.2.3) 

Riemann integral 

Product integral (see (1.2.11) in Section 1.2.3) 

History of a process up to time t (see Section 2.2.2) 
Processes for indicating failure, censoring and risk status (see 
Section 2.2.2) 
Probability mass or density for an event A 
The random variable Y has distribution function F(y) 
Expectation (mean) of Y 
Conditional expectation of Y1, given Y2 = Y2 
Variance of Y 

535 
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sd(Y) 	 Standard deviation of Y 

Cov(Yi , Y2) 	Covariance of Y1 and Y2 

COIT(YI, Y2) 	Correlation of Y1 and Y2 

p 	 pth quantile of the random variable,Y (see Section 1.2.1) 
Asvar(Y„) 	Asymptotic variance for a sequence of random variables { Yn 

Ascov(Y„, Z) 	Asymptotic covariance for a  sequence  of random variables 
{(Yn, Zn)) 

L(0) 	 A likelihood function for a parameter 0 (see Section 2.1) 
g0) 	 A log-likelihood function (see Section 2,2.3) 
1 (0) 	 An observed information matrix (see Section 2.2.3) 
1(0) 	 An expected (Fisher) information matrix (see Section 2.2.3) 

An estimate or estimator of 0, usually the m.l.e. 
se(gr) 	 Standard error of parameter estimate gr, usually an estimate of 

sd(1-6.). 
ck(z) 	 Probability density function for standard normal distribution 

cp(z) 	 Distribution function for standard nPrrnal distribution 
r(x) 	Gamma function (see Appendix B.2) 
1(k, 	 Incomplete gamma function and gamma distribution c.d.f. (see 

Section 1.3.5 and (B12) of Appendix B) 
t) du for ,g = 1, 2, 3, .. and ao < ai < az < 

(see (1,3.26)) 

A:2 .ABBREVIATIONS  

AFT 	 Accelerated failure time 
c.d.f., d,f. 	 (Cumulative) distribution function 
c.h,f, 	 Cumulative hazard function 
EDF 	 Empirical distribution function 
ESF 	 Empirical survivor function 
h.f. 	 Hazard function 

Independent and identically distributed 
KM 	 Kaplan—Meier (estimate) 
m.l.e. 	 Maximum likelihood estimate 
ML 	 Maximum likelihood 
NA 	 Nelson—Aalen (estimate) 
p.d.f. 	 Probability density function  

Probability (mass) function 
PH 	 Proportional hazards 
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PL 
	

Product-limit (estimate) 
s.f. 	 Survivor function 

Binomial (n, p) 

Exp(0) 
Weib(a, 13) 
EV (u, b) 

F(r,$) 
Ga(k) 

1G(A, A) 
Logist(u, b) 

LLogist(a, /3) 
LogN(tt, a2) 

N(j,  a2)  

t(r) 
2.  

A(r) 

Uniform(a, b) or U (a, b) 

Binomial distribution 
Exponential distribution (1.3.3) 
Weibull distribution (1.3.5) with *X = a-1  
Extreme value distribution (1.3.8) 
F distribution with (r, s) degrees of freedom 
One-parameter gamma distribution (1,3.17) 
Inverse Gaussian distribution (1.3.23) 
Logistic distribution (1.3.14) 
Log-logistic distribution (1.3.12) 
Log-normal distribution (1.3.10) 
Normal distribution with mean variance a2  

Student's-t distribution with r degrees of freedom 
Chi-squared distribution with r degrees of freedom 
Uniform distribinion on  (a, b) 





APPENDIX B 

Asymptotic Variance Formulas, 
Gamma Functions, and 
Order Statistics 

B.1 ASYMPTOTIC VARIANCE FORMULAS 

The following results are often used in developing large-sample inference proce- 
dures. Proofs can be found, for example, in Rao (1973, Ch. 2). Here "94." means 
"converges in distribution to." 

	

THEOREM  Bi. Let T1 n  ..... Tk n  be statistics such that as n 	co 

where 	= (crij)kxk.  If  g (xi, 	, xk) is a function whose first derivatives all exist, 
then as n 	no 

k k 	ag ag ) 

	

.1/7 [g (Ti n  , 	 Tkn) — g(91 , 	 Ok)] 	N (0, E E
rii 	

(B1) 

	

1=1 )=1 c 	-5—  

where  Dg/80j means  8g(91 	ek )/ael ci .1, ...,k). 

Remarks 

1. Often the following terminology is used: 

k k ag ag 
Asvar [g(T1n ,, ,, Tkn)] = E 2_, — --Ascov(Tin, Tin), aei  aej  1=1 .1=1  

where Asvar and Ascov denote variances and covariances in the asymptotic 
distributions of the indicated variables. Strictly speaking, this notation is 

(B2) 

539 
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Improper since the distributions of the Tin  and g(Ti n  , 	 Tk n ) are degenerate 
as n co. However, it is used as a convention for indicating asymptotic-based 
approximations that are used for finite but large n. (In (B2), Ascov(T/ n , Tjn) 
is  ncrjj , for example.) 

2. The results in this section are often used when (T1 11 , .. • ,Tkn) = (61, • • • ,(,k) 
is a vector of maximum likelihood estimates (m.l.e.'s), based on a sample of 
size n. 

3. The results here are stated for statistics with asymptotic normal distributions. 
Expressions like (B2) also hold under the weaker conditions that the variances 
and covariances of Tin, • • . • Tkn are 0 (n —r ), where r > O. 

4. An important special case of Theorem  Bi  is given by k = 1: if .fii(T, —19) 2* 
N(0, a 2) as n 	co, then if g(x) has first derivative g' (x), 

••,fii[g(Tn) —  g(9)] 	N [0, g ' ( 9)2 	 (B3) 

This implies that, in the notation of (B2), 

Asvar[k (TO] = i(0)2Asvar(7). 	 (B4) 

5. The preceding results can be proved with what is sometimes referred to as 
the 5 method, based on Taylor series expansions. For example, the function 
g(Ttn, 	, Tkn ) has expansion 

Tkn) = 8(91 
g 

	Ok) E 5Tin — + higher-order terms, 
1=1 

where 6Ti n  = Tin  — . The results follow from this and simple conver-
gence results for random variables. Theorems B  land B2 below are sometimes 
referred to as delta theorems. 

Theorem B 1 can be generalized to the case in which there are several functions of 
, .. • • Tlm• as follows. 

THEOREM B2. Let (Tin 	 Tk n ) be statistics defined as in Theorem  Bi and 
let gi (xi ,,, . , xk), i 	1, 	. , p, be functions, all of whose first derivatives exist. 
Then the joint distribution of  , 6[g, (Ti,,  Tkn) — gi(91. ,ek)].  i — I,   p. 
is asymptotically p-variate normal with mean 0 and covariance matrix GZG', where 
G has (1, j) entry Gii = 8g/&9j. 

Remark For two functions gl(xi, •••  ,x/)  and g2(xi, 	, xk), the theorem 
gives, in the notation of (B2), 

Tkn  ). g2(7,in  ,,,,, Tkoi  = 	jt 1  ïrva  g 1  aa  go  j2  Ascov(Tin , Ascov [gi (Ti 	 

(B5)

n , 
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B.2 GAMMA FUNCTIONS 

We summarize a few results about the gamma function and other functions and prob-
ability distributions related to it. More details on these topics can be found in the 
books by Abramowitz and Stegun (1965), and Johnson et al. (1994, 1995). 

The gamma function is defined as 

co 
F(z) = f 	uz-1 e — " du 	z > O. 

We note the well-known results (see Abramowitz and Stegun 1965, Ch, 6) 

+ 1) = zr(z) 	z > 0 

1
.
77245 

(1) 	1/2 	_ 

1 	 1 	1 	1 

(B8)  

(B6) 

(B7) 

(B9) log l' 	 log(2n) (z) = 	z — •i) log z — z + •i 	+ —
12z — 360z3 + 

( 

It follows from (B6) and (B7) that for z a positive integer, r(z+1) = z! The  digamma 
function is defined as 

d 	(z) 	r(z) 
(z) = z > O. 	 (B10) 

dz 	F(z) 
The polygamnia functions are 

= dn*(z)  
dz" 

n = 1, 2, 

The case n = 1 is called the trigamma function. Two useful results are 

Vi( 1)= -y = —.577215 , 
n.2 

1k / 0) = — 
6 

(BI 

The incomplete gamma function is defined in this book as 

/ (k, x) = r(1  k)  fo  uk—I  e — "du 	k > 0 	x  > 0. 	(B12) 

This is the distribution function for the one-parameter gamma distribution (1,3.17) 
denoted Ga(k), and takes on values between 0 and 1. I (k, x) is related to the distri-
bution function for the x 2  distribution with tz degrees of freedom (denoted x(2 ) ) as 
follows: 
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Fv  (x) = Pr (4) 5. x) 	x > 0 

x z v/2 — I e— z 
. 	dz fo  2v/2 1"(v/2) 
. , iv x \ 

i -i' 2) 
(B13) 

Many software packages provide values of r (z), Ifr(z), (B12), and (B13). 

B.3 ORDER STATISTICS 

A few results about order statistics are given here. An extended treatment and refer-
ences can be found in the book by Arnold et al. (1992). 

Suppose that X has continuous probability density function (p.d.f.) f (x) and dis-
tribution function F (x) and that XI, , X„ is a random sample from this distribu-
tion. The Xi, rearranged in order of magnitude, and denoted 

X(i)  

are called the order statistics of the sample. The joint p.d.f. of X(e,) , 	 X(4), where 
1 < Li < 2  « tic  < n  and 1  < k  < n, can be shown to be 

(

k+1 

	

	 )k+1 	 k 
n!/ n(ti — ti_i — I)! fi [F(x (t„) - Fc.,,,_, ) ,r- -i ri 

i=1 	 ie.i 	 i=1 
(B14) 

where  X(g 1 ) < xv,) < 	< x(4) and where, for convenience, we define to = 0, 
ek4.1 = n --I- 1, x(e 0) = —co, and x(e k+1 ) = 

Important special cases of  (B 14)  are the following. 

1. The joint p.d.f, of X(1), 	, X ( r) (r 	n) is 

	 (r (n — r)! 11 f (x(0) [1 - F (x(ro in— 

2. The p.d.f. of X(i) (1 5 I 	n) is 

n! 

(i — 1)1(n — 
i)! f (x(0)F (x(0) 1-1  [1 — F (x(o)]' 	(B16) 

3. The joint p.d,L of X(i) and X(j), for i < j, is 

n! 
(B15) 

n! 
(i — 1)1(j — i — 1)1(n — 
	 f (x(o)f (x(D)F(x(i ) )i -1  

	

x [F(xcio - F(x(0 )11-i-1  [1 - F(x(j) )r-i 	. 	(B17) 
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These expressions and (B14) can be obtained directly. For example, (B17) can 
be found from the probability that of the n values XI , , X„, i 1 are less than 
x(;), one is in (x(i), x(i) -I- A), j — i — 1 are between x(i) + A and x(j), one is in 
(xu), X(J) + A), and n — j are above X(j) + A. 

Moments of order statistics are useful in some applications, though it is usually 
not possible to get simple analytical expressions. Tvvo exceptions are for the uniform 
and exponential distributions, for which the following results are easily established. 

1. For the uniform distribution U(0, 1), with p.d.f. f (x) = 1 (0 x 	1), 

.2 
E(X(i)) = n  + , 	Var(X(0) — 	+ 1)2(n + 2) 

	(B18) 

2. For the standard exponential distribution, with p.d.f. f (x) = e — x (x > 0), 

Ecxo= E (n — f ± 1) -1 , 	Var(4)) E (n — E 1) -2 . (B19) 
e=1 	 e=i 

Several types of asymptotic results pan be established for order statistics. Some 
involve the extreme order statistics X(1) and X( n ) (e.g., Arnold et al. 1992). We men-
tion only the case of X(/), where i = np and 0 < p  < 1 as n oo. The pth quantile 
of the distribution of X is xp  = F-1  (p), and it can be shown that if f (x) = (x) is 
continuous at xp  and f (x p ) 0, then N/T7(4) — x p ) is asymptotically normal with 
mean 0 and variance 

p(1  — p) 

LI` (x pA 2  

There is also a multivariate generalization of this. 

(B20)' 





APPENDIX C 

Large-Sample Theory for Likelihood 
and Estimating Function Methods 

C.1 MAXIMUM LIKELIHOOD LARGE-SAMPLE THEORY 

Here we give a brief survey of important results for parametric likelihoods. Books 
on statistical theory (e.g., Cox and Hinkley 1974; Lehrpann 1983), asymptotic the-
ory (e.g., Barndorff-Nielsen and Cox 1994; Serfling 1980), and inference (e.g., 
Kalbfleisch 1985; Rao 1973; Severini 2000; Pawitan 2001) contain more details and 
references. 

Suppose that the probability distribution of potentially observable data in a study 
'is specified up to a parameter vector 0. Then, if Data represents the  data actually 
observed in the study, the likelihood function for. 0 based on these data is 

L(0) = Pr (Data; 0), 	 (Cl)  

where Pr represents the probability density or mass function from which the 
observed data, are assumed to arise. We sometimes write L(0; Data) instead of 
L(0) to remind ourselves that L depends on the observed data. It is, also customary 
to define L(0) as any function that is proportional to the right side of (C1), Since the 
methodology and theory described in the following are invariant to multiplication  
of L(0) by values that are constant (i.e., do not depend on 0). More generally,  a 
'likelihood function may be based on the probability of observed data Dh.gfven the 
values of observed data D2; 

L(0) a Pr(DilD2;' 0), 	 (Ç2) 

where it is assumed that the probability mass or density on  the right-hand Side is 
.specified up to the, value of  O.  

ç.1.1 Asymptotic Results and  Large-Sample Methods 

We Will outline standard maximum likelihood large-sample theory for the Case in 
Which the data Consist of a random sample yi, 	, yn  from a distribution  with prob- 
ability density function (p.d.f.) f (y; 0), where 0 =  (9f, 	 0k)' is a vector of 
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unknown parameters taking on values in a set a The yi can be vectors, but for 
simplicity they will be written as scalars. The likelihoOd function for 0 is then 

L(0) = 	f (yi; 0). 	 (C3) 

The case where the responses yi , . , . , yn  are independent but not identically dis-
tributed, for example, because yi depends on covariates, is of the form (C3) with 
fi(yo 0) in place of f (yi; 0). The following results apply to this setting as well. 
Let 0 be a point in S2 at which L(0) is maximized; O is called a maximum likeli-
hood estimate (m.l.e.) of O. In most simple settings ?? exists and is unique. Meth-
ods of obtaining O are discussed in Appendix D. It is often convenient to work 
with £(0) = log L(0), which is also maximized at O, and in most cases  O can be 
readily found by solving the so-called maximum likelihood equations U1(0) = 0 
(j =  1, , /c), where 

ago)  ui (o)_ 	j =1,...,k. 	 (C4) 
80i 

The Ui (0)'s are called scores or score functions, and the k x 1 vector U(0) 
[U1  (0), 	 k( 0)]'  is called the score vector. 

The score vector is a sum of independent random variables, since E(0) = 
E log f (yi; 0), and under mild "regularity" conditions  (e.g., see Cox and Hink-
ley 1974, Sec. 9.2) it is asymptotically normally distributed. In addition U(0) has 
mean 0 and covariance matrix 1(0), with entries 

(C5) aei aef  

The matrix 1(0) is called the Fisher (or expected) information matrix. 
Under mild regularity conditions,  O is a consistent estimator of 0, and n -1  times 

the observed information matrix I (6) is a consistent estimator of I(0)/ n. In addi-
tion, several other asymptotic results hold that lead to useful inference procedures. 

C.1.1.1 Score Procedures 
First, with a somewhat casual wording, U(0) is asymptotically Ark[0,1(0)). (The 
strictly correct statement' is that BUM is asymptotically standard k-variate normal, 
where' B is a matrix such that BB' = 1(0) -1 , but for convenience we shall use the 
casual wording.) This means that under the hypothesis Ho: 0 =  Oo 

W(O0) = ( 00)/( 00) —I U( 0o) 	 (C6) 

is asymptotically 4) . This can be used to test Ho and to obtain confidence regions 
for 0 consisting of those 00 that make W(00) less than a specified value. Tests and 
estimates for a subset of thet9i can also be obtained: suppose that 0 is partitioned as 



MAXIMUM LIKELIHOOD LARGE-SAMPLE THEORY 	 547 

0 = 	OD', where 01 is p x 1 and 02 is (k — p) x 1. Partition U(0), 1(0), and 
2-1 (0) in a corresponding way: 

U(0)  = CiU21  (900 	I(0)  = (II  21 :(g) 1121 22  (0°)) 

	
(C7) 

= 	2;224:0 
	

(CS) 

For a given value Oi = 010, let 62(010) be the m.l.e. of 02, obtained by maximizing 
L(010, 02) with respect to 02. This gives what is termed the profile or maximized 
likelihood for 010, and the corresponding profile log-likelihood function 

4(010) = !Tx e (0 lo , 02) 

	

= gem, 62(010)). 	 (C9) 

Denote b = (010, 62(010)). Then under Ho:  Oi = Om, 

U1 (6) 12" (6)U1 (6) 	 (C10) 

is asymptotically x (2p) . Tests based on (C6) are often referred to as score tests, and 
ones based on (C10) as partial score tests. A test based on (C6) has the convenient 
property of not requiring calculation of i 

C.1.1.2 MLE -Based Procedures 
Tests and confidence intervals can also be based on the fact that Ô is asymp-
totically Nk[0,1-1 (0)] or, more accurately, that .fri(b — 0) is asymptotically 
&RI, n2-1 (0)). Thus, under Ho: 0 =00  

( 6 — oo)'i(e0)( b — 00) 
	

(C 1 I ) 

is asymptotically 410 , and it can be used as a test statistic for Ho or to generate 
confidence regions for 0. Since 1( .0)/n is a consistent estimator of /(00)/n, an 
asymptotically equivalent statistic to (C11) is 

W(00) = (b — 00)' (Ô)(0 — 00). (C  Ï 2) 

This is much simpler to deal with computationally than (C11), and often there are 
also theoretical reasons to prefer it. 

To consider tests or confidence intervals for a subset of the parameters, we parti-
tion 0, U(0),  1(0), and (0) as in (C7) and (CS). Then under Ho: 01 = Oia, 

— 010)'l"(0) -1 (Ô1  — Oio) (C13) 
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is asymptotically 4p1 . Asymptotically equivalent versions of (C13) can alsobe used; 
in particular, / 11 (6) can be replaced by any of / 1 I (6), 111 (6), and  Ill  (6). Statistics 
like (C11), (C12), and (C13) that are based on '6 are  sometimes referred to as Wald 
statistics. 

The estimate 61 and its asymptotic covariance matrix can, be obtained directly 
from the profile log-likelihood function (C9), provided that 62(010) is unique and 
the solution to at(0m, 92) 1 802 = O. In that case, it is easily shown under standard 
regularity conditions (e.g., Richards 1961; Seberand.Wild .1989,  Sec, 2.2.3)  that.61 
satisfies  8p(01)/601 = 0, and that 

—1 
(—a 2tp(01)  I" (6) — 	 (C14) 

	

a el  a (el 	oi=6,  

is the estimated asymptotic covariance matrix for 61. This is useful when 62(01) 
has an algebraic closed form; if we are primarily interested in 01, then ip  (01) can 
effectively be used as a standard log-likelihood function. 

C.1,1.3 Likelihood Ratio Procedures 
A third approach for obtaining tests or confidence regions is via likelihood ratio 
statistics. Under Ho: O 	00 the statistic 

L (0o)  A(00) —21og [ 	ze(b) — 2E(00) 	 (C16) 
L(0) 

is asymptotically 4. Similarly, if 0 = (Of, fy, then under the hypothesis H6: 
61 = 010 the statistic 

A(010) = 2 ( 6) — 2P(6)1: 	 (CI.6) 

is . asymptotically  4) , where 01 'is p 5< 1. and Ô  =  (010,Ô2(010)).  Note that (C16) 
can•also.be,  expressed  as 

	

Zep (61) — Zep AO, 	 (C17) 

where  £p(O30) is the profile log-likelihood function (C9). 

C.1.1.4 Functions of Parameters 
If one is interested in certain functions of the parameters 0, say 

= gi(0) 	i = 1 , 	11 , 

then inferences about 4, — 	lkpr can be obtained by Merely associating iii 
with 01 in the preceding discussion 	 However, methods based directly on the mie.  
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= (gi (6) 	gp(b)r are easily implemented through the fact that the asymp- 
totic covariance matrix for tfr is, by Theorem B2 in Appendix B, estimated consis-
tently by 

(C 18)  

where fig = /Or' is the estimated asymptotic covariance matrix for "6 and G(0) 
is the p x k matrix with entries 

G(0)ii = 8gi (0)100j 	I  = 1 ..... p; 	j = 1, 	, k. 

Then, for example, it follows that under Ho: tlf,  = aIio,  the statistic 

('î'  — 1110)11 ( — *a) 
	

(C19) 

is asymptotically 4) . 

C.1.1.5 Tests and Confidence Intervals 
Tests based on asymptotically x2  statistics such as (C11), (C15), and (C19) provide 
evidence against the hypothesized parameter values when the observed statistics are 
large. For the statistic W(00) of (C11), for example, the p-value (significance level) 
based on the observed value w(00) is approximately Pr(4)  > w(Do)). A confi- 
dence region for 0 with approximate confidence coefficient a consists of vectors 00 
satisfying 

w(0o) 5_ X4), a • 	 (C20) 

Confidence intervals for a single parametric function * = g (0) are often wanted. 
The simplest approach is to tise the normal approximation (r N(*, V1,),v,), where 
I's,* is given by (C18). This yields the  approximate  standard normal pivotal quantity 

—  Z 	/2 — 	 (C21) 

and two-sided approximate 1 — a confidence intervals 1..fr ± za/217v1/2 , where zy  is 
the qth quantile for N(0, 1). One-sided approximate 1 — a confidence intervals are 
'given by * — Z 1.1 12  and by * > .11; zd17,/1/2 , respectively. 

Confidence intervals can also be based on the likelihood ratio statistic for testing 
* = *o. By (C16) this is 

A(**0) = 	— 2t(f)(*o)), 	 (C22) 

where 6(*o)  maximizes e(0) sabjecuto the constraint g(0) = *o. If * • = 
then A(*0) is asymptotically 4, and so a two-sided approximate 1 — a confidence 

If*^1  
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interval for * consists of the values *0, satisfying 

A(1/ro) 5_ 40,1_,,• 	 (C23) 

One-sided confidence intervals can be obtained from the signed square-root likeli-
hood ratio statistic 

S(*0) =  sign('  — Vio)A (0'0) 1/2 . 	 (C24) 

If 	= *0, then S(fro) is asymptotically N(0, 1). The use of S(iko)  as a pivotal 
leads to the same two-sided confidence intervals as (C23). It also gives one-sided 
approximate 1 — a confidence intervals through the solution of either 5(1/10) > 4, or 
S(1k0) < —z a . The corresponding intervals consist of the values *0 satisfying 

(*0 > i)A(1ko) 4,1-2« 	 (C25) 

and 

/(*0 < 1,71)A (h)  < 4),1-2«. 
	 (C26) 

respectively, so that (C26) gives a lower 1 — a confidence limit and (C25) an upper 
1 — a confidence limit. 

The adequacy of the asymptotic x 2  or normal approximations used for the pro-
cedures described in this Appendix can vary substantially according to the problem 
and the amount of information about the parameters. It is difficult to make general 
statements, but the distributions of likelihood ratio statistics often tend to their limit-
ing distributions more quickly than Wald statistics or pivotais  such as (C11), (C19), 
and (C21). Consequently, likelihood ratio methods are often preferred, especially for 
small to moderate sample sizes. However, confidence intervals based on these meth-
ods may require substantial computation and  are not directly available from most 
software packages, so the Wald procedures are heavily used. The accuracy of these 
procedures can be improved substantially through suitable transformations, as dis-
cussed by Anscombe (1964) and Sprott (1973). In particular, if one is interested in 
the parameter * = g(0), and if Z in (C21) is not close to standard normal for a given 
sample size, then we should seek a one-to-one function q5 = h(1/r) such that 

- 

9 1/2 

is close to N(0, 1); note that ç, 	W(1G-) 2 	by (B4) of Appendix B. 
A final point is that some confidence interval procedures, and in particular ones 

based on likelihood ratio statistics, may give close to nominal coverage for two-sided 
intervals based on small samples, but be considerably less accurate for one-sided 
intervals. 

.0 
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A large literature exists on higher-order asymptotics for maximum likelihood (see, 
e.g., Barndorff-Nielsen and Cox 1994; Reid 2000). This work leads to a variety 
of adjustments or improved approximations for likelihood-based test statistics and 
approximate pivotals. For example, DiCiccio et al. (2001) consider signed squared-
root likelihood ratio procedures. In addition, the adequacy of large-sample methods 
for certain types of problems has been assessed through simulation. It is not feasible 
to discuss this here, but some remarks are given in different sections of the book. 

Although the preceding discussion was focused on independent observations 
,   Yrs from distributions f(y; 0), the general results and methodology apply 

much more broadly. In particular, they apply to problems involving censoring and 
other forms of incomplete data. The main requirement for the establishment of stan-
dard asymptotie properties is that the Fisher information matrix 1(0) increases at a 
sufficiently fast rate. It is generally sufficient when the data arise from n independent 
individuals or units that n-11(0) approach a positive-definite limit as n becomes 
arbitrarily large. 

Problems for which the parameter 0 is on the boundary of  2 are more com-
plex (e.g., Self and Liang 1987; Crowder 1996), as are problems involving threshold 
parameters. The latter are considered in Section 4.5. 

Nonparametric maximum likelihood asymptotics are technically much more dif-
ficult, though many practical problems can be handled by considering sequences of 
parametric models. For general discussion and references, see, for example, Bickel 
et al. (1992), Andersen et al. (1993), and Murphy and van der Vaart (1999). The book 
by Owen (2001) discusses empirical likelihood. 

C.1.2 Marginal, Conditional, and Partial Likelihoods 

Sometimes, especially when there are nuisance parameters present, it is appropriate 
or convenient to use only a portion of the observed data in forming a likelihood 
function. This leads to the concepts of marginal, conditional, and partial likelihoods. 

Suppose that 0 (01, 02) and that the data, denoted simply as y, are transformed 
into two parts  S, T.  If the distribution of S depends on 01, but not 02, then the likeli-
hood Ls (01) obtained from the marginal distribution of S is termed a marginal like-
lihood. Similarly, suppose that the conditional distribution of T, given S, depends 
on 01, but not 02. In this case, the likelihood Lris (01) obtained from this condi-
tional distribution is referred to as a conditional likelihood. Marginal and conditional 
likelihoods have been discussed by several authors (e.g., Fraser 1968; Kalbfieisch 
and Sprott 1970, 1974); Reid (2000) provides additional references. A main problem 
is in assessing whether there is a substantial loss of information entailed in using 
a marginal or conditional likelihood in a given situation. If there is not, these pro-
vide convenient methods of making inferences about 01 in the absence of knowledge 
of 02 . Marginal and conditional likelihoods are based on the probability of observed 
outcomes so; under appropriate regularity conditions, the usual asymptotic•proper-

_ties of maximum likelihood hold for data sequences in which the Fisher information 
increases sufficiently fast. 
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Marginal and conditional likelihood are special cases of the more general concept 
of partial likelihood (Cox, 1975). The basic idea behind this is as follows: suppose 
that the data y have p.d.f. f (Y; 01, 02), where 01 is of interest and 02 is a nuisance 
parameter: Suppose that y can be transformed into parts SI, T1, S2, Sm, Tn. 
The joint p.d.f. of Si ,  T1 . .... Sm , Tm can be written as 

ni  

	

fl 	(ti  Is,O••1); 
 0), 

1=1 	 1=1 

where s (o )  =  (si, 	 si) and 141)  = (ii, ...,11). 
If the second term depends just on 01, this is termed a partial likelihood for 01. 

There will typically be some loss of information involved in using a partial likeli-
hood, though this may be difficult to assess. In addition, to use partial likelihoods we 
need to know that asymptotic results of the kind described, for ordinary likelihoods 
hold. Cox (1975) outlines conditions under which this would be so, and Wong (1986) 
provides further discussion. For many applications involving lifetime data and event 
history processes, asymptotic properties of partial likelihood have been rigorously 
examined (e.g., Andersen et al, 1993). 

C.2 ESTIMATING FUNCTION ASYMPTOTICS 

Consider data consisting of independent responses yi (i = 1, ... , n) and associated 
covariate vectors xi (i = 1 ,  n), and suppose that the distribution of Yi given xi 
depends on a k x 1 parameter vector 0 .  An estimating function for 0 is a k x 1 vector 
U(0) = E  U, (0) Of real-valued functions of yi, xi, and 0, with components 

Ur  (0) = 	Uri (yi. xi; 0) 	r = 1, . . . , k. 	 (C27) 
r=1 

For observed data (yi, xi), i = 1, . , n the objective is to use the estimating func-
tion to obtain an estimate El by solving  the estimating equations U(0) = O. Estimat-
ing equations (see Godambe 1991; Heyde 1997)  provide  a unification of different 
apprOachés to estimation, including maximum likelihood as well as methods that do 
not require the  assumption  of a fully specified distribution for Yi given xi. 

Suitably defined estimating functions yield consistent, asymptotically normal esti-
mators O and are easy to use for hypothesis tests or interval estimation. Estimating. 
functions of many types have been considered (e.g., Huber 1967; Crowder 1987; 
Fahrmeir and Kaufmann 1987; Godambe and Thompson 1989; Prentice and Zhao 
1991; Heyde 1997). We outline key asymptotic results in the general framework of 
White (1982) and Inagalri (1973). 

We restrict Consideration to unbiased estimating functions  for which E[Ui (B)] = 
0, the expectation being taken with respect to the distribution of Yi given xi at the 
parameter value 0. Results similar to those following can also be obtained for many 
estimating functions that are only asymptotically unbiased. 
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Under Suitable regularity conditions (e.g., White 1982; Crowder 1986) consis-
tency and asymptotic normality of  0 as n co can be established. Crucial ingredi-
ents in the results are  the  k x k matrices 

( au 	 n 
An(0) = 	 Bn (0) = — r.pi(o)ui(0), 	(C28) 

n 1=1 

In addition, define 

A(0) = nlirgo E{AA(0)}, B(0) = lim E{B,(0)} = lim !VarlU(0)1. 
11-4 00 	 n-+ 00 n 

Under conditions that ensure that 12 -1 /2U(0) is asymptotically normal, nonsingular-
ity of A(0) and B(0), and other regularity conditions, — 0) is asymptotically 
normal with covariance matrix 

C(0) = A(0) —I  B(0)[A(0) -1 
	

(C29) 

A consistent estimator of C(0) is given by the sandwich form 

C,1 (ê) An(b) —i  Bn(6)[An(b) -1 Y 
	

(C30) 

An alternative is to replace one or both Of A n  (6) and BA with E(A n  (a)) and 
E{B n  (0)) evaluated at 0, assuming that these expectations  are tractable. 

In the case of maximum likelihood estimation, U(0) = a log  L(0)/80 and  it can 
be shown that A(0) = B(0) = n -1 2(0), the scaled Fisher information matrix. 
This gives C(0) = ni( 0) -1 , in agreement with maximurn . likelihood large-sample 
theory. 

White (1982) extends the results concerning estimating functions (C27) so that 
they also apply to misspecified models. Suppose that the components  Uri (Yil,  X1;  0) 
of (C27) are independent and identically distributed (i.i.d.) for any fixed 0, with 
(Yi, Xi) having distribution G. Suppose also that there exists a unique point 0* such 
that EG (Uri (Yi ,  X;  0*)) = 0 for r —  1,  k  Then under suitable regularity.scondi-
tions, the solution 0 to U(0) =  Ois  asymptotically normal. In particular, ,fii(0 — 0*) 
is asymptotically normal with mean vector 0 and covariance matrix C(0 4 ) given by 
(C29), with the expectation defining A(0) and B(0) taken with respect to G.  Note 
that in this framework, the parameter 0 and estimating functions (C27) define an 
estimator 6, but they do not necessarily? bear any relationship to the "true" distribu-
tion G. 





APPENDIX D 

Computational Methods 
and Simulation 

D.1 OPTIMIZATION METHODS FOR MAXIMUM LIKELIHOOD 

Statistical software for lifetime data is widely available, but there are many problems 
that this specialized software does not handle. In this case one can tum to numerical 
methods software, some of which is designed to handle generic maximum likelihood 
problems. 

The need is for procedures that can be used to maximize multiparameter log-
likelihood functions E(0) for 0 lying in a parameter space SI Extensive accounts 
of optimization (maximization or minimization) methods and software are given in 
books such as Gill et al. (1981), Fletcher (1987), and Press et al. (1986), Lange (1999) 
surveys numerical methods for a wide range of statistical applications. Some general 
remarks are provided here, followed by comments on specific software sources. 

Many likelihood functions have a unique maximum at b, which is a stationary 
point satisfying ae/ae = O. Numerical methods of locating such points involve 
an initial value 00 and an iterative procedure designed to give a sequence of points 
et,  02, converging to O.  A distinguishing feature of different methods is in their 
use of the first-derivative vector U(0) = 8e/00 and the second derivative (or Hes-
sian) matrix H(0) = a 2e/aeao/ for (0). Approaches to maximization include: 

1. Search procedures that do not use any derivatives. The simplex algorithm 
(Nelder and Mead 1965) is a familiar example. 

2. Methods that use first derivatives U(0). Examples include steepest ascent, 
quasi-Newton, and conjugate gradient methods. 

3. Methods that use H(0). Newton—Raphson iteration is a familiar example; it 
uses the iteration scheme 

ei = 0 J-1 - H(0)-1)-1 U(0)-1) 	j =  1,2 	(Dl) 

This is derived by approximating U(0) after.the (j — 1)st iteration by the linear 
function U(0:/_ )-F H(0.1_1)(0— then noting that the right side or (D1) 
makes this equal to O. 

555 
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The chOice of method for a specific function E(0) depends on its shape and the 
ease with which first. and second derivatives can be computed. Good optimization 
software includes numerical methods for closely approximating derivatives, so even 
for approaches of types (2) and (3), it is not essential to provide algebraic expressions 
for U(0) or  H(0). Since we generally want the observed information matrix I (6) = 
— H (0) along with i ,  optimization software that produces this is important. 

Some likelihood functions achieve their maximum on the boundary of f2. Finding 
the maximum likelihood estimate (m.l.e.) may then be more challenging, but con-
strained search techniques are usually effective. Likelihood functions can also Pos-
sess multiple stationary points. Optimization methods are usually designed to seek a 
local maximum, so may not necessarily converge to the global maximum b. From a 
statistical perspective it is important to understand the shape of  £(0).  Features such 
as nonconvexity, multiple stationary points, or maxima on the boundary have impor-
tant implications for estimation. They can, for example, indicate that there is little 
information about certain parameters or that confidence interval estimation based on 
O  and associated variance estimates is unwarranted or inaccurate. 

Some other practical considerations should also be noted. 

1. To be confident that a global maximum  Ô has been obtained, it is necessary to 
understand the shape of to). Plots of £(0) for models with only one or two 
parameters are recommended. For models with more parameters, profile plots 
in which all but two of the parameters are held at fixed values are useful. 

2. Parameterizations that make  t (0) closer to quadratic tend to both improve the 
convergence of iterative procedures and the accuracy of large-sample methods 
for testing and interval estimation. Range restrictions on parameters can also 
be removed through reparameterization. 

3. It can sometimes be helpful to break a problem into parts by writing 0 
(01, 02) and using different methods for the maximization of E(01, 02) with 
respect to 01 and 02. For example, if t(01, 02) is roughly quadratic with 02 
fixed, but not when 02 varies, a good procedure when 02 is of dimension one 
or two is to obtain the profile log-likelihood t(61 (02), 02) for 02 and to plot it. 
The approximate location of .02 is then apparent from inspection. 

4. Convergence criteria for iterative procedures are based on two successive iter-
ations giving suitably small values for some combination of Oj — Of 
lE(01) — «O./-1)I or the gradient vector U(0i). Some likelihoods possess 
ridges along which to) changes very slowly, so it is prudent to be aware of 
the specific criteria used. Plots of the log-likelihood are helpful in such cases. 

S. Optimization software usually has default initial values, but can accept input 
values. This can be useful if the software fails to locate a maximum on its own. 
In problems where the shape of go) is not well understood, it is a good idea 
to see if different initial values lead to the same ?). 

Many software packages for numerical or statistical computation possess good 
optimization procedures. If the software also has built-in functions for the probability 
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density function (p.d.f.) and.cumulative distribution function (c.d.f.) of a family of 
parametric models under consideration, then likelihood and log-likelihood functions 
based on the various data structures in this book (e.g., see (2.2.3), (23,1), (2.4.2)) 
are very easy to code. The SAS procedure NLP was used for many examples  in this 
book; it can produce Hessian matrices H (b) by numerical differentiation. 

Critchley et al. (1988), Venzon and Moolgavkar (1988), Seber and Wild (1989), 
and others discuss the computation of m.l.e.'s under constraints on the parameters. 
These ideas can be useful when computing profile likelihoods or likelihood ratio 
statistics. 

D.2 SIMULATION AND BOOTSTRAP METHODS 

The distributions of test statistics, estimators or pivotal quantities can often be 
approximated closely by simulation. The following is an example. 

Example D.2.1. Let Y1„ , Yn  be a random sample from a specific location-
scale parameter distribution (1.3.18) or (El), with m.l.e.'s  û  and S. As shown in 
Appendix E, 

Z = (û — u)/S 	 (D2) 

is a pivotal quantity. Since its distribution does not depend on u or b, we can estimate 
it by simulating samples from the distribution with u = 0, b = 1, as follows, 

1. Generate a pseudorandom sample y , 	, y: from the fully known distribu- 
tion  (El) with u = 0, b = 1. Obtain the m.l.e.'s re, S* based on this sample, 
and thus the value 

= 	 (D3) 

2. Repeat this process B times, yielding values  zî 	 z*B. . 
3. The z* provide an estimate of the distribution of Z. In particular, the empirical 

c.d.f. and sample quantiles from 21'. 	, 43  estimate the c.d.f. and quantiles 
of Z. 

The approach of the preceding example can be used whenever there is a paramet-
ric model and some variable (e.g., a pivotal quantity or test statistic) whose distribu-
tion does not depend on unknown parameter values. By using a large enough value 
of B we can effectively approximate the distribution as closely as desired. Bootstrap 
methodology deals with similar uses of simulation, but in a more general context 
where arbitrarily close approximation of a distribution is not necessarily possible. 
Numerous books describe bootstrap theory and methods (e.g., Efron and Tibshirani 
1993; Hall 1992; Davison and Hinkley 1997). A short outline of some methods for 
interval estimation is presented here. 
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D.2.1 Parametric Bootstrap 

Consider independent and identically distributed (i.i.d.) data from a parametric 
model Y — F(y; 0). Confidence intervals for a specified parameter ltr are ideally 
based on pivotal quantities. However, for most models pivotal quantities and confi-
dence intervals with exact prescribed coverage probabilities a do not exist. Instead, 
confidence intervals are based on quantities W = g(yi yn; *), which are 
asymptotically pivotal: the limiting distribution of W as n co does not depend 
on O. In that case, confidence intervals obtained by inverting probability state-
ments for W based on its limiting distribution typically have coverage probability 
a -I- C(0)n -1/2 . The approximate  pivotais  most often used are those from maximum 
likelihood large-sample theory: the approximate N(0, 1) pivotal (C21), 

	

W = (1.& — Olse(1.0 	 (D4) 

and the likelihood ratio statistic (C22) or its signed square root (C24). 
The basic parametric bootstrap method for obtaining confidence intervals from 

an asymptotic pivotal quantity W = g(yi , 	, yn ; *) is as follows. Let  O be the 
m.l.e. of 0 in the assumed model F(y; 8), based on ,j)1 , 	 yn . Then carry out the 
following simulation: 

1. Generate a pseudorandom bootstrap sample 	, y,'; from F(y; 6). Obtain 
the value 

	

w *  = g(Yr ,,,,, Y;■ ; 	 (D5) 

where V; is the m.1,e. of * based on  Ô. 
2. Repeat this process B times, yielding values tut ..... w*B . The distribution of 

W can be estimated from tot .....  w as in t xample D2.1. The qth quantile 
for W is estimated by tuto) , where we assume for simplicity that qB is an 
integer, so that w'4 17)  is the (qB)-th smallest value among the wy. Then for 
02 > en, 

Pr(Wtqi  B) 	W :5 tdic.q2B) ) q2 — 	 (D6) 

and this can be inverted to give an approximate q2 — qi confidence interval 
for *. 

Example D.2.2. Suppose W in (D4) is used. Then each bootstrap sample 
. 	y,7 gives an estimate 1G* and standard error se(iir*) for *, and the value 

= (10 —  

The probability statement (D6) then gives the confidence interval 

— w(2)  se(//) * 	— tqq,Bys'e(*‘'). 	 (D7) 
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The method in Example D2.2 is often called the studentized bootstrap or the 
bootstrap-t method. However, the same procedure can be used with other approx-
imate pivotal quantities, for example, the likelihood ratio statistic A(*) given by 
(C22). The quantities W of (D4) and A(*) have limiting N.(0, 1) and  X ) 

 respectively, and for large ' n the bootstrap estimates based on 1.4 w*B  will 
reflect this. The bootstrap approximation is usually better for smaller values of n, 
though a large value of B may be needed when qi is.close to zero or q2 is close to 
oné. It is also important for the accuracy of confidence intervals that the quantity W 
on which they are based be as close to pivotal as possible. With quantities of the form 
(D4) it is advisable to use a parameterization that facilitates this. The approach here is 
essentially the same as that described in Appendix C or Section 4.1.1. Parameteriza-
dons or transformations of V/ that stabilize the variance of if or reduce the skewness 
of A(*) can improve confidence interval accuracy substantially. Procedures based 
on (D4), unlike those based on  A(),  are not parameterization-invariant. 

Around B = 2000 bootstrap samples are often suggested for good accuracy, and 
,5000 or more are often suggested when q2 —q  is close to one. However, large values 
of B cannot overcome inaccuracy due to W's distribution depending on B. 

The parametric bootstrap can also be used to check the adequacy of large-sample 
normal or x 2  approximations for pivotal quantities through probability plots of the 
w* or comparison of estimated probabilities or quantiles with their normal or x 2  1' 
counterparts. 

D.2.2 Nonparametric Bootstrap 

In some applications it is not possible to generate bootstrap samples and values (D5) 
from a parametric model. Sometimes it is simply difficult to simulate data from the 
model, but more often, the process generating the data is not fully specified. For 
example, censored samples yi = (ti, i = 1 n often arise under a random 
censoring process that is not known. The rzonparametric bootstrap replaces step (1) 
in the algorithm giving (D5) with 

1'. Generate a bootstrap sample ...., y by randomly drawing n items, with 
replacement, from yi , Yn• 

The rest of the bootstrap procedure is as before. bndér certain conditions (see Hall 
1992; Efron and Tibshirani 1993; Davison and Hinkley 1997), this process ;Provides. 
asymptotically accurate approximations to distributions Of yariables  such as W' in 
(D4) or the corresponding likelihood ratio statistic  A(*). 

Other nonparametric bootstrap procedures  exist, but the preceding one is easy 
to use and generalizes to other problems involving independent data elements 

dn . For example, if yi has An associated covariate vector xi and is sub-
ject to right censoring, then bootstrap samples can be obtained by selecting samples 
of size n,  with replacement, from d,  = (yi, Si, xi), i — 1 n  
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Example D.2.3. Consider nonparametric estimation of a survivor function S(t) 
on the basis of a censored random sample (ti, bi), i — 1 n  as discussed in 
Section 3.2.3, The approximate pivotal quantity (3.2.16) can be used to obtain con-
fidence intervals for S(t). We generate individual bootstrap samples by selecting n 
items (t7,87), 1 = 1 ..... n, with replacement from {(ti, 81), i = 1, . , n). Each 
sample gives a Kaplan—Meier estimate (t) and associated standard error 
from which the value 

S*(t) —  S(t)  
Z; 

) 

is obtained, where ,§(t) is the Kaplan—Meier estimate from the data (th di), i = 
1, . . . , n. Generation of B bootstrap samples and corresponding values ZiK  provides 
an empirical estimate of the distribution of (3.2.16), and of its qi and q2 quantiles. 
This gives a q2 — qi confidence interval for S(t), exactly as in (D6) and (137). Straw-
derman and Wells (1997) provide extensive discussion of this and related methods. 

D.2.3 Additional Remarks 

A few more points about bootstrap methodology are worth noting. 

1. The bootstrap works for smooth functions of the data, and is most useful 
for problems where maximum likelihood large-sample theory is not easily 
applied. 

2. A variety of methods designed to improve the accuracy of bootstrap approxi-
mations has been developed, with names such as the bias-corrected accelerated 
(B Ca) method and the ABC method (Davison and Hinkley 1997, Ch. 5). 

3. In some problems it is conventional to make inferences conditional on certain 
aspects of the data. In particular, with covariates it is customary to condition 
on the observed values xi (1 = 1 ..... n). Parametric bootstrap methods do 
this, but the nonparametric method described here does not; it considers obser-
vations (y,, xi) as random. Nonparametric methods that condition on the xi 
have also been proposed. In practice there is often relatively little difference 
between bootstrap  confidence intervals developed under fixed x and random x 
frameworks. 



APPENDIX E 

Inference in Location-Scale 
Parameter Models 

A univariate location-scale parameter distribution is one with probability density 
function (p.d.f.) of the form 

1 (y — u) 

	

— CO < y < oo, 	 (El) 
b 	b 

where u  (—cc  < u <  oc)  is a location parameter, b (b > 0) is a scale parameter, 
and g () is a fully specified p.d.f. defined on (—co,  oc). The survivor function (s.f.) 
corresponding to (E1) is G[(y — u)/ b], where 

co 
G(x) = f g(z) dz. 

Tests and interval estimation for u and b, and for ,  parameters in related regression 
Models, are outlined here. The ideas involved actually apply to a wider class of mod-
els (e.g., Hora and Buehler 1966; Fraser 1968), but this is not needed for this book. 

E.1 EQUIVARIANT STATISTICS 

We allow Type 2 censoring and suppose that yi < 	< yr  are the r smallest 
observations in a random sample of size n from (El). The results here also apply 
when there is progressive Type 2 censored sampling, but for simplicity we shall not 
examine this explicitly.  Suppose that a = it:(yi , , y r) and  b  = , yr) are 
statistics with the following properties: 

	

c, 	, dyr 	= da(Y1, • • • Yr) + C 
	

(E2) 

T;(dyi + c, , dyr  = • • • Yr) (E3) 

for any real constants c  (—cc  < c < co) and d (d > 0). Then ii and 5 are termed 
equivariant statistics; they are also commonly referred to as equivariant estimators 
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of u and b. The requirements (E2) and (E3) are natural ones for estimators of location 
and scale parameters and most, if not all, of the common types of estimators satisfy 
them. 

THEOREM El. Let ist and 6 be maximum likelihood estimators (m.l.e.'s) of u 
and b in (El), based on a Type 2 censored sample. Then a and 6 are equivariant. 

Proof The likelihood function based on yi 	:5 yr  is (see (2.2.6)) 

[ 	 u  r 
L y (u,b)= 	ng 	b 

)1 
 

1=1 [G  ( Yr 	14 )] —r  

where we write y — (yl 	yr). It is easily seen that 

L y (u, b) = di' 	b'), 

where Y  = dyi c, y' = 	y'r), u' = du -I: c, and b' = db. If L y (u,b) 
is maximized for u and b at û (y)  and ky), then L y,  (U b) is maximized at û(y')  = 
da(y) c and ii(y') = diky). This proves the result. 

E.2 PIVOTALS AND ANCILLARIES 

The next theorem follows easily from the definition of equivariant estimators. 

THEOREM E2. Let a and be equivariant estimators, based on a Type 2 cen-
sored sample from (El). Then 

(i) Z1 = (a — u)16, Z2 = 6/b, and Z3 = (fi — u)lb are pivotal quantities. 
(ii) The quantities ai = (yi—a)16,i =1, „ . , r, form a set of ancillary statistics, 

only r — 2 of  which  are functionally independent. 

Proof From (El) the random variable W = (Y — u)/b has p.d.f. g(w), —co <  w ,< 
 oo, not depending on u or b. Thus the joint p.d.f. of iv] = (yi — u)/b,  W.  = 

(Yr — 14)/b does not depend on u or b, and consequently neither does the distribution 
of  û(1111 ,   wr) or b(wt,•, wr ). But since a and E. are equivariant, it follows 
from (E2) and (E3) that 

17 (Y11 • • • Yr) 	U  
ri(Wit • • • Wr) 	 = 

Yr)  r)(wi 	 tor) — 	— z2. 

This proves that Z2 and Z3 are pivotal; Z1 is thus also pivotal, since Z1 = Z3/Z2. 
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Regarding (ii), the at are clearly ancillary, since at = (Yi - 17)15 = (wi — Z3)/Z2, 
and hence their distribution does not depend on u or b. Finally, the at satisfy two 
restrictions, since 

i(aj , 	 ar) = (Y1, • • • Yr) - 17l/E. = 0 

and 

	

..• ar) = 	• • • , Yr)/5 	1. 

Thus there are just r - 2 functionally independent 

The following theorem concerning the distribution of the pivotais and ancillaries 
also provides an alternate proof of Theorem E2. 

THEOREM E3. Let and L be any equivariant estimators of u and b, under the 
conditions of Theorem E2. Then the joint p.d.f. of Zi, Z2, at, , ar-2 is of the 
form 

r 

k(a, r, n)z 127 1  ( ri gca,z2+ziz2)
) 

[G(arz2+ ziz2)]'7- 
,,.._., 

where k (a, r, n) is a function of a ,,,,, ar-2, r, and n only. The conditional p.d.f. of .  

Z1 and Z2, given a  =  (ai, 	, ar ), is also of the form (E5). 

Proof The joint p.d.f. of yi , 	 yr  is 

n- r n! 	 yi - u 

(n - r)l b-r  [ri g 	b )][G  ( Yr 	 

Make the change of variables from (yi 	Yr) to 	, al , 	, ar-2); this trans- 
formation can be written as 

yi = Eat + 	i = 1 ,, . ,, 

where we note that ar  and ar_ I can be expressed in terms of al 	ar -2. The 
Jacobian a (yi, ••• , Yr)/a(17, E!, al, • • • , ar-2) is of the form .1k-21c 1 (a, r, n), where k' 
is a rather complicated function. The joint p.d.f. of  u, b,  al, • , ar-2 is therefore 

n! 	1;r-2 [ r
rig 	

E . 	_ u)][
G a 

 E, 5 
lc' (a, r, 	 at - 

(n - r)! 	br 	b 	b 	 r.b 	b 1=1 

Making the further change of variables from 	ai, 	, ar_2) to (zi, z2, , • • • , 
ar-2), we get (ES). Finally, the conditional p.d.f. of Z1 and Z2, given a, is of the 
same form (though the function k(a, r, n) is different), since dividing (E5) by the 
joint p.d.f. of ai ,,,,, ar_2 gives a new function of the same form. 

(E5) 
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E.3 CONFIDENCE INTERVALS 

The pivotais.  Z1 and Z2 can be used to obtain confidence intervals for u and b, respec-
tively. The pth quanfile of (El) is yp  = u -1-wp b, where wp  satisfies G (w p ) = 1— p. 
Confidence intervals for yp  can be based on the pivotal Zp  = [we b — (a — u)]/6 
wp 	—  Z1.  This can also be used to get confidence intervals for the s.f. G[(y 

There are two main approaches to the construction of confidence intervals. One 
is to base intervals on the unconditional distributions of pivotais. For example, the 
probability statement MP! < Z1 < E2) = y gives (a — e2 5,  û  — e i r;) as a y 
confidence interval for u . Any equivariant estimators a and i; can be used, but the 
properties of the intervals will depend on the estimators. A second approach, first 
suggested by Fisher (1934), is to base confidence intervals on the conditional distri-
butions of Z1, . Z2, and Z r,,  given the  observed  value of the ancillary statistic a. For 
example, the probability statement  Pr(Li < Z1 < £21a) = y gives the confidence 
interval (a — e2 5,  û  — e i /;) for u. Note that El and £2 ate functions of a in this case. 

A great deal has been written about the two approaches (e.g., see Lawless 1978, 
for some comments and references). From a purely logical point of view the condi-
tional approach seems more appropriate. For distributions other than the normal the 
unconditional distributions of pivotais are impossible to obtain analytically; note that 
to do this involves integrating ai, a,2 out of (E5). The cônditional distributions 
are  computationally  tractable, however, since k (a, r, n) in (E5) is a normalizing con-
stant that an be obtained by two-dimensional integration (numerical, if necessary) 
from the fact that for any a 

T OO f ix. 

h(zi zda) dzi dz2 = 1 
Jo 	— O0  

where h(zi, z21a) is (E5), the joint p.d.f, of Z1 and Z2, given a. Fraser (1979) and 
Lawless (1978) discuss the computation of probabilities for (E5) in specific situa-
tions. Approximations are also available for conditional probabilities (e.g., DiCiccio 
1988), and some higher-order adjustments to likelihood methods apply to conditional 
methods (e.g., see Barndorff-Nielsen and Cox 1994, Ch. 6). 

The following properties are also of interest. 

Property 1. Confidence intervals obtained by the conditional approach are uncon-
ditional confidence intervals in the usual sense. We will demonstrate this property 
for confidence intervals for b. Suppose [di (y), d2(Y)] is a confidence interval for b, 
obtained from the conditional probability statement P r[t < E/b < .e21a] = y. That 
is, di (Y) = h7e2 and  d2(y) = Tvel; note that Li  and E2 are functions of a. Then 

Pr[di(Y) 5, b 5_ d2(Y)1 = Ea{Pr(dt (Y) :5 b _5 d2(Y)1 11J1 

= Ea (y) 

= y. 
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Properly  2. Level y confidence intervals for u, b, or xp  constructed by the con-
ditional method are numerically equivalent to level y Bayes posterior probability 
intervals, obtained with the improper prior  distribution du db for u and b. This is 
readily established; see, for example, Hora and Buehler (1966) and Lawless (1973). 

Property 3. Different equivariant estimators lead to the same confidence intervals 
with the conditional approach. This follows from Property 2, since any conditional 
confidence limit produced is numerically equivalent to a unique Bayes posterior 
probability limit. This property does not hold for the unconditional method, where 
properties of confidence intervals depend on the estimators used to form the pivotais.  

In spite of these points it is the unconditional approach that is typically used 
for inference in location-scale parameter models. The main reasons are ( I ) the fact 
that conditional methods do not apply except for Type 2 censored or complete data, 
(2) the need for higher dimensional numerical integration when the conditional 
approach is used with regression models, (3) a lack of special-purpose software for 
important models, (4) the fact that unconditional intervals can be obtained easily 
using simulation, plus the existence of some tables generated this way, and (5) the 
easy application of unconditional large-sample likelihood methods. 

Except for very small samples there is usually little difference between condi-
tional and unconditional confidence intervals or tests. Moreover, higher-order adjust-
ments that are sometimes made to maximum likelihood large-sample methods may 
have either conditional or unconditional interpretations. In practice, it generally does 
not matter much which approach is taken. 

EA REGRESSION MODELS 

These results generalize in a straightforward way for linear regression models 
Verhagen 1961; Fraser 1979). Suppose that Yi  is a response variable, x; = 

(x i! , 	 xlk) /  is a covariate sector, and the p.d.f of Y; given x; is of the form 

f (YrIxi; 13, b) = --b-1  g 	xi  ) 	— co <yj  < 00, 	(E6) 

where p = 	, fik y is a  vector  of unknown regression coefficients, Suppose 
that a random sample yi , 	, yll  is taken from (E6), corresponding to fixed covari- 
ate vectors xi , 	, xp. Let X be the n x k matrix with rows x, 	x , and let 

Y = (Yi, 	ya; estimators = (y) and E• = T7(y) of p and b are now called 
equivariant if for any real vector c = (c ,,,,, ck)' and scalar d (d > 0) 

(dy Xc) = 	(y) c 	 (E7) 

ti(dy Xc) = dti(y). 	 (E8) 

The least squares and m.l.e, are readily shown to be equivariant (e.g., Verhagen 
1961). 
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Theorem E2 generalizes for uncensored samples under the regression model (E6) 
to give the following theorem. 

THEOREM E4. Let  J and &  be any equivariant estimators of p and b, based on 
a random sample as defined earlier. Then (1)  Z1= 	— /3)/L and Z2 = 1-2/b are 
pivotais, and (2) the quantities as = (yi — O'xi)/ i = 1, 	, n are ancillaries, only 
n — k of which are functionally independent. 

In addition, the final part of Theorem E3 generalizes to Theorem E5. 

THEOREM E5. Under the saine conditions as in Theorem E4, the joint p.d.f. of 
Z1, Zz, and a = (ai , 	 an ) is of the form 

k(a, X, 04-1 	g (at z2 
	

(E9) 
1= 1 

The conditional p.d.f. of Zi and Z2, given a, is of the same form. 

As in the ordinary location-scale case, inferences about /3 and b can be based 
on the unconditional distribution of Z1 and Z2 or on the conditional distribution of 
Z1 and Z2, given a. Except when (E6) is a normal model, the conditional approach 
requires two- or higher-dimensional numerical integration. 



APPENDIX F 

Martingales and Counting Processes 

Martingales and counting processes are basic tools in the mathematical analysis of 
survival and other stochastic processes. Comprehensive treatments are provided by 
Fleming and Harrington (1991) and Andersen et al. (1993). This Appendix presents 
some basic concepts and states a few useful results for survival analysis. 

El MARTINGALES 

Let M = [M(1), t > 0) be a stochastic process such that E(IM(t)l) exists for t > 0, 
and let {H (t )) denote an increasing sequence of sigma fields such that M is 7--l(t)- 
measurable. That is, 7-l(s) C 7-1 (t) for s < t and [7-0)) includes the possible sample 
paths of M over [0, t ] . It may also include outcomes for other factors such as covari-
ate or censoring processes. The process M is said to be a martingale with respect to 
(7-1(t)) if 

(t)7-1 (s)} = M(s) 	s < t, 	 (FI) 

To accommodate processes that may have discontinuities, we assume that M(t) 
is right-continuous with left-hand limits. We define martingale increments 

dM(t) = M[(t 	M (t —). 	 (F2) 

ft follows from (F1) that for any s < 1, 

E[dM(t)17-1 (s)} = 0 

EldM(s)dM(t)) =  O. 	 (F3) 

In what follows, processes are all assumed t6 be H(t)-measurable for some 
(H(t)). A process {A (t), t > 0) is called predictable if it is 7-1(t —)-measurable. 
Left-continuous processes, for which A(t) = A(1—), are predictable. The Doob-- 
Meyer decomposition theorem establishes that a process (X (t),  t?  0) that is 7-1(t)- 
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measurable can be expressed in the form 

X(t) = A(t) 	111(t), 	 (F4) 

where A(t) is a predictable process and M(t) is a martingale. The A(t) process is 
called the compensator for X. 

The predictable variation process of M, denoted (M), is defined as the compen-
sator for the process (M(t) 2 , t > 0). It is of interest because it has increments related 
to variance, 

d(M)(t) = EldM(t) 2 17-l(t—)) 

= Var(dM(t)I7i(t—)). 	 (F5) 

Similarly, if M1 and M2 are two martingales, then their predictable covariation pro-
cess (M1, M2) is the compensator of (Mt (t)M2(t), t > .0). This has increments 

d(Mi, 1112)(t) = EidMI(1)dM2(t)17 -1(l—)} 

= Cov{dMi(t), d M2(t)In(l —)}• 	 (F6) 

In obtaining (F5) and (F6), the fact that E[dM(t)17-0—)) = 0 is used; see (F3), 
Note also that (M, M) = (M). 

Finally, we introduce stochastic integrals of the form 

Ze (t) = f We (s) dMe (s) 	t = 1,2  ... , 	 (F7) 
Jo 

where ( We (t), 't > 0) is it bounded predictable process and ( Me (t), t > 0)  is  a 
martingale. The integrals (F7) are written in Riernann—Stieltjes form; see (1.2.9). It 
is easily seen that Ze = {Ze(t), t > 0) is also  a martingale with respect to (NW) 
and that the predictable Covdriation processes have increments 

d(Ze, Zk)(t) = CoV{Ze(t), Zk(t)ril (t—)} 

We(l)Wic(l)d ( Me, Mic)(t) 	 (F8) 

for either t k or t =  k.  

F.2 COUNTING PROCESSES AND SURVIVAL MODELS 

A counting process is a right-continuous stochastic process that counts the number of 
events of some type over the time interval [0, I]. The heuristic discussion here con-
siders only survival processes. In this case a process counts the deaths (either 0 cr 1) 
for each individual: Ni(t) = I (l'j< t ),  where Ti is the lifetime for individual i In 
describing data subject to right censoring the counting process for observed failures 
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is used, 

Ni(t) = (Ti < t,  8 7 1). 	 (F9) 

The intensity function for a counting process specifies the probability an event 
occurs in [t, t dt), given the process history 'H(t—). In the survival setting this is 
given by the hazard function. Using the definition (F9), we write 

Pr[dNi(t) = 117-l(t —)) = d (t) 

	

= E[dNi(t)17-1(t—)), 	 (F10) 

where (Ni(t), t > 0) is 7-1(t—)-measurable. We refer to Ai (t) = fcj dAi (s) as 
the cumulative intensity process. In the case of continuous lifetime distributions 
tlAi (t) =  X (t) dt = Yi(t)hi(t)dt, where hi (t) is the continuous hazard function 
for Ti and Yi (t) =  J (Ti > t and censoring has not occurred by t). In general we 
write 

d Ai (t) = Yi (I) dHi(t) 	 (F11) 

and assume that Yi (t) is left-continuous and Hi (t) is right-continuous and pre-
dictable. This requires that any covariate processes involved  in the specification of 
Hi (1)  are predictable 

Under the preceding conditions, 

Mi(t) = N1(t) — Ai (t), 	t > 0 	 (F12) 

is .a  Martingale with respect to  { H (t )) and can be used to study properties of many 
: inference procedures:A crucial factor in doing this is the ability to express relevant 
Processes as stbchastic integrals for which the predictable covariation processes can 
be obtained. In particular, consider two processes of the form 

n 

Z e(t) = 	
° 

E 	W15(s) d AI; (s), 	= 1, 2, 	 (F13) 
1=1  

where Mi (t) is given by (F12) and (F11), and the Wit processes are all bounded and 
predictable. It can then be seen (e.g., Fleming and Harrington 1991, Sec. 2.4-2.6) 
that Zi and Z2 are martingales with respect to (N(s)) and, assuming that the dNi(t)'s 
for t  = 1, . . . , n are independent, given 'H(t—), 

E{Zi(t)) = 0 	 (F14) 

E{2t(t) 2 ) = VartZt(t)) 

= EEf W i2e (s)Yi (s)[1 — A Hi (s)] d (s) 	 (F15) 
1= 1 o 
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E(Zi (t)Z2(t)) = Cov{ZI (t), Z2(t)) 

=Et f i  Wu (s)Wi2(s)Yi(s)[1 — Hi (s)] d (s), 	(F16) 
1=1  o 

where the notation i  X (s) = X (s) — X  (s—)  for right-continuous processes is intro-
duced. That is,  L X (s) = 0, unless X (s) is discontinuous at s. 

We conclude with brief examples of the application of these ideas. 

Example Fl. Maximum Likelihood Score Functions. The likelihood score 
function U(0) for a parametric lifetime distribution with continuous hazard function 
h(t; 0), based on a censored random sample, is given by (2.2.18) as 

n 	co 

 U(0) = 	
a log  hi(t; 0)  dMi(t). E 	a e 

where G  is p x 1, 

d (t) = Ar,(t) — (t)hi (t ; 0) dt 

and dAri (t) =  1(T, = t, di = 1). The processes Wi (t), t > 0) are martingales and 
the functions 

a log h (1; 0) 

aee  = 1 ..... p 

are predictable. It follows immediately from the results (F14)—(F16) and the fact that 
Fit (t; 0) = 0 that E(U(0)) = 0 and for e, j = 1 ..... p, 

f r  a log hi(t;  0)  a log hi (t; 0)  yi (I) hi (t; 	dt.  
Cov(Ue (0), Uj (0)) = E 2 j 

 o 	aee 	Doi  

Some algebra shows the equivalence of this to the expectation of the information 
matrix I (0) = —Dumyat)/ , and martingale asymptotics can be applied to prove 
standard asymptotic likelihood results (e.g., Andersen et al. 1993, Ch. 6). 

Example F2. The Nelson—Aalen Estimator, The Nelson—Aalen estimator 
(t) of (3.2.12) is represented as a stochastic integral with respect to the martingale 
(t) = N(t) — 	(t) in (3.2.27) of Section 3.14. An application of (F14) then 

gives (3.2.29), from which a variance estimate for .1.-/(t) can be obtained. 



APPENDIX G 

Data Sets 

G.1 TRANSFUSION-RELATED AIDS DATA 

These data are given by Kalbfleisch and Lawless (1989). Here we give the subset of 
the data discussed in Examples 3.5.3 and 4.3.3, which is for persons aged 5-59. The 
following values are as given by Kalbfleisch and Lawless: 

INF = month of human immunodeficiency virus (HIV) infection (month 1 
is January 1978) 

DIAG = duration of the Acquired Immune Deficiency Syndrome (AIDS) induction 
(incubation) period, in months 

AGE = age + 1(in years), where age is for the patient at the time of transfusion 

One individual who had an infection later than 90 months has been dropped from the 
data set, leaving 124 individuals. 

In the analyses of Examples 3.5.3 and 4.3.3,  the induction time t is defined as 
DIAG, and the right truncation time y equals 102.5 — INF. 

G.2 TIMES TO FIRST PULMONARY EXACERBATION 

These data were kindly provided by Terry Therheau,  and, were discussed in Examples 
1.1.8, 3.2.4, 3.2.5, 6.2.3, 6.3.4, 7.2.1, and 11.3.1. A larger data set that also gives. 
the times of second and subsequent exacerbations is available by visiting the Mayo 
Clinic Web site http://www.mayo ,edu/hsr/biostat.html; see also Appendix D of. 
Themeau *and Grambsch (2000). See under "rhDNase for Cystic Fibrosis" for the 
data set. 

The data discussed in the example's listed in the previous paragraph.use the first 
forced expiratory volume  (fey) measurement as variable fey,  and only times to  a first 
exacerbation. 
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INF DIAG AGE INF DIAG AGE INF DIAG AGE 

38 15 56 47 35 23 83 12 55 
27 28 57 64 18 35 84 11 55 

.23 34 20 15 68 6 59 36 53 
25 .34 46 35 48 26 65 31 51 
42 17 46 67 16 59 47 49 51 
33 29 53 35 48 51 81 15 36 
45 .17 39. 36 47 . 22 - 87 . 9 57 
33 29 54 74 10 42 85 '11 59 
34 29 34 .15 69 30 72 24 44.. 
26 38 56 29 55 54 53 43 46 

3 61 29 62 22 38 54 43 47 
53 12 46 69 16 34 17 80 54 
28 38 46 62' 23 54 61 36 28' 
34 32 26 82 4 46 48 49 60 
21 46 30 75 11 59 29 68 60 
37 .30 25 27 59 60 30 68 29 
33 34 51 56 30 26 40 58 28 

:. 1 7 53 33. 73 13 54 75 23 41 
58 13 39 76 10. 50 43 55 59 
49 22 57 50 36 46 86 12 36 
67 4 29' 49 38 59 57 41 11' 
35 37 57 61 .26 42 53 46 '37 
12 60 21 59 29 52 48 51 54 
19 53 52 57 31 41 60, 39 551 
53 20 56 68 20 60 36 63 57' 
36. 38 56 76 12 29 48 51 27 
12 62 58 19 70 17 55 44 51 
50 24 52 22 67 59. 60 39 35 
37 37 .34 26. 63 48 82 18 60 
34 41 32. 57 33 51 71 29 44 
57 18 23 58- 32 56 37 63 59 -  
28 48 42 59 32 32 60 40 49 
66 10 32 41 50 46. 78 22 41 
45 32 60 70 21- 53 52 48 56 
53 '.24 44 58 33 33 37 64 49 
54 .25 58' 75 17 52 22 79 33 
40. 39 50 39 53 37 12 E9 38 
54 25 50 83 10 38 47 54 53 
74 '5 39 29. 65 53 85 16 38 
52 29 24 65 29 58 84 17 49. 
62 19 58 41 53.. 58 
67 . 14 45. 58 36 21 
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G3 BREAKING STRENGTHS OF CARBON FIBERS 

The data, from Crowder (2000), are used in Example 6.4.2 and give the breaking 
strengths of single carbon fibers of different lengths. 

Length (E) Breaking Strength  (t) 

1 2.247. 2.640 2.842 2.908 .3.099 3.126 3.245 3.328 
3.355  3.383 3.572 3.581 1681 2:726 3.727 3.728 
3.783 3.785 3.786 3.898 3.9.12 3.964 4.050 '4.063 
4.082 4.111 4.118 4.141 4.216 4.251 4.262 4.326 
4.402 4.457 4.466 4.519 4.542 4.555 4,614 4.632 
4.634 4.636 4.678 4.698 4.738 4.832 4.924 5.043 
5.099 5.134 5.359 5.473 5.571 5.684 5:721 5.998 
6,060 

10 1.901 2.132 2.203 2.228 2.257 2.350 2.361 ,2.396 
2.397  2.445 2.454 '2.454 2.474 2.518 2.522: '2.525 
2.532 2.575 2.614 2.616 2.618  2. 624 2.659 2.675 
2.738 2,740 2.856 2.917 2.928 2.937 2.937. 2.977 
2.996 3.030 3.125 3.139 3.145 3.220 3.223 3.235 
3.243 3.264 3.272 3.294 3.332 3.346 3.377 3.408 
3.435 3.493 3.501 3.537 3.554 3.562 3.628 '.3.852 
3.871 3.886 3.971 4.024 4.027 4.225 4.395 5.020 

20 1.312 1.314 1.479 1.552 1.700 1,803 1,861 1.865 
1,944 1.958 1.966 1.997 2.006 2.021 2.027 2.055 
2.063 2.098 2.140 2.179 2.224 2.240 2.253 2.270 
2.272 2.274 2.301 2,301 2.339 2.359 2.382 2.382 
2.426  • 2.434 2,435 2.478 2.490 2.511 2.514 2.535 
2.554 2.566 2.570 2.586 2.629 2.633 /642 2,648 
2,684 2,697 2.726 2.770 2.773 2.800 2.809 2.818 
2.821 2.848 2.880 2.954 3,012 3.067 3.084 3.090 
3.096 3.128 3.233 3.433 3.585 3.585 

50 1.339 1.434 1.549 1.574 1.589 1.613 1.746 1.753 
1.764 1,807 1.812 1.840 1.852 1.852 1.862 1.864 
1,931 1.952 1 1.974 2,019 2.051 2.055 2,058 2.088 
2.125  2 162 '2.171 2,172 2.180 2.194 2,211 2,270 
2.272 2.280 2.299 2.308 2.335 2.349 2.356 '2.386 
2390 2.410 2.430 2.431 2.458 2.471 2.497 2.514 
2.558 2.577 2.593 2.601 2.604 2.620 2.633 2.670 
2.682 2.699 2.705 2,735 2.785 2.785 3.020 3.042 
3.116 3.174 

G.4 LIFETIMES. OF STEEL SPECIMENS 

The data, from Crowder (2000), give the lifetimes of steel specimens tested at 14 
different stress levels. The data are used in Example 6.4.3. 
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Stress (s) Lifetime (t) 

38.5 60 51 83 140 109 106 119 76 68 67 
111 57 69 75 122 128 95 87 82 132 

38.0 100 90 59 80 128 117 177 98 158 107 
125 118 99 186 66 132 97 87 69 109 

37,5 199 105 147 113 98 118 182 131 156 78 
84 103 89 124 71 65 220 109 93 171 

37.0 141 143 98 122 110 132 194 155 104 83 
125 165 146 100 318  136f  200 201 251 111 

36.5 118 273 192 238 105 398 108 182 130 170 
181 119 152 199 89 211 324 164 133 121 

36.0 173 218 162 288 394 585 295 262 127 151 
181 209 141 186 309 192 117 203 198 255 

35.5 156 173 125 852 559 442 168 286 261 227 
285 253 166 133 309 247 112 202 365 702 

35,0 230 169 178 271 129 568 115 280 305 326 
1101 285 734 177 493 218 342 431 143 381 

34.5 155 397 1063 738 140 364 , 218 461 174 326 
504 374 321 169 426 248 350 348 265 293 

34.0 168 397 385 1585 224 987 358 763 610 532 
449 498 714 159 326 291 425 146 246 253 

33.5 154 305 957 1854 363 457 415 559 767 210 
678 332 180 1274 528 254 835 611 482 593 

33,0 184 241 273 1842 371 830 I  683 1306 562 166 
981 1867 493 418 2978 1463 2220 312 251 760 

32,5 4257 879 799 1388 271 308 2073 227 347 669 
1154 393 250 196 548 475 1705 2211 975 2925 

32.0 1144 231 523 474 4510 3107 815 6297 1580 605 
1786 206 1943 935 283 1336 727 370 1056 413 
619 2214 1826 597 

G.5 VA LUNG CANCER SURVIVAL DATA 

These data give survival times for 137 advanced lung cancer patients, and are dis-
cussed in Examples 1.1.9, 3,2.4, 3.2.5, 6.2.3, 6.3.4, 7.2.1 and 11.3.1. Part of the data 
set (the data for the 40 patients who received therapy prior to the study) is given in 
Example 1.1,9. 

The full data set is available in the file "veteran" on the Statlib Web site (http://lib. 
stat.cmu.edu/datasets/) . The data are also given in the matrix cancer.vet in some ver-
sions of S-Plus. 

G.6 SURVIVAL TIMES FOR PERSONS WITH LUPUS NEPHRITIS 

These data, discussed by Abrabamowicz et al. (1996), are used in Problem 7.10. The 
data include the variables: 
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TIME = survival time (in months) from an initial renal biopsy 

STATUS = failure indicator (0 = alive at end of follow-up, 1 = dead) 

DURATION = duration (in months) of untreated kidney disease prior to the biopsy 

for 87 lupus patients who underwent a renal biopsy between 1967 and 1983 and were 
followed up until death or the end of 1990. 

The data set is available in the file "lupus" on the Stetlib Web site (http://lib.stat. 
cmu.edu/datasets/).  

G.7 PRIMARY BILIARY CIRRHOSIS (PBC) DATA 

These data are discussed in Example 8.2.1. The full data set is given in Appendix 
D.1 in Fleming and Harrington (1991). The data set is also available in the file "pbc" 
on the Statlib Web site (http://lib.stat.cmu.edu/datasets/).  

G.8 DIABETIC RETINOPATHY STUDY DATA 

This data set is discussed in Section 11.2.3. The data set, with some additional vari-
ables, is available from the Mayo Clinic Web site referenced in Section G.2 of this 
Appendix under "Diabetes." 

G.9 STANFORD HEART TRANSPLANT DATA 

This data set is discussed in Example 11.4.3. The data were discussed by Crowley 
and HU (1977) and given in the book by Kalbfleisch  and Prentice (1980), where 
several typos occurred. The full data set given by Crowley and Hu is available 
in the file "stanford" on the Statlib Web site (http://lib.stat.cmu.edu/datagets/) . The 
Kalbfleisch—Prentice data set and a summary of the differences in the two data sets 
is also provided. These data are also given in the S-Plus data frame "heart." 

G.10 COLON CANCER RECURRENCE AND SURVIVAL DATA 

This data set is based on a study by Moertel et al. (1990) and was discussed by Lin 
et al. (1999). Danyu Lin kindly provided the data used in Example 3.3.3 and later 
illustrations. 
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see also Location-scale parameter 

models; Regression models and 
methods 

Log-logistic distribution, 23-4,39,42 
inference for, 181-2,23 1-5 
see also Logistic distribution 

Log-normal distribution, 21-3,39,42, 
230 

with threshold parameter, 186,208 
inference for :, 180-1,230-5 
see also Normal distribution 

Log-rank test, 346,388-9,406-7, 
409-11 

with stratification, 415-9 
weighted, 414-7,428 

Long-term survivors, 183,326-7 
Longitudinal surveys, 66 
Lost to followup, 52 
Lupus nephritis, 394,574-5. 
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Maintenance, 39, 525 
.Mantel-Haenszel test, see Log-rank test 
'Markers, biological, 518-9 
Markov process, 514-5 
Marriage duration, 2, 71 
Martingales, 62-3, 95-6, 567-8, 570 
Matched pairs, see Paired data 
Maximum likelihood estimation, 49, 54, 

61-4, 545-52 
asymptotic results for, 61-3, 75, 545-52 
with censored data, 61-3 
maximum likelihood estimate, 49-50, 

546 
numerical methods, 166-7, 555-7 
nonexistence of trile., 148, 332 
nonparametric, 80, 83-6, 136 
and parameter transformations, 88, 1.49, 

200, 202 
semiparametric, 349-50, 384-8, 396 
see also Information; Likelihood 

function;.Score statistic 
Mean lifetime restricted to T,  98 

estimation of, 98, 140-1 
Mean residual lifetime, 41, 141 
Mechanistic models, 325 
Median, 9 

nonparametric estimation of, 94, 137 
parametric estimatien of, 16840, 267 

Microcircuit failures, 267 
Missing data, 664, 201 

censoring times, 66-7 4  138,142, 201 
missing ai random (MAR), 66 
missing cempletely at random (MCAR), 

66 
Mixture Models, 33-4, 40, 42, 181, 

206-7 
of exponential distributions, 42, 45 
of normal distributions, 201 
of Weibull distributions, 183-5, 201; 
see also Cure-rate models; Frailty 

models  
Models, 2, 38, 39 

misspecification, 553 
nonparametric, 38 
parametric, 16,  35, 38-9 
semiparametric, 35, 273,  341,401  

Model checking, see Goodness of fit tests; 
Graphical methods 

Mortality data, 487 

Multiple causes of death, see Multiple 
modes of failure 

Multiple modes of failure, 8, 37, 40, 47, 
433-7, 455 

cumulative incidence or subdistribution 
functions, 434, 452-6 

grouped data, 448-9,  456,461-2  
latent failure time model,  435,457  
likelihood function, 435-7 
masking, 463 
mode-specific hazards, 37, 433 
nonpararnetric methods, 437-44 
parametric methods, 444-9, 456 
proportional or multiplicative hazards, 

447, 449-56. 
regression models, 444,  447,449-56  
see also Competing risks; Multivariate 

lifetime models 
Multiple events, 491,512  
Multiplicative hazards models, 322-4, 

341-2, 357, 388-9, 484-5 
see also Proportional hazards models 

Multistate models, 493, 513-8 
Multivariate lifetime distributions, 36-7, 

40,  46,493-507,  523 
association, 523, 526 
Burr model, 496-7 
Clayton Model, 496-7, 526 
and clustered data,  494,498-500  
and copulas, 495-6, 523 
independence working models, 501-4, 

524 
inference for, 500-4 
logistic model, 47 
nonparametric methods, 500-1 
random effects, 497-500, 523 
regression models, 498-500 
semiparametric PH models, 503-4 
and sequences of  lifetimes,  508 
see also Competing risks; Multiple 

modes of failure 

Nelder-Mead procedure, 555 
Nelson-Aalen estimate, 85-6, 137 

asymptotic properties, 95-8, 570 
as an rn.l.e., 86 
plots of, 864, 107 
and product-limit estimate, 84-5, 97 
and truncated data, 117, 122 
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variance estimation, 86,96-7 
see also Hazard plots 

"New better than used" property, 41 
Newton-Raphson method, 555 
Nonparametric methods, 38,79 

estimation of hazard or density 
functions, 109-15 

estimation of probabilities and survivor 
functions, 80-3,87-93,115-28 

estimation of quantiles, 93-5 
and interval-censored data, 124-8 
and model checking, 98-108 
and plots, 81-2,86-7,98-108 
tests, 344,402-6,413-4 
and truncated data, 116-23 
see also Maximum likelihood 

estimation; Nelson-Aalen éstimate; 
Product-limit estimate 

Normal distribution, 21,24,230 
estimation and tests, 230-5,242-3 
goodness of fit tests, 480-1,486 
relationship to log-gamma, 
see also Log-normal distribution; 

Regression models and methods 

Observation schemes, 51,75 
intermittent observation, 63-6 
prospective observation, 51 
retrospective observation, 70-1 

Optimization procedures, 555-7 
Order statistics, 542-3 

asymptotic results for, 141-2,543 
and linear estimation, 259-60 
from exponential distribution, 151-3, 

476-7,543 
from extreme value distribution, 478-9 
from normal distribution, 480-1 
moments, 259,479,543 
prediction of, 203,265-6 
and type 2 censoring, 55-7 
from uniform distribution, 543 

Outlier, 288 

Paired data, 264-5,391-2,498-500, 
523-4 

see also Clustered data 
Pareto distribution, generalized, 43,45 
Partial likelihood, 61,349-50,552 

efficiency, 390,393 

see also Likelihood 
Performance measures, 519 
Piecewise constant hazards (piecewise 

exponential)  model, 3042,141, 
323-4,330,.384-6,389,439-41, 
453-5,524 

Piecewise polynomial models, 172-4.200, 
387,389 

Planning studies, 71-4,200,252 
with exponential models, 157-164 
with location-scale models, 252-7, 

308-11 
With Weibull models, 255-7,268 
see also Design of experiments 

Poisson process, 43,532 
Polynomial hazard function models, 32, 

172,200 
Population-average effects, 504-7 
Power law model, 271,278,299 
Power of tests, 158-64,254-5 
Predictable process, 567-8 
Prediction, 194,201 

Bayesian, 199-201,209,266-7 
calibration, 196-8,201 
pivotal quantities and, '194-5,265-6 
plug-in method, 194-5 
prediction intervals, 194-195,203, 

265-7 
Primary biliary cirrhosis, 422-4,575 
Probability plots, 99109,137 

classic,  108-9 
for exponential distribution, 100 
for extreme value and Weibull 

distributions., 100-2,104-7 
for log-logistic and logistic distributions, 

101,104 
for log-normal and normal distributions, 

101-2 
see also Graphical methods 

Product integral, 12-3,39 
and lifetime models, 13-4,60,84-5 

Product-limit estimate,  80,136 
asymptotic properties, 95,8,136-7 
and estimation of mean lifetime, 98,137 
as an m.l.e., 
and Nelson-Aalen estimate, 84-5; 97 
plots of, 81-72,.93-4,98-9 •. 
relationship .  to life table, ,129 . . 
variancé estimation,.82,97.1., 
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Proportional hazards (Cox) model, 341-2, 
388 

comparison of distributions under, 
344-8,357-8,388,394-5 

and competing risks, 449-53 
estimation of baseline distribution, 

352-4 
estimation of regression parameters, 

342-3,363-70 
fully parametric models, 273,323-4 
grouped data from, 370-5,378-9,389 
influence analysis, 360-1 
interval-censored  data, 387-9 
and kig-rank test, 346,388 
and martingales, 350-1,359-60,388, 

391 
and maximum likelihood, 348-51, 

384-9,396 
misspecification, 362,398-9 
model checks, 358-63,363-70,389, 

484-6 
and partial likelihood, 349-50 
andpiecewise-constant hazards, 384-6, 

389,453-5 
residual analysis, 358-61,389,392-3 
reverse  time, 397 
stratification, 35 ,4-5,391-2 
ties in data, 351-2 
time-varying Covariates, 355-8,388 
truncated data, 355,397-8 
see also MultiPlicative hazards models 

Proportional odds model, 328,331 
Pulmonary exacerbations, 5,92-4,279-83, 

291-2,305-6,363-7,492-3, 
509-12,571 

Quality of life, 523,525 
Quantiles, 9 

function, 100 
nonparametric estimation of, 93-5 
parametric estimation of, 167-70,295, 

300 
Quintile Plots, see Probability plots 

Radiation effects, 263,445-7 
Random effects, 34,45,497-8., 523 
Rank-based estimation methods, 401-2, 

428-9,432 
and counting processes, 413-6,428  

and location-scale models, 401-6 
and location-scale regression, 420-8 
and proportional hazards regression, 

348-9 
with time-varying covariates, 424-6, 

429 
Rank statistic, 348 
Rank tests, 402-20,428 

with censored data, 408-20 
comparison of distributions, 402-20, 

428 
counting process formulations, 413-6, 

428 
efficiency, 416-7 
see also Log-rank test; Rank-based 

estimation methods; Wilcoxon test 
Rayleigh distribution, see Linear hazard 

function distribution 
Recurrent events, 524,532 
Regression models and methods, 34-7,40, 

269-74,329-30,401-2 
accelerated failure time (AFT), 270-1, 

320-1,329 
additive hazards, 273,325 
conditional confidence intervals in, 296, 

332-3,335 
discrete data, 382-3 
exponential, 35,332-3 
extreme value and Weibull, 270-3, 

296-303 
generalized linear models, 372-3,382-3 
generalized log-Burr, 312-7,319-20 
generalized log-gamma, 312-7 
graphical methods, 274-83,288-92 
grouped data, 370-81 
and interval-censored data, 387-9 
influence analysis, 287-8,329,360-1, 

389 
inverse Gaussian, 325,330 
least squares estimation, 306-8,336, 

427 
linear models, 306-8,401 
location-scale models, 35,270-1, 

292-6,306-8,329,401-2 
log-location-scale models, 35,270-1 
logistic and log-logistic, 303-6 
mixtures, 274,326-7,330 
model assessment, 283,482-5 
multiplicative hazards, 35,322 
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in multivariate distributions, 498-500, 
503-4 

normal and log-normal, 303-6 
parametric models, 35, 269-74 
piecewise-constant hazards (piecewise 

exponential), 323-4, 330, 384-6, 
389, 453-5 

proportional hazards (PH), 35, 271-3, 
322-4, 341-2 

proportional odds, 274, 328, 331 
rank-based estimation, 348-9, 420-7 
residual analysis, 283-6, 329, 358-63, 

389 
robustness, 306-8 
semiparametric (PH) models, 35, 341-2, 

449-50 
semiparametric AFT and location-scale 

models, 401-2, 420 
time-transformation, 320-1, 327-8, 339 
with time-varying covariates, 35-6, 

320-1,330  
variable scale parameters, 317-20, 330 
see also Accelerated failure time model; 

Location-scale model; Proportional 
hazards model 

Reliability, 39 
demonstration, 253-8 
standards, 200, 258 

Reliability function, see Survivor function 
Renewal process, 78 
Residuals, 283-6, 329 

with censored data, 283-6, 358-60 
exponential or hazard-based, 286, 

359-60, 485 
in regression models, 283-6, 359-60 
martingale, 358-60, 485-6 
Schoenfeld, 362-3 
score, 360-1 
plots, 288-92, 360-2, 364-6 
uniform, 482 

Reverse time,  121,397  
Riemann-Stieltjes integral, 11 
Risk indicator, 58 
Risk set, 342 
Robustness, 147, 202-3, 243, 306-8 
Robust variance estimates, 423-4 

Sample size determination, 157, 160, 254, 
428 

Sampling inspection, see Acceptance 
sampling 

Score statistic,  61,546  
asymptotic distribution, 546-7 
score tests, 344, 347, 403-6 
see also Likelihood; Maximum 

likelihood estimation; Estimating 
functions 

Selection mechanisms and effects, 51, 
67-71, 78, 177-81 

Semiparametric models, see Models 
Sensitivity analysis; 249 
Sequences of lifetimes, 37, 507-12 
Sequential methods, 161, 200 
Shapiro-Wilk test, 480 
Shelf life, 64 
Simulation, 557-60 

and bootstrap methods, 557-60 
and estimation, 218, 228 
and hypothesis tests, 238-9, 468, 475-6 
and planning studies, 252, 256, 308, 310 
and prediction, 196-9, 203, 266 

Smoothing, 109-115 
see also Kernel density estimates; 

Splines 
Software, xv, 40, 138-9, 201, 258, 330, 

390,  429,525-6,  555-7 
Spacings, 476, 478 
Spearman's rho, 526 
Splines, 32, 200 

cubic, 32, 113-4 
regression, 109, 114, 137, 173-4 
smoothing, 113-4 

Staggered entry, 53 
Status indicators, 52 
Stochastic integral, 97, 568 
Stratification, 354, 415-9 
Strength data: 

carbon fibres, 313-6, 573 
length effects, 315-6 
steel specimens, 317-20, 573-4 
yarn, 263 

Study design, see Planning studies 
Supplementary followup, 138 
Survival time, see Lifetime 

Threshold parameter, 16, 185-7, 201 
in exponential distribution, 16, 190-4, 

201 



630 	 SUBJECT INDEX 

in log-normal distribution, 186, 208 
in Weibull distribution, 185-90, 201 

Time-transformation models, 271, 320-1 
with time-varying covariates, 320-1, 

424-6 
Time-varying (Time-dependent) 

covariates, see Covariates 
Time scales, 2 

composite, 339, 523, 525 
Total time on test, 152 
Toxicity experiments, 264-5, 527 
Tr'gamma function, 28, 40, 541 
Truncation, 67-70, 75, 78, 138 

independent, 68, 77 
left-, 67-70, 77-8, 180 
quasi-independent, 398 
right-, 71, 77, 178-80, 397 

Two-sample tests, see Comparison of 
distributions 

Usage measures, 518  

Wald statistics, 550 
Weibull distribution, 18-20, 218 

comparison of distributions, 238-42, 
263-4 

estimation and tests, 178-L80, 219-29, 
257 

goodness of fit tests, 478-80 
graphical methods, 100-7, 240-1 
with threshold parameter, 185-90, 

489-90 
life test plans for, 253-7 
mixtures, 45, 183-5 
prediction, 265-6 
see also Extreme value distribution; 

Regression models and methods 
Wiener process, 30, 521 
Wilcoxon test, 407 

with censored data, 411-3, 429, 432 
Withdrawals, 58, 129-30 

see also Censoring 
Wood preservatives, 474 
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